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In the investigation of the nonequilibrium ultrafast dynamics of the coherent phonon-plasmon coupled

modes in a polar semiconductor, we predict theoretically that their coherent oscillations can be efficiently

controlled by using the pulse train of below-band-gap excitation. The dynamics of the coherent modes are

driven by the virtual electron-hole pairs, which would avoid dephasing sources such as accumulation of

photoexcited charges and spontaneous emission. This implies that carrier mobility can also be efficiently

controlled and dramatically enhanced by synchronizing the pulse train with the coherent oscillation of the

carrier-relevant coupled mode.
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Below-band-gap excitation of semiconductors suggests
a key technique to realize the dephasing-free dynamics,
such as efficient coherent control of spins [1] and ex-
tremely stable solitons [2]. The ac Stark effect shows that
virtual excitations by the below-band-gap excitation give
rise to exactly same physical processes as real ones except
that they cause no relaxation and have no lifetime [3–5].

The carrier mobility is one of the central quantities in the
operation of modern semiconductor devices, such as high
electron mobility transistors (HEMT), field effect transis-
tors (FET), or in the generation and manipulation of ter-
ahertz (THz) radiation from semiconductor surfaces by the
photo-Dember effect [6]. The carrier mobility � is given
by � ¼ e ��=m�, where e is the electron charge, m� the
carrier effective mass, and �� the relaxation time. �� could be
obtained by THz time-domain spectroscopy [7], but the
accessible carrier density was limited to one lower than
Oð1016Þ cm�3 because of the non-Drude behavior at
higher carrier densities. In contrast, Raman investigation
of SiC polytypes has shown that the linewidth of the
carrier-relevant LO phonon-plasmon coupled (LOPC)
modes [8] can be directly matched to the carrier mobility
obtained from Hall measurements in the high carrier den-
sity region [15]. Moreover, Hase has recently measured the
relaxation time ��Lþ of the coherent carrier-relevant mode
(i.e., Lþ mode) from its real-time relaxation using time-
resolved electro-optic detection and time-frequency analy-
sis in GaAs [16], showing that � � e ��Lþ=m� could give a
good estimation of carrier mobility.

In this Letter, we propose a new theory for controlling
the coherent motion of the LOPC mode and eventually the
carrier mobility �. In the proposition, for instance, in
GaAs, the virtual excitations by the below-band-gap exci-
tation would screen the space-charge field in the surface
region and drive the coherent modes just like real ones. The
virtual carriers have no lifetime, so that they would not

cause undesirable scattering events with the coherent
modes or other (virtual) carriers by succeeding pulses.
This makes the virtual excitation preserve the coherence
by suppressing the dephasing sources. In particular, it is
found that carrier mobility can be dramatically enhanced
by synchronizing the pulse train of below-band-gap exci-
tation with the coherent oscillation of the carrier-relevant
mode.
We consider the creation of continuum carriers

(electron-hole pairs) by laser irradiation, which excites
phonons and plasmons in a polar semiconductor.
Phonons and plasmons interact with each other through
an explicit phonon-plasmon coupling g. The resulting
Hamiltonian H ( ¼ H 0 þV ) reads
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dykðdkÞ and cykðckÞ are the operators of the photoexcited

hole and electron, respectively. ayqðaqÞ is the operator for

the LO phonon !LO, while byqðbqÞ for the plasmon !PL.

The plasmon bath describes the degenerate sea of doped
carriers, which is made possible by the quasiboson ap-

proximation [17]. !PL is determined by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�ne2="1m�p

with the carrier density n. The photoexcited electron
interacts with the LO phonon via the Fröhlich coupling

Mq ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�!LO

p ð1="1 � 1="0Þ1=2=jqj and with the plas-
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mon via the Lundqvist form Vq ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�!PL

p ð1="1Þ=jqj
[18], where "0 and "1 are low- and high-frequency dielec-
tric constants. V is the light-matter interaction by the
pumping pulse train. The strength of the light-matter cou-
pling is quantified by�0 (¼dcvA), where dcv is the dipole
matrix and A is the field amplitude of the laser. Putting the
length of a single pulse as � and the interval between

pulses as � (� � �), we note ��ð�Þ ¼ P
n¼N�1
n¼0 ½�ð�þ

n�Þ ��ð�þ n�� �Þ� for a pulse train with N pulses,
where �ð�Þ is the Heaviside step function. ! is the pulse
energy.

We define � ( � �G �!; �G: energy gap) as the detun-
ing of the laser with respect to the electron-hole contin-
uum, so that � > 0 signifies the below-band-gap excitation.
An application of the below-band-gap excitation pulses
introduces the virtual electron-hole continuum in a semi-
conductor, which excites phonons and plasmons. It is a
pure quantum mechanical feature, that is sharply in con-
trast with the classical description [19]. The manipulation
of coherent phonons and plasmons using the virtual
electron-hole pair avoids the dephasing processes. First,
it does not accumulate the photoexcited carriers in a con-
duction band as shown in Fig. 1. Otherwise, there would be
significant damping of coherent phonon and plasmon due
to scattering with optically generated electrons and holes
[20]. Second, no change of the carrier density suppresses
the free-streaming current of the counter-directed carrier
stream by succeeding pulses [21]. Third, when a semicon-
ductor is illuminated by a laser with an electric fieldE�, the
field energy E stored in the semiconductor is E ¼
�P

��	��ð!ÞE�E� with the optical response function

	��ð!Þ. For !< �G, the dissipative part Im½	��ð!Þ�
would be zero, so that the spontaneous emission is sup-
pressed [1].

For a theoretical description of the nonequilibrium ultra-
fast dynamics of a semiconductor, it is a powerful idea to
solve the time-dependent Schrödinger equation in the
many-body Hilbert space spanning the whole system
[22]. Because the total carrier density does not change,
the dynamics is described by a single quantum state j�ð�Þi

with A ! 0 (i.e., �0 ! 0)

j�ð�Þi ¼ Cð�Þj0icj0ivj0iLOj0iPL
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For j�ð�Þi, we restricted the many-body Hilbert space to
contain just a single coherent phonon or plasmon. In

j�ð�Þi, we denote jkic ¼ cykj0ic, jkiv ¼ dykj0iv, jqiLO ¼
ayqj0iLO, and jqiPL ¼ byqj0iPL for single particle states. The
initial state j�ð0Þi should be the ground state, i.e.,
j�ð0Þi ¼ j0icj0ivj0iLOj0iPL. The time-dependent
Schrödinger equation i@=@�j�ð�Þi ¼ H j�ð�Þi results in
infinitely coupled differential equations among coeffi-
cients. The transient reflectivity change �R=R is the actual
experimental attainment from electro-optic detection com-
bined with a standard pump-probe method [16]. It would
phenomenologically give �R=R / rLPL þ rEPE [19],
where PL and PE are the lattice and electronic polariza-
tions, respectively, and rL and rE are their weight coeffi-
cients. From the explicit solution, we can calculate the

transient polarizations from PLð�Þ ¼ h�ð�ÞjPq½aq þ
ayq�j�ð�Þi and PEð�Þ ¼ h�ð�ÞjPq½bq þ byq�j�ð�Þi. When

we define P Lð�Þ and P Eð�Þ as
P Lð�Þ ¼

X
q
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q ð�Þ þ X

kk0q
C�
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kk0qð�Þ; (3)
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kk0qð�Þ; (4)

we have PLð�Þ ¼ 2Re½P Lð�Þ� and PEð�Þ ¼ 2Re½P Eð�Þ�.
As implied in H , we consider the n-type GaAs. It is

expected that the hole would not affect the relevant dy-
namics much. Therefore, we impose an approximation of
an infinitely massive hole by simply taking a value of the
energy gap �G for �vk, i.e., �

v
k ¼ �G ¼ 1:4 eV. In addition,

we note !LO ¼ 8:8 THz, �ck ¼ k2=2m� (m� ¼ 0:07),
"1 ¼ 11:3, and "0 ¼ 13:3. In order to incorporate the
free relaxation of the phonon and plasmon without any
external control [23], we simply replace !LO ! !LO þ
i
LO and !PL ! !PL þ i
PL. We define the relaxation
times ��LO � 1=
LO and ��PL � 1=
PL. ��LO � ��PL is typi-
cally expected and ��LO ¼ 2:5 ps and ��PL ¼ 150 fs are
fixed in our investigation [24]. In the density range of
our interest, n > n0 (n0 ¼ 0:75� 1018 cm�3 giving

FIG. 1 (color online). Excitation of real (left) and virtual
(right) electron-hole pair continuum. In contrast to the above-
band-gap excitation case, the below-band-gap excitation case
(!< �G) does not accumulate carriers (i.e., no photoexcited
carrier).
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!PL ¼ !LO), the density dependence of 
PL is tiny [25].
We fix the length of a single pulse as � ¼ 10 fs.

According to Fig. 2(a), the coupling between the phonon
and plasmon results in new eigenmodes, the carrier-
relevant Lþ mode and the lattice-relevant L� mode [8],

whose energies are given by !L� ¼ 1
2 ð!PL þ!LOÞ � 1

2 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið!PL �!LOÞ2 þ 4g2
p

. In Fig. 2(b), transient electro-
optical responses �R=R are provided as �R=R / PLð�Þ þ
PEð�Þ by simply taking rL=rE ¼ 1. In the frequency-time
space of Fig. 2(c), it is clear that the oscillations of �R=R
are composed of two modes: i.e., the Lþ (higher fre-
quency) and L� (lower frequency) mode. Most interest-
ingly, the pulse train with N ¼ 4 is found to appreciably
sustain the coherent oscillation of Lþmode compared to a
single pulse (N ¼ 1).

Our main interest is to investigate how to control the
coherent motion of the Lþ mode, because it is directly
connected to the carrier mobility of a semiconductor
through � � e ��Lþ=m� [16], where ��Lþ is the relaxation
time of the Lþ mode. In Fig. 3, adopting the N ¼ 8 pulse
train, we display the coherent motion of both Lþ and L�
modes with respect to two controllable parameters: one is
the carrier density n, and the other is the pulse interval �.
In the left panel of Fig. 3, the carrier density n is changed
from 1:5� 1018 cm�3 to 3� 1018 cm�3 for the pulse
interval � ¼ 2�=!Lþ. The frequency of the Lþ
mode shifts up as n increases, which is readily given by
Fig. 2(a), while the coherent motion of the Lþ mode
survives longer as n decreases [26]. In the right panel of
Fig. 3, the dynamics of LOPC modes are illustrated with
varying the pulse interval � for a fixed carrier density n ¼
2� 1018 cm�3. In the figure, the well-defined coherent
motion of the Lþ mode continues up to 	700 fs at � ¼

60 fs, but the coherence of the Lþ mode rapidly disap-
pears at slightly different intervals, i.e., � ¼ 50 fs or 70 fs,
so that its coherent motion cannot continue that long. It is
immediately noted that � ¼ 60 fs is almost the oscillation
period of the Lþ mode, 2�=!Lþ (¼ 61 fs for n ¼ 2�
1018 cm�3). This implies that, in order to control the
coherent motion of Lþmode, it is essential to synchronize
the pulse interval � with the oscillation period of the Lþ
mode. In Fig. 4(a), we provide the behavior of the maxi-
mum coherence time �TLþ with respect to � for the N ¼ 8
pulse train [27], where �TLþ could be the upper bound of
��Lþ. It is clear that � ¼ 2�=!Lþ enables us to most
efficiently preserve the coherence of the Lþ mode. It
should be noted that 	230 fs is obtained as the lower
bound of ��Lþ at � ¼ 60 fs and n ¼ 2� 1018 cm�3 by
measuring the fast decay after the last pulse of the pulse
train in Fig. 3. It enabled the estimation of the lower bound
of the carrier mobility of 6038 cm2=V s, which is signifi-
cantly larger than the value of 2074 cm2=V s observed in
n-GaAs at 300 K with the similar carrier density of	2:8�
1018 cm�3 [16].
Finally, returning to the important premise of the present

study, we note that it is highly nontrivial to guarantee the
virtual electron-hole continuum using the below-band-gap
excitation scheme. As a matter of fact, the positive detun-
ing (� > 0, i.e., !< �G) is not sufficient to guarantee the
virtual excitation because the pulse in principle includes all
the frequency components within the broad pulse spectra
and also the phase-breaking scattering of virtual excita-
tions can create real ones (finally giving the Urbach tail in
the absorption line) [28]. One needs an additional condi-
tion regulating the pulse shape or strength. The considera-
tion can be reduced to the dynamics between two levels of
the real excited state jr:exi and the virtual excited state

FIG. 2 (color). (a) Lþ and L� modes (red) for g ¼ 13 meV
and bare plasmon and phonon (black). (b) Transient electro-optic
responses �R=R [/PLð�Þ þ PEð�Þ with rL=rE ¼ 1] for the
pulse train of N ¼ 1 and N ¼ 4. (c) Continuous wavelet trans-
formation of �R=R in the frequency-time space. The density of
doped carriers is n ¼ 2 (�1018 cm�3) and the interval between
pulses is � ¼ 2�=!Lþ, i.e., 61 fs. The detuning � ¼ 40 meV is
adopted. The applied pulse train is illustrated.

FIG. 3 (color). Continuous wavelet transformation of �R=R in
the frequency-time space for the pulse train of N ¼ 8. Left
panel: �R=R with respect to the carrier densities, n ¼ 1:5, 2,
and 3 (�1018 cm�3) for a fixed pulse interval, � ¼ 2�=!Lþ.
Right panel: �R=R with respect to the intervals between pulses,
� ¼ 50, 60, and 70 fs for a fixed density of doped carrier, n ¼ 2
(�1018 cm�3). � ¼ 40 meV is taken. The applied pulse train is
illustrated in each panel.
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jv:exi, that is, i @
@� Cv:exð�Þ ¼ �ð�ÞCr:exð�Þ and

i @
@� Cr:exð�Þ ¼ �Cr:exð�Þ þ�ð�ÞCv:exð�Þ, where �ð�Þ de-

picts the pulse shape, �ð�Þ ¼ �0½�ð�Þ ��ð�� �Þ�,
and we have Cv:exð0Þ ¼ 1 and Cr:exð0Þ ¼ 0. From
Fig. 4(b), it is found that the laser light with the weak field
amplitude (say, 
15 meV) could be applicable for our
purpose. In this weak amplitude limit, it is expected that
the scattering event of virtual excitations would be also
suppressed. This situation can be also described by the
adiabatic Hamiltonian

H 0ð�Þ ¼ 0 �ð�Þ
�ð�Þ �

� �
:

Here we require the condition that the time evolution of
jv:exi should induce the mixing with jr:exi adiabatically,
that is, jhr:ex; �jð@=@�jv:ex; �iÞj 
 �. jv:ex; �i and
jr:ex; �i adiabatically evolve starting from jv:exi and
jr:exi, respectively. Keeping only the dominant term, we

have j _�ð�Þ�j 
 �½�2 þ�ð�Þ2�. From _�ð�Þ � 2�0=�,
we finally have �0 
 ��2=2. This is in fact the same as
the adiabatic condition in the optical control of spin quan-
tum dots [1]. Adopting � ¼ 10 fs and � ¼ 40 meV, the
pulse strength should satisfy �0 
 10 meV according to
the condition. �0 ! 0 in our present study satisfies the
required condition well.

To summarize, we have proposed a new theory to control
the coherent motion of the LOPC modes and eventually
carrier mobility � in a polar semiconductor. In the propo-
sition, the dynamics of coherent modes are driven by the
virtual electron-hole continuum using the pumping pulse
train of below-band-gap excitation, which avoids the de-
phasing processes and then makes the coherent motion of
the carrier-relevant Lþ mode survive for a very long time
under the synchronization of the pulse train with its co-
herent oscillation. This implies that the carrier mobility
� � e ��Lþ=m� can be efficiently controlled and dramati-
cally increased, which can be applied also to wide-gap
semiconductors such as GaN, SiC, InN, and their
nanostructures.
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