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Abstract—Nanowire MOSFETs attract attention due to the
probable high performance and the excellent controllability of
device current. We present a compact model of ballistic nanowire
MOSFET that aids our understanding of physics and the over-
all properties of the device. The relationship between the gate
overdrive and the carrier density is derived and combined with
the current expression to yield the current–voltage (I–V ) charac-
teristics. The subthreshold characteristics and the short channel
effect are also discussed. The effects of the quantum capacitance
on device characteristics are analyzed. The low-temperature ex-
pression is also derived, and the relation to quantum conductance
is discussed. The I–V characteristics are numerically evaluated
and examined, employing a reported subband model. The drain-
and gate-bias dependences of device current are shown, and the
effects of the quantum capacitance and conductance on these
characteristics are indicated.

Index Terms—Ballistic transport, compact model, nanowire
FET, silicon.

I. INTRODUCTION

R ECENTLY, the nanowire transistor has begun to attract a
great deal of attention. If the downsizing of the conven-

tional device ever promotes the quasi- or near-ballistic trans-
port of carriers, the potential for performance improvement by
further downscaling seems unpromising or, rather, the resultant
shorter channel length may lead to the degradation of the
off current. As a limiting structure of the advanced Fin-FET
approach, the nanowire FET, where a small number of con-
ducting channels within the device can be closely controlled
by the gate electrode, may be promising as a next generation
device structure. In particular, the carbon nanotube FET seems
advantageous [1] due to its large carrier velocity and the smooth
channel surface that release from the interface scattering. On
the other hand, the advantage for silicon nanowire MOSFET
lies in the availability of the many silicon technologies that have
accumulated so far. Many theoretical or computational studies
of the nanowire MOSFET [2]–[9], as well the analyses of the
electronic structure in nanowires, have already been reported
[10]–[14]. They include the nonequilibrium Green function
approach, the Monte Carlo approach, compact models, etc.
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Fig. 1. Cross section perpendicular to the electric current direction of the
analyzed nanowire MOSFET. (a) Planar gate structure, where a planar gate is
placed close to the nanowire channel and a planar substrate electrode is also
placed apart from the wire. (b) Gate-all-around structure without the additional
electrodes that cause parasitic capacitance.

However, the physics of the operation of nanowire MOSFETs
is not necessarily well discussed in most of the analyses. Refer-
ence [4] presents a plain and simple picture of some aspects of
the nanowire MOSFET.

In the analysis of nanoscale devices, an approach that first
develops the ballistic transport model [15] for the device, and
then introduces a limited number of scattering events in the
transport model [16], [17], is expected to be fruitful. This
paper describes compact modeling of the ballistic operation of
nanowire MOSFET and discusses some aspects of the device
properties. It is intended to serve as a starting point for analy-
sis of the nanowire MOSFET along the procedure mentioned
earlier.

In the second section, the I–V characteristics of the ballistic
nanowire MOSFET are derived, and some properties of the
device are discussed in an analytical approach. The third section
presents a numerical example of the I–V characteristics, as
well as other device properties of the ballistic silicon nanowire
MOSFET based on the realistic subband parameters. The fourth
section is the conclusion.

II. ANALYSIS

A. Electric Current of a Ballistic Nanowire MOSFET

The derivation of current expression has already been dis-
cussed elsewhere [1], [2], and in this paper, we consider only
the essentials. We assume an n-channel cylindrical nanowire
MOSFET with the current directed along the x-axis, and the
cross section of the wire is in the y−z plane. The cross
section of two types of MOSFET considered in this paper is
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schematically shown in Fig. 1. One is the planar gate struc-
ture, as shown in Fig. 1(a). The substrate electrode is also
placed apart from the wire. The other is the gate-all-around
structure shown in Fig. 1(b). The I–V characteristics of the
device originate from the potential energy distribution of car-
riers U(x, y, z). In order to discuss the electronic state in the
nanowire, we need to solve the Schrodinger equation with the
potential energy U(x, y, z) in the effective mass approximation
[18]. The validity of the approach with the use of appropri-
ately defined effective masses of the subband is discussed, and
parameters are offered [3], [14]. Within the thin wire region,
U(x, y, z) can be approximately decomposed to

U(x, y, z) ≈ UC(y, z) + UL(x) (1)

without serious errors. Here, UC(y, z) is the confining potential
that confines carriers within the wire and is of short range, and
the longitudinal potential UL(x) induces carrier motion along
the wire and varies relatively slowly. The Hamiltonian of the
wire is then separable into two parts, one that depends on x
and another that depends on y and z. The wave function is
decomposed into the product of two parts, one that depends
on y and z and describes the discrete subband state confined
in the wire and another that depends on x and represents the
transport along the wire. In our case, the Landauer formalism
[19] provides the electric current ID of the device under the
drain bias VD [1], [2]

ID =
q

π�

∑
i

∫
[f(E,μS) − f(E,μD)]Ti(E) dE (2)

where q and � are the carrier charge and the reduced
Planck constant, respectively, f(E,μ) is the Fermi distribution
function

f(E,μ) =
1

1 + exp
(

E−μ
kBT

) (3)

E is energy, and μS and μD = μS − qVD, where VD is the
drain bias, are the Fermi levels associated with the source
and the drain electrode, respectively. Summation over i shows
the summation of contribution from the ith subband. Ti(E)
represents the transmission coefficient of the carrier in the ith
subband from source to drain and is evaluated with the use of
the longitudinal potential UL(x). kB and T are the Boltzmann
constant and temperature, respectively. The intervalley carrier
mixing due to the effective mass potential is neglected due to
the slow variation of the potential. The intersubband mixing
caused by UL(x) is also absent due to the decomposition of
wave function based on the approximation (1). ID is then
expressed as a sum of independent contributions from each
subband as in (2). The source and the drain are assumed to
be ideal electrodes that provide sufficient carriers and accept
carriers without reflection. UL(x) typically shows a profile as
shown in Fig. 2 and has a maximum point at xmax close to
the source edge. The maximum point constitutes the bottleneck
of current flow in the device. The electric current in (2) is
evaluated, if the subband Ei(k), whose examples are illustrated
in Fig. 3, is provided.

Fig. 2. Rough sketch of the potential energy profile along the channel in the x-
direction. μS and μD are the Fermi levels of the source and drain, respectively.
xmax and xmin are the positions where the potential energy takes maximum
and minimum values within the channel, respectively.

Fig. 3. Example of the E–k relation of the nanowire’s subband. (a) Case
where the lowest subband is mainly populated. (b) Case where the lowest two
subbands are mainly populated.

Here, k denotes the wavenumber in the longitudinal di-
rection, and i is the subband index. Within the vicinity of
x = xmax, we assume dUL(x)/dx ≈ 0, and the carrier state
is approximated by the plane wave with the energy Ei(k)
correlated with the wavenumber k at the point. When the
channel length is not very short, the quantum tunneling can be
neglected, and we can assume Ti(E) = 0 for the values of E
less than the subband minimum at the x = xmax point. Above
the subband minimum, we expect that 0 < Ti(E) < 1. Ti(E)
is less than unity due to the carrier reflection caused by the
variation of UL(x) along the wire. However, we can assume
that Ti(E) ≈ 1, if the variation of UL(x) is sufficiently gentle.
On the other hand, we need to be cautious when the subband
has a finite width between the maximum and minimum inside
the Brilouin zone, as in the highest subband in Fig. 3. The
window of the allowed energy value of a carrier extends from
the minimum to the maximum, and this window shifts along
the wire as the potential energy varies from the source to the
drain. As the carrier runs along the channel with the incident
energy, the carrier is immediately reflected back to the source
once the carrier energy gets outside of this changing window.
Therefore, Ti(E) ≈ 1 holds good only for the values of E that
remain within the window at every point of the channel. We
can conclude that Ti(E) ≈ 1 within the energy region between
the subband minimum at x = xmax and the subband maximum
at the drain edge, x = xmin in Fig. 2, and that Ti(E) = 0
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otherwise. Thus, (2) is evaluated with the use of (3) [1], such
that we have (4), shown at the bottom of the page, where
G0 ≡ 2q2/h = 77.8 μS is the quantum conductance, holds.
The degeneracy of the subband is explicitly considered,
and gi (i = 0, 1, . . .) is the degeneracy of the ith subband.
Eimin(xmax)(Eimax(xmin)) in the summation dEi(k)/dk ≥ 0
shows the minimum (maximum) energy within the piecewise
part of the ith subband that satisfies dEi(k)/dk ≥ 0 when
evaluated at x = xmax (x = xmin). The similar expression in
the summation dEi(k)/dk ≤ 0 denotes the similar quantity.
The finite bandwidth due to the presence of Eimin and Eimax

may have a serious effect on the current–voltage characteristics,
depending on the location of μS and μD. The increase of drain
bias causes narrowing of the conduction window in the band
diagram and yields a current decrease, leading to the negative
differential conductance. Such an effect is well analyzed in
[8], and Fig. 7 therein shows some specific dips in I–VD

characteristics.
When the maximum energy of the subband is much larger

than both of μS and μD, just as in the lowest two subbands
in Fig. 3, Eimax is effectively regarded as infinity, and (4) is
reduced to a simple form [2]

ID = G0

(
kBT

q

)∑
i

gi ln
{

1 + exp [(μS − Ei0)/kBT ]
1 + exp [(μD − Ei0)/kBT ]

}
.

(5)

Here, Ei0 stands for the minimum of the ith subband at xmax.
The case represented by (5) is analyzed in the following.

B. Electrostatics

For the evaluation of the device current ID in (5), we need the
value of (μS − Eio). The value is evaluated by the electrostatics
controlled by the gate bias and the channel carrier charge.
We assume an intrinsic channel, where the channel charge
consists only of the induced carriers. The electrostatics of a
wire MOSFET is basically characterized by the 3-D Poisson
equation. However, we see that dUL(x)/dx ≈ 0 around x =
xmax, and the longitudinal electric field almost vanishes. The
Poisson equation in the cross section of the device at this point
is reduced to a Laplace equation within the insulator region,
which is rewritten as

∂2U(x, y, z)
∂y2

+
∂2U(x, y, z)

∂z2
= −∂2U(x, y, z)

∂x2
. (6)

The variation of U(x, y, z) in the x-direction along the long
wire is gentle compared to that in the y−z plane defining
the thin nanowire structure, and thus, the right-hand side of

(6) is much smaller compared to each term in the left-hand
side of the equation. If we neglect the right-hand side as
∂2U(x, y, z)/∂x2 ≈ 0, U(x, y, z) becomes uniform along x-
axis around there. The x-dependence is neglected, and the
2-D Laplace equation in the y−z plane results. In the analysis
of electrostatics in the cross section of devices in Fig. 1 with
the boundary condition that the electrodes and the wire part
are conductors, this equation yields a solution described by the
channel-gate capacitance CG and also the parasitic capacitance,
e.g., the channel-substrate capacitance Cp, both in per unit
wire length. The situation is similar to the gradual channel
approximation. The gate capacitances of these structures are
evaluated by approximating the nanowire channel with the
cylindrical conductor. The insulator of SiO2 is assumed. For
the planar gate structure in Fig. 1(a), we have [1]

CG =
2πεox

ln
{ √

2r+tox+
√

tox√
2r+tox−

√
tox

} . (7)

The value of Cp is also given by a similar expression. In
the gate-all-around structure in Fig. 1(b), the wire channel is
covered by the surrounding gate electrode, and therefore, the
parasitic capacitance vanishes. The gate capacitance is given by

CG =
2πεox

ln
(

r+tox
r

) . (8)

Here, εox is the dielectric constant of SiO2, r is the radius of
the cylindrical wire, and tox is the thickness of the insulator.
Note that the estimation of the EOT for high-k insulators is a
little complicated in contrast to the normal MOSFET.

The potential energy distribution in the cross section x =
xmax of an n-channel device is schematically shown in Fig. 4.
The energy separation between various levels and the barrier
heights are defined, as shown in the figure. As for the nanowire
channel, the positive velocity carriers with the charge Qf and
running toward the drain (denoted as the Fore channel) and
the negative velocity carriers with the charge Qb and running
toward the source (denoted as the Back channel) are separately
demonstrated. Fore channel carriers are fed from the source
and are controlled by μS , while Back channel carriers are fed
from the drain and are controlled by μD. μ0 is the band bottom
of the lowest subband (= E00). The total charge density Q in
the wire is stored in parts, in CG and Cp, respectively. When
the positive VG and negative Vsub are applied with respect
to the source level μS

Q = Qf + Qb = −CGφG + Cpφp. (9)

ID = G0

(
kBT

q

)∑
i

gi

( ∑
dEi(k)/dk≥0part

ln
{

1 + exp [(μS − Eimin(xmax)) /kBT ]
1 + exp [(μS − Eimax(xmin)) /kBT ]

}

−
∑

dEi(k)/dk≤0part

ln
{

1 + exp [(μD − Eimin(xmax)) /kBT ]
1 + exp [(μD − Eimax(xmin)) /kBT ]

})
(4)
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Fig. 4. Potential energy diagram associated with the nanowire channel and
the nearby electrodes. μS and μD are the Fermi levels of the source and drain,
respectively, and μ0 is the subband bottom in the channel. The fore and back
channels include carriers with the positive velocity and regulated by the source
Fermi level and with the negative velocity and regulated by the drain Fermi
level, respectively.

φG and φp are the bias voltages applied across the gate and
substrate insulators, respectively. According to Fig. 4, φG and
φp are correlated to VG and Vsub, respectively, as

qφG = qVG − (μS − μ0) − (ϕ1 − ϕ2) (10)

qφp = − qVsub + (μS − μ0) − (ϕ3 − ϕ4). (11)

Here, ϕ1 and ϕ4 are the barrier heights from the gate and the
substrate Fermi level to the conduction band of the insulators,
respectively, and ϕ2 and ϕ3 are similar energy barriers from
the subband bottom of the nanowire to the conduction band of
the insulators, as shown in Fig. 4. Substituting (10) and (11)
into (9), we obtain [1] the following (a similar expression is
discussed in [4])

(VG − Vt) − α
μs − μ0

q
=

|Q|
CG

(12)

in view of Q ≤ 0. Here

Vt ≡
ϕ1 − ϕ2

q
− Cp

CG

(
Vsub +

ϕ3 − ϕ4

q

)
(13)

α = 1 +
Cp

CG
. (14)

On the other hand, |Q| is specifically evaluated, considering the
carrier distribution within the subband of Fig. 3 at x = xmax.
Since the density of states in the k-space is 1/π, including the
spin degeneracy, and carriers are distributed according to (3),
we have

|Q| =
q

π

∑
i

gi

⎡
⎣ ∞∫

ki min

dk

1 + exp
{

Ei(k)−μS

kBT

}

+

ki min∫
−∞

dk

1 + exp
{

Ei(k)−μD

kBT

}
⎤
⎦ . (15)

Every Ei(k) is assumed to have its minimum at kimin

and dEi(k)/dk ≤ 0 for k < kimin (dEi(k)/dk ≥ 0 for k >
kimin.) The former (latter) integral in the right-hand side of (15)
corresponds to the Qf (Qb) charge.

C. Compact Modeling of I–V Characteristics

At the gate voltage VG = Vt, (12) suggests that μS ≤ μ0. At
T = 0, we actually have μS = μ0 and Q = 0. For T �= 0, we
have μS < μ0 and Q is very small, because (15) implies that
|Q| is approximately proportional to exp[−(μ0 − μS)/kBT ].
In the region of VG > Vt, |Q| increases, corresponding to the
increase of VG, and we can say that Vt is the effective threshold
voltage of the device. According to (13), the threshold voltage
Vt depends on the substrate bias Vsub, and a deep negative Vsub

yields a proportionate increase in Vt. Vt also depends on ϕ2 and
ϕ3, which are the energy barriers measured from the subband
bottom. As the nanowire thins, the confinement energy of the
carrier increases, and these barrier heights are reduced, which,
in turn, increases the value of Vt. In MOSFETs with very thin
nanowire, the control of the threshold voltage may constitute a
serious problem.

If the subband structure Ei(k) and the threshold voltage Vt

are given, and the external biases VG and VD are identified, we
can solve the coupled equation of (15) and (12) and evaluate the
value μS measured from the energy level μ0 (= E00). We can
then evaluate the device current ID by substituting the value
into (5). This procedure constitutes a compact model for the
evaluation of the I–V characteristics of a nanowire MOSFET.
The short channel effect is discussed later.

Let us examine the subthreshold characteristics. Suppose that
the device is in the so-called “weak inversion” region with
nondegenerate carriers, and we assume that μS < μ0. Fermi
statistics are replaced by Boltzmann statistics, and we can
assume that exp[(μ − Ei0)kBT ] 	 1 in either case of μ = μS

and μ = μD. We can then expand the logarithmic function in
(5) to obtain an approximate expression

ID
∼= G0

(
kBT

q

)
exp

(
μS − μ0

kBT

)∑
i

gi

×
[
exp

(
E00−Ei0

kBT

)
− exp

(
E00−Ei0−qVD

kBT

)]
. (16)

On the other hand, the charge density |Q| in (12) for the
case VG < Vt is smaller than that for the case of VG > Vt by
some orders of magnitude, and the right-hand side of (12) is
negligibly small compared to each term in the left-hand side of
(12). Thus, we have approximately

(VG − VT ) − α
μs − μ0

q
∼= 0. (17)

We then derive the subthreshold index S from (16) and (17)

S =
[
d log ID

dVG

]−1

=
[

1
kBT ln 10

d(μs − μ0)
dVG

]−1

=
[

q

kBT ln 10
CG

CG + CP

]−1

. (18)
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If the parasitic capacitance Cp can be neglected, (18) is reduced
to the ideal S value of 58 meV/dec at 300 K.

D. Short Channel Effect

The right-hand side of (6) is small but has a nonzero
value in real cases. The potential profile in Fig. 2 implies
that ∂2U/∂x2 < 0 in the vicinity of x = xmax. The negative
∂2U/∂x2 can be regarded as equivalent to the presence of ef-
fectively positive charge within the insulator in the 2-D Poisson
equation (6) associated with the cross section at x = xmax. This
effective charge yields an increase in magnitude of the channel
charge |Q| to a value |Q′| = |Q| + ΔQ, where ΔQ is positive,
when compared to the case that the small right-hand side of (6)
was neglected. The magnitude of the effective charge within
the insulator is approximately given by εox

∫
(∂2U/∂x2) dy dz,

where the integration is over the cross section at x = xmax

within the insulator. The effective charge is thought to play
a similar role as the oxide charge in the ordinary MOS. If
it is concentrated in the region close to the surface of the
semiconductor, the aforementioned ΔQ is roughly equal to the
magnitude. However, in general, ΔQ is smaller due to sharing
with the gate charge. In any case, (12) is modified by ΔQ to{

VG −
(

Vt −
ΔQ

CG

)}
− α

μS − μ0

q
=

|Q′|
CG

(19)

where |Q′| has the same expression as |Q| in the right-hand
side of (15). The modified (19) suggests that the longitudi-
nal potential variation due to the source/drain field causes a
reduction of the effective threshold voltage by the amount
ΔQ/CG. This is the Vt shift due to the short channel effect.
If the value of ΔQ is identified by some way or another, the
coupled equation of (19) and (15), where Q is replaced by Q′,
allows the evaluation of the renormalized value of (μS − μ0)
in consideration of the short channel effect, and the electric
current is yielded by (5). In the weak inversion region, where
the carrier charge within the channel is very small, the potential
profile UL(x) in the channel is controlled by μS , μD, and VG.
As VG is increased, the dominance of the gate field over the
potential energy profile in the channel strengthens and yields a
decrease in the magnitude of |∂2U/∂x2| around the point x =
xmax, which, in turn, causes a decrease in the effective charge
ΔQ. The replacement of (12) by (19) induces modification of
subthreshold index S to

S =
[

q

kBT ln 10
CG

CG + Cp

(
1 +

1
CG

dΔQ

dVG

)]−1

. (20)

Since dΔQ/dVG < 0 is inferred from the discussion earlier,
we can see that the short channel effect degrades the value of
the subthreshold index S, even if the channel is surrounded by
gate electrode and the parasitic capacitance is neglected.

E. Quantum Capacitance

In contrast to the ordinary 2-D MOSFETs, the 1-D wire
MOSFETs have a small density of states for channel carri-
ers. The resultant small quantum capacitance [20] due to the

density of states may have a serious influence on the device
properties. We discuss herein the relation between the quantum
capacitance and the I–V characteristics. For simplicity, we
assume the case where the parasitic Cp is absent (α = 1) and
VD = 0 (μS = μD ≡ μ). Then, (15) is reduced to

|Q| =
q

π

∑
i

gi

∞∫
−∞

dk

1 + exp
{

Ei(k)−μ
kBT

}

= q
∑

i

gi

∞∫
−∞

{Di+(E − μ0) + Di−(E − μ0)}

× f(E − μ0, μ − μ0) dE (21)

where Di±(E − μ) denotes the densities of states of the posi-
tive and negative velocity branches of the ith subband. f(E −
μ0, μ − μ0) is the Fermi distribution function, where the energy
E and the Fermi potential μ are explicitly shown to be referred
from the energy level μ0. On the other hand, the differentiation
of (12) by VG yields

1 − 1
q

d(μ − μ0)
dVG

=
1

CG

d|Q|
dVG

. (22)

In view of (3), the differentiation of the Fermi distribution
function by VG is

df(E − μ0, μ − μ0)
d(μ − μ0)

d(μ − μ0)
dVG

=
{
−df(E − μ0, μ − μ0)

d(E − μ0)

}
d(μ − μ0)

dVG
. (23)

With the use of (23), as well as the property of Fermi function
(3), the differentiation of |Q| in (21) results in

d|Q|
dVG

∼= q
∑

i

gi {Di+(μ − μ0) + Di−(μ − μ0)}

×

⎧⎨
⎩−

∞∫
−∞

df(E − μ0, μ − μ0)
d(E − μ0)

dE

⎫⎬
⎭ d(μ − μ0)

dVG

= q
∑

i

gi{Di+(μ − μ0) + Di−(μ − μ0)}
d(μ − μ0)

dVG
.

(24)

Denoting the quantum capacitance CQ as

CQ = q2
∑

i

gi {Di+(μ − μ0) + Di−(μ − μ0)} . (25)

(22) and (24) yield that

d|Q|
dVG

=
[

1
CQ

+
1

CG

]−1

. (26)

We can see that the term α(μS − μ0)/q in (12) represents
the contribution from the quantum capacitance. Equation (12)
suggests that, when the gate bias increases, the bias increase
applied to the gate insulator is reduced by an amount equal
to the increase in the electrochemical potential caused by the
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increase in carriers. The effect is also represented by a series
connection of capacitances CG and CQ. In order to examine
the effect of quantum capacitance on the calculated result, you
can simply compare the ordinary result with a realistic value
of α to the expedient case with α = 0. Notice that we also
have another type of quantum capacitance than CQ. Due to
the quantum effect, the probability density of carriers within
the wire tends to be depleted off the wire surface and to be
concentrated in the core region. This effect also induces a sort
of capacitance that is serially connected to the electrostatic
capacitance CG [20]. The inversion layer capacitance in the
ordinary MOSFET is of this type. This type of quantum
capacitance is not included in the present compact model
described in (5), (7) or (8), (12), and (15).

F. Low-Temperature Limits

As will be shown in the following, the effect of temperature
on the current magnitude was not so remarkable. A careful
examination of the case T = 0 is helpful for the assessment of
the overall behavior and the rough magnitude of I–V charac-
teristics. For simplicity, we assume that the subband energy is
expressed in the form

Ei(k) = Ei0 +
�

2k2

2mi
(27)

with the parabolic effective mass mi and kimin = 0. The Fermi
distribution function is reduced to the step function for T = 0,
and the carrier density in (15) is explicitly evaluated as

|Q|=
√

2q

π�

∑
i

gi

[√
mi(μS−Ei0)H(μS−Ei0)

+
√

mi(μS−qVD−Ei0)H(μS−qVD−Ei0)
]

(28)

and the current expression in (5) is reduced to

ID =
G0

q

∑
i

gi [(μS−Ei0)H(μS − Ei0)

− (μS−Ei0−qVD)H(μS−Ei0−qVD)]. (29)

Here, H(E) is the Heaviside function; H(E) = 1 for E > 0,
and H(E) = 0 otherwise. The specific current expression is
derived by solving (12), (28), and (29). In the case that μS is
within the lowest subband, as in Fig. 3(a), these equations are
analytically solved to give

ID = g0G0 [VDH (V ∗
D − VD) + V ∗

0 H (VD − V ∗
D)]

for E10 − E00 > qV ∗
D (30)

where

V ∗
D ≡

(
g0A

α

)2
[√

1 +
α(VG − Vt)

(g0A)2
− 1

]2

(31)

A =
√

2m0qq

hCG
. (32)

Fig. 5. I–VD characteristics for a tentative simple subband structure at
T = 0. Parameters are m0 = m1 = 0.19 m, g0 = g1 = 1, E00 = 0, E10 =
0.16 eV, and CG = 2.5 pF/cm. The solid circle (triangle) curve shows the case
with the source Fermi level arrangement in Fig. 3(a) and (b).

The I–V characteristics for the two tentative cases of carrier
population are shown in Fig. 5. The curve with the gate over-
drive VG − Vt = 0.5 V (VG − Vt = 0.8 V) shows the case in
which only the lowest subband contributes (the lowest two
subbands contribute) to the current, as in Fig. 3(a) [Fig. 3(b)].
The assumed parameters are m0 = m1 = 0.19 m, where m is
the electron mass, g0 = g1 = 1, E00 = 0, E10 = 0.16 eV, and
CG = 2.5 pF/cm. The I–V characteristics show kinks when
μS and μD cross the subband minimum as the applied bias is
increased. For the case that carriers are distributed in the lowest
n-subbands, we have

ID =

(∑
i

gi

)
G0VD (33)

for VD → 0.

III. NUMERICAL RESULTS

The compact model allows the computation of the I–V
characteristics of ballistic nanowire MOSFETs, if the E–k
relation of the subband Ei(k) is provided. In a thick wire
structure with a comparatively large diameter, the effective
mass approximation of the bulk silicon is thought to be valid.
In a nanowire MOSFET extended in the 〈100〉 direction, for
example, the lowest subband is quadruply degenerated and
has an effective mass of 0.19m. As the wire thins and the
cross section falls below several square nanometers, the energy
separations between the lowest subband and the upper subbands
increase. The influence of the higher subband, with only a small
population of carriers, on the transport properties of the wire
becomes increasingly small. The tight binding approach and
the density functional theory calculations are applied to these
ultrathin nanowires, and the subband structures are reported
[11], [13], [14]. These calculations give a larger effective mass
of ∼ 0.3m compared to that in the ordinary effective mass
approximation and show a tendency of further increase in the
downscaled geometry. The degeneracy of the lowest subband
also tends to be removed. In the present analysis, we try to
employ the subband parameter of the 7 × 7-atom [110] square
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Fig. 6. I–VD characteristics of the Si nanowire MOSFET with the realistic
subband structure in (34) and (35).

Fig. 7. I–VG characteristics of the Si nanowire MOSFET with the realistic
subband structure in (34) and (35).

nanowire extended in the 〈001〉 direction, derived by the density
functional calculation and reported by Gnani’s group [14], as
shown in the following. Denoting that γ0 ≡ (�k)2/2 m in
electronvolts, the lowest subband without degeneracy described
by the effective mass 0.31m is effectively expressed as

E0(k) =
( γ0

0.31

)
− 0.3

( γ0

0.31

)2

+ 0.0375
( γ0

0.31

)3

. (34)

The threefold-degenerate excited subband with the effective
mass of 0.36m is expressed as

E1(k)=0.0327+
( γ0

0.36

)
−0.258

( γ0

0.36

)2

+ 0.025
( γ0

0.36

)3

.

(35)

The original nanowire has a square cross section with a
1.34-nm side, but we try to employ an approximate gate ca-
pacitance value evaluated by (8) for the cylindrical nanowire
with the same cross-sectional area. We assume SiO2 for the gate
insulator and tox = 1 nm. We then have CG = 2.57 pF/cm and
Cp = 0.

Fig. 6 shows the I–VD characteristics evaluated for a room
temperature of 300 K, as well as for a low temperature of
4 K. The parameter is the gate overdrive. We see that the
room-temperature I–VD characteristics are similar to those
of an ordinary MOSFET, and the electric current magnitude
is 20 to 40 μA in this bias range. At low temperatures, the
curve shows kink structures when the Fermi level crosses the
subband minimum and displays a similar magnitude to that of

Fig. 8. I–VG characteristics of the Si nanowire MOSFET in logarithmic
scale. The slope at the low gate overdrive reproduces the ideal subthreshold
index of S = 58 meV/dec.

Fig. 9. Effect of quantum capacitance on I–VD characteristics. Curves with
α = 0 (α = 1) show a case in which the quantum capacitance is neglected
(counted).

room-temperature curves. Fig. 7 shows the I–VG characteristics
with the drain bias as the parameter. The low-temperature
curve shows characteristic kinks or branching behaviors due
to the same origin as that in the I–VD characteristics. Fig. 8
shows the I–VG characteristics plotted in a logarithmic scale.
The normal subthreshold characteristics are reproduced. The
subthreshold parameter S is 58 meV/dec in accordance with
the prediction (18) with Cp = 0. Fig. 9 shows the effect of
quantum capacitance CQ on the I–VD characteristics. The
curves with α = 1 (α = 0) show the cases where the effect
of CQ is considered (neglected). We can see that the effect is
considerable in the current-saturation region, and the neglect of
the effect brings about a serious overestimation of the current
value. Fig. 10 shows how the conductance dID/dVD varies
as a function of the gate overdrive. At room temperature, the
conductance is an increasing monotonous function of the gate
overdrive. However, at the low temperature, it shows a char-
acteristic behavior reflecting the subband structure. The curve
for T = 4 K and VD = 0 V shows a step structure reflecting
the quantized conductance of the 1-D subband, as suggested by
(33). The lower step of G0 = 77.8 μS represents the quantized
conductance of the single lowest subband in Fig. 3. As the
gate overdrive increases and the Fermi level goes into the
threefold second-lowest subband, the conductance goes up to
the value of total 4G0. = 310 μS. The characteristic structure
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Fig. 10. Drain conductance variation as a function of the gate overdrive. The
low-temperature curve with characteristic step structures changes to the broad
increasing curve at room temperature.

Fig. 11. Transconductance variation as a function of the gate overdrive. Peak
structure at low temperature caused by a variation in the quantum capacitance
is rolled at room temperature.

of the curve VD = 0.07 V is also caused by the Fermi level
arrangement associated with Fig. 3(b). The zero level of the
curve VD = 0.15 V is due to the current saturation. Fig. 11
shows a similar plot of the transconductance dID/dVG as a
function of the gate overdrive. The low-temperature curves
show discontinuous decreases here and there, and this is also
due to the fact that the Fermi level increases across sub-
band bottoms. As we see in (5), dID/dVG ∝ (1/q)dμ/dVG,
but (22) and (26) yield that (1/q)dμ/dVG = CG/(CG + CQ).
Therefore, a sudden increase in CQ due to the jump-over of
Fermi level to a new subband causes a sudden decrease of
the transconductance. The discontinuity is due to the similar
effect as in Fig. 10, but the present case is not directly related
to the quantum conductance. The transconductance at room
temperature is basically understood as the smoothing out of the
low-temperature bumps. Fig. 12 shows the current variation as
a function of the gate capacitance CG. The gate and quantum
capacitances are connected in series. In a region where CG is
sufficiently large, therefore, the current is principally controlled
by the quantum capacitance, and the gate capacitance affects
only a little, as suggested by the curves for α = 1. If we neglect
the quantum capacitance (as in the curves with α = 0), the
current in the saturation region shows a significant increase in
response to the CG increase. However, the current in the linear
region shows only a weak dependence on CG, as suggested
by the curve α = 0 and VD = 0.07 V. As we can infer from
(33), ID in the small VD region is controlled by G0 and VD

Fig. 12. Drain current variation as a function of the gate capacitance. Sig-
nificant overestimation of saturation current results at VD = 0.5 V, when the
quantum capacitance is neglected. Dominance of the quantum capacitance
masks the effects of the gate capacitance increase.

rather than by the μS dependence, and the current tends to be
independent of the gate capacitance.

IV. CONCLUSION

A compact model of I–V characteristics for a ballistic
nanowire MOSFET is proposed, and the device property is
discussed. A new type of electrostatic relationship that connects
the gate overdrive to the carrier density at the current bottleneck
point is derived, and it is combined with the current expres-
sion to yield a closed current formula of a ballistic nanowire
MOSFET. The result is applied to a silicon nanowire MOSFET
with the use of the nanowire subband parameter reported by a
group at the University of Bologna. The electric current level
amounts to a few tens of microamperes for the applied bias
of several tenths of a volt. Roughly speaking, the magnitude
weakly depends on the temperature, and the conductance is on
the order of magnitude of the quantum conductance. In partic-
ular, the conductance in the linear region at low temperatures
is dominated by the quantum conductance. The subthreshold
characteristics are analyzed, and the gate-all-around structure is
shown to yield the ideal S factor of around 60 meV/dec when
the short channel effect is neglected. The planar gate structure
includes the parasitic capacitance associated with the substrate,
and the value of the S factor will degrade. The contribution
of the quantum capacitance (due to the density of states) in
the current formula is identified, and the critical importance
of quantum capacitance in the nanowire MOSFET operation
is pointed out. Neglect of the capacitance component causes
a serious overestimation of the saturation current. The current
magnitude of the nanowire MOSFET is primarily controlled by
the quantum capacitance when the gate capacitance is large,
and the increase of the gate capacitance in such a region is
ineffective for the improvement of the device performance.
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