
SOLVING THE INTERIOR PROBLEM OF COMPUTED TOMOGRAPHYUSING A PRIORI KNOWLEDGEM. COURDURIER1, F. NOO2, M. DEFRISE3, H. KUDO4Abstra
t. The 
ase of in
omplete tomographi
 data for a 
ompa
tly supported attenuationfun
tion is studied. When the attenuation fun
tion is a priori known in a subregion, we showthat a redu
ed set of measurements is enough to uniquely determine the attenuation fun
tionover all the spa
e. Furthermore, we found stability estimates showing that re
onstru
tion
an be stable near the region where the attenuation is known. These estimates also suggestthat re
onstru
tion stability 
ollapses qui
kly when approa
hing the set of points that areviewed under less than 180 degrees. This paper may be seen as a 
ontinuation of the work�Trun
ated Hilbert transform and Image re
onstru
tion from limited tomographi
 data� thatwas published in Inverse Problems in 2006. This 
ontinuation ta
kles new 
ases of in
ompletedata that 
ould be of interest in appli
ations of 
omputed tomography.1. Introdu
tionIn two-dimensional (2D) Computed Tomography (CT), all line integrals of the attenuationfun
tion may not always be available. When all line integrals are available, there is an a

urateand stable re
onstru
tion formula to re
over the attenuation fun
tion from the measurements[15, 22℄. But when the set of measurement is not 
omplete, several problems 
an arise. Di�erent
ompli
ations appear depending on how the data set is trun
ated. In textbooks the kinds ofpossible trun
ations are generally listed into three distin
t 
lasses: the limited angle problem,the exterior problem and the interior problem. Below we brie�y review these three problems,then fo
us the dis
ussion on the interior problem, for whi
h we present here new theoreti
alresults. Beforehand, let us 
larify that we are 
onsidering a 
ontinuum of measurements, andwhen we talk about trun
ation of the data set we are not thinking about dis
retization of themeasurements, but about limitation of the measurements in this 
ontinuous setting. And let usalso mention that when we talk about measured lines, measured data, or just measurements,we are making a slight abuse of language. The line integral of the attenuation fun
tion is notequal to the intensity of X-ray beam measured at the dete
tor, but we 
all them measured databe
ause they are 
omputed automati
ally from the intensity measured at the dete
tors.Various a
quisition geometries 
an be used to measure the line integrals. For example, earlyCT s
anners used the parallel-beam geometry while the fan-beam geometry is now preferred. Inany 
ase, a simple re-parametrization always allows des
ription of the measured line integralsusing the Radon Transform notation. We adopt this notation. Let µ(x) be the attenuationfun
tion to be re
onstru
ted. We parameterize the lines in R
2 with an angle α and a s
alar

s ∈ R, and we let the line integral along the (s, α)-line be Rµ(s, α). The angle α de�nes thedire
tion of the line, while s spe
i�es the signed distan
e from the origin to the line. This distan
e
1 Department of Applied Physi
s and Applied Mathemati
s, Columbia University, U.S.A.
2 Department of Radiology, University of Utah, U.S.A.
3 Department of Nu
lear Medi
ine, Vrije Universiteit Brussels, Belgium.
4 Department of Computer S
ien
e, University of Tsukuba, Japan.1



2 M. COURDURIER1, F. NOO2, M. DEFRISE3, H. KUDO4is measured in the dire
tion of ve
tor θ(α) := (cosα, sin α), and θ⊥(α) := (− sinα, cosα), whi
his obtained by rotating θ 
ounter
lo
kwise by 90◦, is the line dire
tion. By 
onstru
tion,
Rµ(s, α) :=

∫

R

µ(sθ(α) + tθ⊥(α))dt.Observe that Rµ(s, α) = Rµ(−s, α + π) sin
e (s, α) parameterizes the same line as (−s, α + π).And observe also, for a similar reason, that Rµ(s, α) = Rµ(s, α + 2kπ) for any integer k.To des
ribe the region 
overed by the obje
t being s
anned we use the 
on
ept of supportof a fun
tion. The support of the attenuation fun
tion µ(x) is de�ned as the smallest 
losedset outside whi
h the attenuation fun
tion vanishes. To keep the arguments simple, we maynot distinguish between the support of the attenuation fun
tion and the region 
overed by theobje
t, though this requires the attenuation fun
tion to be non-zero inside the obje
t.We now review the limited angle problem, the exterior problem and the interior problem. Thelimited angle problem appears when knowledge of the Radon Transform Rµ(s, α) is restri
tedto the set (s, α) ∈ R × [−φ, φ] with φ < π/2. This situation arises, for example, in ele
tronmi
ros
opy or radio astronomy, where the angle of view is restri
ted. In the 
ase of the limitedangle problem the data is enough to uniquely determine the attenuation fun
tion (e.g., [22℄).However, the inversion is severely ill-posed and it is not possible to obtain a good re
onstru
tionof the attenuation fun
tion in presen
e of data noise. This fa
t is emphasized by the singularvalue de
omposition of the limited-angle Radon Transform [19℄.The exterior problem arises when the Radon Transform is only measured over the lines thatdo not interse
t a ball of radius a. In other words, Rµ(s, α) is known only on the (s, α)-linesde�ned with |s| > a. This situation happens in non-destru
tive material testing. For instan
e,it is of spe
ial interest to dete
t 
ra
ks or 
orrosion in the outermost layers of pipes and ro
kets.X-ray CT is a way to a
hieve this task, but the obje
t is in general so dense that X-rays
annot 
ross through the diameter, and therefore only exterior measurements 
an be obtained.In the 
ase of the exterior problem, the measurements are enough to uniquely determine theattenuation fun
tion for the points satisfying |x| > a (Helgason support Theorem, [15℄), anda re
onstru
tion formula for these points was provided by Corma
k [6℄. But, as shown bysingular value de
omposition [25℄, the exterior problem is also very ill-posed, so that a

uratere
onstru
tion of the attenuation fun
tion is hardly possible from real (noisy) data.The interior problem appears when we measure only the line integrals that interse
t a balltotally 
ontained inside the obje
t. Namely, the Radon Transform is available only for the linesinterse
ting the set FOV := {x ∈ R2 : |x| < a} and this set is inside the obje
t (FOV standsfor �eld-of-view). This situation 
ould appear in medi
al imaging when we are interested inre
onstru
ting the attenuation fun
tion only in a region-of-interest (ROI). Indeed, in su
h a
ase, it is desirable to redu
e the patient exposure to X-ray radiation by measuring only theline integrals that go through that region. In general, su
h a set of measurements is not enoughto uniquely determine the attenuation fun
tion, not even inside the FOV. Nonetheless, theundetermined part is not arbitrary [14℄, it belongs to a spa
e of fun
tions whi
h are smooth inthe set |x| < a. A singular value de
omposition of this problem, for the fan-beam and parallel-beam geometries, 
an be found in [20, 21℄.In summary, trun
ation of the data set strongly impa
ts the CT re
onstru
tion problem.It either eliminates the possibility of re
overing the value of the attenuation fun
tion (interiorproblem), or makes the re
onstru
tion of the attenuation fun
tion very unstable (limited angleand exterior problems). Su
h a behavior, in addition to the non-lo
al nature of the 
lassi
alinversion formula for the 2D Radon transform [15, 22℄, sustained the belief that in two dimen-sions, re
onstru
tion at a given point required knowledge of the transform over all possible linesin order to be a

urate and stable.



SOLVING THE INTERIOR PROBLEM OF COMPUTED TOMOGRAPHY USING A PRIORI KNOWLEDGE 3There exist some insightful results about what 
an be stably re
overed from lo
al data. Morespe
i�
ally, it is known that limited sets of measurements 
an be enough to re
onstru
t thesingularities of the attenuation fun
tion in a stable way [13, 16, 26℄. By singularities of the at-tenuation fun
tion we mean, for example, dis
ontinuities of the fun
tion. To be able to determinein a stable way a dis
ontinuity of the attenuation fun
tion at a given point, the knowledge of allline integrals through a neighborhood of that point is required. In parti
ular, this means thatfor the limited angle problem and the exterior problem, there are dis
ontinuities that 
annotbe dete
ted in a stable way. On the other hand, in the interior problem, there is enough datato re
over the dis
ontinuities of the fun
tion inside the ball {x ∈ R
2 : |x| < a} (i.e. inside theFOV). The relation between the singularities of a fun
tion and the singularities of its Radontransform, and stability estimates in Sobolev spa
es, 
an be found in [13, 26℄.Summarizing, the amount of measurements in the interior problem is enough to re
over thedis
ontinuities of the fun
tion inside the FOV, but not enough to determine the value of thefun
tion at any point. Surprisingly, this situation 
hanges drasti
ally when the FOV is not
ompletely 
ontained inside the obje
t. We elaborate on this 
hange below.Assume that Rµ(s, α) is measured for all lines interse
ting FOV = {x ∈ R

2 : |x| < a}. Assumethat the FOV is not 
ompletely 
ontained inside the obje
t. And assume that the attenuationfun
tion µ(x) is 
ontinuously di�erentiable and with known 
ompa
t support, i.e. µ(x) vanishesoutside some 
ompa
t set and we know that set. In su
h a 
ase, when the obje
t is 
onvex andthe FOV 
ontains opposite sides of the boundary, some re
ent papers have provided a

urateinversion formulas for the attenuation fun
tion in a subregion of the FOV (e.g., [4, 5, 23, 24, 31,32, 33, 34, 35℄). Some non-
onvex obje
ts, su
h as the one in �gure 3.2a), are also 
overed bythese results. These inversion formulas are semi-lo
al: knowledge of line integrals far from there
onstru
tion point are still ne
essary, but they do not require to know all the line integrals.It is important to observe that, on one hand, we are allowing 
onsiderable trun
ation in the setof measurements. But on the other hand, for re
onstru
tion to be possible, we are requiringsome extra a priori knowledge on the lo
ation and support of the obje
t. Note that the requiredextra knowledge is far from being equivalent to having 
omplete measurements. In parti
ular, itdoes not imply that a

urate re
onstru
tion of the attenuation fun
tion, or its dis
ontinuities,is possible outside the FOV [13, 26℄.Most of the semi-lo
al inversion formulas 
ited in the above paragraph require the FOV to
ontain opposite sides of the boundary of the obje
t (as in �gure 3.2a)). Interestingly, someuseful results 
an also be stated in the 
ase where the FOV ex
eeds the obje
t only from oneside (as in �gure 3.2b)). Indeed, it was proved in [11℄ that, in su
h a 
ase, the data is still enoughto uniquely determine the attenuation fun
tion inside the FOV. Moreover, a pointwise stabilityresult was found. This stability result suggests that re
onstru
tion of the attenuation fun
tionshould be more stable for the FOV points that are near the boundary of the obje
t, and thatre
onstru
tion stability may logarithmi
ally de
rease as we go deeper into the obje
t.In the present paper we fo
us on the interior problem. This means that we assume knowledgeof the Radon transform for all lines interse
ting the FOV = {x ∈ R
2 : |x| < a} and that weallow this �eld of view to be 
ompletely 
ontained inside the obje
t. However, unlike otherstudies on the interior problem, we in
lude some extra a priori knowledge: we assume that the
ompa
t support of the attenuation fun
tion is known, and we also assume that the value of theattenuation fun
tion is known in some subregion of the FOV. Under these hypotheses, we extendthe uniqueness and stability results of [11℄ to new 
ases of pra
ti
al interest. Su
h extensionsprovide tools to explore image re
onstru
tion in trun
ated Computed Tomography and 
antranslate into a redu
ed radiation dose in CT, whi
h is be
oming of in
reasing importan
e aswell des
ribed in the introdu
tion of [29℄.



4 M. COURDURIER1, F. NOO2, M. DEFRISE3, H. KUDO4Uniqueness results for the interior problem with prior knowledge have been obtained in ourearlier work [17, 18℄ and independently in [29℄. The result presented here is slightly strongerin 
on
luding uniqueness over the whole spa
e instead of just a restri
ted region. Uniquenesshowever does not imply stability, and therefore the main fo
us of the present paper is a theoreti
alanalysis of stability. In [17, 18, 29℄, the good stability of this inverse problem was demonstratedempiri
ally for spe
i�
 re
onstru
tion algorithms, whi
h use the POCS method to invert theHilbert transform with limited data. Although POCS is an e�
ient algorithm with guaranteed
onvergen
e if the data are noise-free (
onsistent), it does not by itself guarantee stability whenapplied to ill-posed problems with noisy data, su
h as, for instan
e, the severely ill-posed problemof limited-angle tomography. This motivated a theoreti
al analysis of the stability of the interiorproblem with prior knowledge, whi
h led us to point-wise upper bounds on the re
onstru
tionerror that are independent of the spe
i�
 algorithm used for re
onstru
tion, as soon as thisalgorithm enfor
es a number of 
onstraints. These results (Theorems 4.2 and 4.3) are usefulsin
e they show that the problem is not arbitrarily unstable and they give insight into thea

ura
y that is attainable. We will also present some numeri
al examples with simulated datato illustrate the theoreti
al results, using the same POCS algorithm as in [18℄. We refer thereader to [18℄ for a detailed numeri
al study for a variety of geometri
 
on�gurations, and withdi�erent sets of prior knowledge, some of whi
h are not 
overed by the results in
luded here. Theresults here, together with the studies already done in [18℄, [29℄, [30℄, point out new interestingdata a
quisition settings, where a

urate and stable re
onstru
tion may be possible.The organization of the paper is as follows. Se
tion 2 
ontains ba
kground material on math-emati
al 
on
epts; spe
i�
ally, we review the de�nition and properties of the Hilbert transformand Nevanlina's prin
iple. These tools will be essential in the forth
oming se
tions. In se
tion3 we re
all the Di�erentiated Ba
kproje
tion formula that relates the Radon transform and thedire
tional Hilbert transform, formula that together with the inversion of the trun
ated Hilberttransform, produ
es the semi-lo
al inversion formulas presented in papers [23, 24℄. In se
tion4 we des
ribe expli
itly the interior problem with a priori knowledge (�gures 4.1 and 4.2). Wealso analyze the impli
ations of the results presented in previous se
tions, and with some extra
al
ulation, we obtain the main uniqueness and stability results of this paper. In parti
ular,in se
tion 4 we use the relation presented in se
tion 3 to redu
e the problem of inverting theRadon transform in 2D to a problem on the Hilbert transform in 1D. In se
tion 5 numeri
alexperiments are done in order to support the theoreti
al results of se
tion 4. Se
tion 6 mentionspossible extensions, in parti
ular to the 2D fan-beam and the 3D 
one-beam geometries. Se
tion7 
ontains the 
on
lusions. 2. Ba
kground Material2.1. Hilbert Transform on the Real Line.Unless otherwise spe
i�ed, all over this se
tion f is going to be a fun
tion in Cσ
0 (R) with

0 < σ ≤ 1 (see appendix A).For a fun
tion f ∈ Cσ
0 (R) its Hilbert transform is a fun
tion in Cσ(R) de�ned asHf(y) :=
1

π
p.v.∫

R

f(x)

x − y
dx :=

1

π
lim
ǫ→0

[

∫ y−ǫ

−∞

f(x)

x − y
dx +

∫ ∞

y+ǫ

f(x)

x − y
dx

]

.Sin
e 1
x−y

is not integrable at x = y, to make sense of the integral it is ne
essary to remove aball of radius ǫ around y and then let ǫ → 0. This is de�ned as the Cau
hy prin
ipal value ofthe integral, and it is denoted with a p.v..



SOLVING THE INTERIOR PROBLEM OF COMPUTED TOMOGRAPHY USING A PRIORI KNOWLEDGE 5The Hilbert transform is a 
lassi
al transformation that appears in many di�erent subje
ts,in parti
ular it relates the real and imaginary parts of analyti
 
omplex valued fun
tions. Itsatis�es H(Hf)(x) = −f(x) and it also veri�es the following property.Lemma 2.1. Let (a, b) be any non-empty open interval in R. If f(x) = 0 and Hf(x) = 0 for
x ∈ (a, b) ⊂ R, then f ≡ 0 in R.Proof. Let Ω = (C \R)∪ (a, b) i.e. Ω is the 
omplex plane with the intervals (−∞, a) and (b,∞)removed. For z ∈ Ω de�ne

g(z) :=
1

π

[

∫ a

−∞

f(x)

x − z
dx +

∫ ∞

b

f(x)

x − z
dx

]

.The fun
tion g(z) is analyti
 in Ω and satis�es the 
lassi
 Plemelj-Sokhotski formula [1, 2℄: forany x ∈ R \ [a, b]

lim
y→0+

g(x + iy) − lim
y→0−

g(x + iy) =
1

2i
f(x).We assumed f ≡ 0 in (a, b), hen
e from its de�nition g(x) = Hf(x) for x ∈ (a, b). But weadditionally assumed Hf(x) = 0 in (a, b). Therefore g ≡ 0 in (a, b) and 
onsequently theanalyti
ity of g implies g(z) ≡ 0 all over Ω. Using this and Plemelj-Sokhotski formula we obtainthat f(x) = 0 for any x ∈ R \ [a, b]. Sin
e we already had assumed that f(x) = 0 in (a, b) the
ontinuity of f implies that f ≡ 0 on all of R. �Corollary 2.2. For any non-empty interval (a, b) the knowledge of f(x) and Hf(x) for all

x ∈ (a, b) determines uniquely the value of f over all the real line.The next result about the Hilbert transform is quite remarkable [27, 28℄, and this propertywill be referred to as the inversion formula for the trun
ated Hilbert transform. For simpli
itysuppose that the support of a given fun
tion f is 
ontained in the interval (-1,1). The knowledgeof the Hilbert transform in (-1,1), plus some small a priori knowledge on f , is enough to re
overthe fun
tion with the following inversion formula.Theorem 2.3. Let f be su
h that its support set is 
ontained in (-1,1) and assume g(x) = Hf(x)is known in that interval. Then, for x ∈ (−1, 1),
√

1 − x2f(x) = C +
1

π
p.v.∫ 1

−1

g(y)

x − y

√

1 − y2dywhere C is a 
onstant to be determined by a priori knowledge on f . For example, under the
urrent assumptions, C 
an be determined using the relation C = 1
π

∫

R
f(x)dx or from knowingsome ǫ > 0 for whi
h f(x) = 0 for x ∈ (−1,−1 + ǫ) ∪ (1 − ǫ, 1).2.2. Nevanlina's Prin
iple.Apart from the Hilbert transform, the other important result we will use is known as Nevan-lina's Prin
iple [2℄. It provides an upper bound for the modulus of analyti
 fun
tions and willbe used later to estimate errors in the re
onstru
tion of the attenuation fun
tion.Nevanlina's prin
iple will be used in the following 
ontext. Consider Ω ⊂ C to be a 
onne
tedopen subset of the 
omplex plane with a pie
ewise smooth boundary. The boundary of Ω arethe points that delimit Ω from its 
omplement and it is denoted as ∂Ω. A real valued fun
tion

ω(z) is said to be harmoni
 in Ω if the Lapla
ian of the fun
tion vanishes in the domain, i.e. if
∆ω(z) = 0 for all z in Ω. A harmoni
 fun
tion in Ω satis�es the maximum prin
iple; this meansthat it attains its maximum and minimum values on the boundary of Ω.



6 M. COURDURIER1, F. NOO2, M. DEFRISE3, H. KUDO4Theorem 2.4. Let f(z) be an analyti
 fun
tion in a domain Ω ⊂ C. Let D ⊂ ∂Ωbe a segment of the boundary. Let ω(z) be a harmoni
 fun
tion in Ω satisfying
ω(z) =

{

0 for z ∈ D

1 for z ∈ ∂Ω \ DIf f(z) is su
h that
|f(z)| ≤

{

ǫ for z ∈ D

M for z ∈ ∂Ω \ D

ε| f | <

Ω

ω = 0

D

ω = 1
| f | < M

Ωthen
|f(z)| ≤ M

( ǫ

M

)1−ω(z) for all z ∈ Ω. (2.1)Be
ause of the maximum prin
iple, ω(z) depends only on the domain Ω and the set D ⊂ ∂Ω.Also 0 < ω(z) < 1 for z ∈ Ω. This harmoni
 fun
tion is 
alled the Nevanlina's exponent for Ωand D.2.3. Applying Nevanlina's prin
iple.Consider a disk in the 
omplex plane. Remove from this disk a segment of its horizontaldiameter, as shown in �gure 2.1, and let that domain be Ω. We pi
ture the diameter as beingthe interval (a, c) of the real line, while the removed segment is the interval (b, c). We let
D = (b, c) so that ∂Ω \D is the boundary of the disk. These Ω and D are the parti
ular 
ase inwhi
h we will apply Nevanlina's prin
iple, so let us 
ompute Nevanlina's exponent expli
itly forsu
h domain.The easiest way to 
ompute the exponent is to map Ω 
onformally into the upper half plane
{z ∈ C : Im(z) > 0}, mapping D onto the interval (0,∞). On
e in the upper half plane anexpression for Nevanlina's exponent is straightforward. Indeed, if z5 is a point in the upper halfplane, write it as z5 := reiβ with r > 0 and β ∈ (0, π). The fun
tion ωH(reiβ) = β/π happensto be harmoni
, bounded, and takes the values 0 on (0,∞) and 1 on (−∞, 0).We map Ω onto the upper half plane by using a sequen
e of 
onformal maps. In �gure 2.1 weshow the intermediate domains that we map through, keeping tra
k of the images of the sets D(dark solid line), ∂Ω \D (thin solid line) and (a, b) ⊂ Ω (dark dotted line). The 
onformal mapsthat we use, and a short des
ription of what they do, are as follows.

• Translation and s
aling of the disk, 
entering the disk at 0 and normalizing the radius:
z1 : z 7→ z − (a+c

2 )
c−a
2

• Linear fra
tional transformation that map d 7→ 0, while mapping the disk onto itself:
z2 : z 7→ z − d

1 − d̄z
for d =

2b − a − c

c − a

• A dupli
ated D is mapped onto (-1,1), mapping the disk to a half-disk. This is a
hievedusing a square root with a bran
h along [0,∞):
z3 : z 7→

√
z

• Linear fra
tional transformation that maps the half-disk to a quadrant of C:
z4 : z 7→ 1 + z

1 − z
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0
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i

D
c

0Figure 2.1. Sequen
e of 
onformal maps from Ω to the upper half plane. Theimages of D 
orrespond to the dark solid line. The images of ∂Ω\D 
orrespondto the thin solid line. The images of the interval (a, c) ⊂ Ω 
orrespond to thedark dotted line.
• Open the quadrant onto the upper half plane:

z5 : z 7→ z2Summarizing, we map Ω 
onformally onto the upper half plane using the 
omposition of maps
z5 ◦ z4 ◦ z3 ◦ z2 ◦ z1, mapping D onto (0,∞) and ∂Ω \ D onto (−∞, 0). On
e in the upper halfplane we 
ompose with ωH to obtain Nevanlina's exponent for Ω, D. Therefore, Nevanlina'sexponent for Ω, D 
an be 
omputed as ω(z) := ωH(z5(z4(z3(z2(z1(z)))))). And though this isa rather 
ompli
ated expression, it is not hard to 
ompute w(z) expli
itly for z ∈ (a, b), notingthat (a, b) ⊂ Ω is mapped onto {z : |z| = 1, Im(z) > 0} in the upper half plane.Lemma 2.5. For the domain Ω ⊂ C spe
i�ed above and D = (b, c), Nevanlina's exponent at
x ∈ (a, b) has the following expression

ω(x) =
4

π
arctan

√

2(b − x)(c − a)

(c − a)2 − (2b − a − c)(2x − a − c)
. (2.2)3. Differentiated Ba
kproje
tion (DBP) and Hilbert TransformIn Computerized Tomography (CT) the goal is to re
onstru
t an unknown attenuation fun
-tion from some of its line integrals. In the absen
e of noise these line integrals 
orrespond exa
tlyto the measured data. In modern s
anners, the data is a
quired by an X-ray sour
e and dete
torsrotating around the patient (see �gure 3.1). In su
h a setting, the measured data gives rise to the
on
ept of FOV: the set of points through whi
h the line integrals in all dire
tions are measured.This FOV 
orresponds exa
tly to our previous de�nition FOV := {x ∈ R

2 : |x| < a} (e.g., �gure3.1). Re
alling the de�nition of Rµ(s, α) from the introdu
tion, the FOV 
orresponds to theset of points in R
2 for whi
h Rµ(x · θ(α), α) is known for all α ∈ [0, π). Here x · θ denotes theinner produ
t in R

2. We will refer to the region outside the FOV as the region of in
omplete
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source

Figure 3.1. Typi
al data a
quisition setting in X-ray CT. The sour
e anddete
tors rotate around the patient. The shadowed region represents the FOV.measurements sin
e for x /∈ FOV, Rµ(x ·θ(α), α) is known only for α in an angular range smallerthan [0, π).Consider a fun
tion µ ∈ C∞
0 (R2) and �x a ve
tor η ∈ R

2 \ {0}. The Hilbert transform of µ inthe dire
tion η at point x ∈ R
2 is de�ned asHηµ(x) := − 1

π
p.v.∫

R

µ(x − tη)

t
dt.This is an odd fun
tion in η, namely H−ηµ(x) = −Hηµ(x).For an attenuation fun
tion µ, the 
onne
tion between its Radon transform and this Hilberttransform is as follows [23℄.Lemma 3.1. Let θ1, θ2 and θ(α) be the unitary ve
tors 
orresponding to α1, α2 and α respe
-tively, where α1 and α2 are arbitrary angles and α ∈ [α1 − π

2 , α2 − π
2 ]. Then

− 1

π

∫ α2−
π

2

α1−
π

2

[ ∂

∂s
Rµ(s, α)

]

s=x·θ(α)
dα = Hθ2

µ(x) −Hθ1
µ(x). (3.1)And sin
e the dire
tional Hilbert Transform is odd in η we get the following Corollary.Corollary 3.2. Let θ0 be the unitary ve
tor 
orresponding to α0. Then

1

2π

∫ α0+
π

2

α0−
π

2

[ ∂

∂s
Rµ(s, α)

]

s=x·θ(α)
dα = Hθ0

µ(x). (3.2)This formula relates the Radon transform and the Hilbert transform over a line. It will beused to redu
e the problem of inverting the Radon transform in 2D to the problem of invertingthe Hilbert transform in 1D. Corollary 3.2 implies the following for the points in the FOV.Corollary 3.3. For a point x in the FOV and in the 
ase of noiseless measurements, Hηµ(x)
an be 
omputed from the measured data for any dire
tion η.Let us study the 
onsequen
es of the previous result. In parti
ular let us revisit some of theresults presented in [23℄ and [11℄.Assume we have the situation of �gure 3.2a): The obje
t is des
ribed by the thin line and weknow the boundary of the obje
t. The 
ir
le represents the FOV and therefore we are measuring
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a) b)

FOV

Lη

FOV

L

I

Figure 3.2. a) Not all line integrals are measured, but µ(x) 
an be re
on-stru
ted in the shadowed region. b) The attenuation µ(x) is uniquely deter-mined in the shadowed regionall the line integrals interse
ting that 
ir
le. As in the �gure 3.2a) pi
k a line L that exitsthe obje
t at opposite sides 
ontained in the FOV. Let η denote the dire
tion of su
h a line.Corollary 3.3 tells us that from the measurements we 
an 
ompute Hηµ(x) for all points x in
L ∩ FOV. This in
ludes a segment I ⊂ L su
h that µ(x) = 0 ∀x ∈ L \ I. As we will see in moredetail in se
tion 4, in su
h a setting the inversion formula for the trun
ated Hilbert transform(Theorem 2.3 in this paper), allows us to re
over µ(x) over the line L. Using the same argumentover di�erent lines, we obtain an inversion formula for all the points in the shadowed region of�gure 3.2a). This is essentially the inversion formula presented in [23℄.A key element in the previous argument is that the FOV needs to be large enough, and belo
ated in su
h a way with respe
t to the obje
t, that it 
overs opposite portions of the boundaryof the obje
t. Therefore, the previous argument does not work anymore when the FOV only
overs one side of the obje
t, as the one in �gure 3.2b). We 
an still 
onsider a line L that, atleast in one dire
tion, exits the obje
t at a pie
e of boundary 
ontained in the FOV. We 
an
ompute Hηµ(x) for all points x in L∩FOV, but there are points in L where µ(x) does not vanishand where we are not able to 
ompute Hηµ(x). Still, in [11℄ it is proved that the measured datais enough to uniquely determine µ(x) inside the FOV. Additionally some stability estimates areprovided about how the non-measured data in�uen
es the inversion of the Hilbert transform atpoints in the FOV. Theorem 4.2 in this paper is an extension of the estimates in [11℄. In thispaper we also present a generalization of the uniqueness result of [11℄, showing that, a
tually, themeasurements in �gure 3.2b) determine the fun
tion µ(x) uniquely over all the obje
t, althoughmaybe not stably everywhere. This is a 
onsequen
e of Lemma 2.1 and Corollary 3.3, and willbe presented in detail in the following se
tion.The situation des
ribed in �gure 3.2 arises in medi
al imaging when the patient is bigger thanthe FOV, or when we want to redu
e the size of the FOV to redu
e the patient exposure toX-ray radiation. 4. In
omplete Data and A Priori KnowledgeWe are now ready to present the 
ase studied in this paper. As mentioned in the introdu
tion,we 
onsider the interior problem: we assume the FOV is 
ompletely 
ontained inside the obje
t.In order to ta
kle the problem we assume we know the boundary of the obje
t and we assumewe know the value of the attenuation fun
tion in a subregion A inside the FOV. This situationis represented in �gures 4.1a) and 4.2a).
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a cb

b)

Ω

��
��
��

��
��
��

FOV

L −1 1e

a)

A

FOV

Figure 4.1. a) The attenuation fun
tion is known a priori in the region A. b)In redu
tion to 1D, the region A 
orrespond to the interval (b, c) therefore f(t)is known in that interval. The FOV 
orrespond to the interval (a, e) thereforeHf(t) 
an be 
omputed from the measured data inside the interval (a, e).First, we study the situation des
ribed in �gure 4.1a). For su
h a 
ase we are able to obtainuniqueness and stability result, presented in Corollary 4.1 and Theorem 4.2 respe
tively. After-wards we fo
us on the situation des
ribed in �gure 4.2a). The analysis will be analogous and theuniqueness result applies immediately, but we obtain a somewhat stronger stability result forthe points in the FOV that are between regions where µ(x) is assumed to be known (Theorem4.3).The uniqueness result establishes that the trun
ated measurements and the a priori knowledgeare enough to determine the attenuation uniquely. For this result to hold we also need to assumethat the measurements are noiseless and, therefore, that they 
orrespond exa
tly to Rµ(s, α).4.1. Redu
ing to a 1D problem.Consider a line L that interse
ts the region A as in �gure 4.1a). We regard the fun
tion µ(x)restri
ted to the line L. For that, �x x0 ∈ L and 
hoose η ∈ R
2 \{0} su
h that L = {x0 + tη : t ∈

R}. For t ∈ R de�ne f(t) := µ(x0 + tη). Su
h a fun
tion 
orresponds to the restri
tion of µ(x)to the line L and from its de�nition f ∈ C∞
0 (R). We also have the following relation betweenthe Hilbert transform of f(t) and the dire
tional Hilbert transform of µ(x),Hf(t0) =

1

π
p.v.∫

R

f(s)

s − t0
ds =

1

π
p.v.∫

R

f(s + t0)

s
ds =

=
1

π
p.v.∫

R

µ(x0 + (s + t0)η)

s
ds =

1

π
p.v.∫

R

µ(x0 + t0η + sη)

s
ds =

= −H−ηµ(x0 + t0η)

= Hηµ(x0 + t0η).Therefore, if (x0 + t0η) ∈ FOV Corollary 3.3 implies that Hηµ(x0 + t0η) 
an be 
omputedfrom the measured data, hen
e Hf(t0) 
an be 
omputed from the measured data. In additionto that, if (x0 + t0η) ∈ A then µ(x0 + t0η) is assumed to be known, hen
e f(t0) is known.This idea is summarized in �gure 4.1. The fun
tion µ restri
ted to the line L 
orresponds toa fun
tion f : R → R. The FOV 
orresponds to an interval (a, e) and perfe
t measurement of
Rµ for the lines interse
ting the FOV translate, using formula (3.2), into the knowledge of Hf(t)for t ∈ (a, e). The region A ⊂ FOV 
orresponds to an interval (b, c) ⊂ (a, e) and knowledge of
µ(x) for x ∈ A translates into knowledge of f(t) for t ∈ (b, c).



SOLVING THE INTERIOR PROBLEM OF COMPUTED TOMOGRAPHY USING A PRIORI KNOWLEDGE11In parti
ular, using Corollary 2.2, this implies that f is uniquely determined over R and thefollowing result follows.Corollary 4.1. Re
alling that µ(x) ∈ C∞
0 (R2). If µ(x) is known in a non-empty open region A
ontained in the FOV and the measurements are noiseless, then µ is uniquely determined overall lines L interse
ting A. This readily implies that µ is uniquely determined in R

2.The redu
tion above of the original problem to a 1D problem is quite useful. The problem ofre
overing µ over L ∩ FOV redu
es to re
overing f(t) in the interval (a, e) (see �gure 4.1). Theinformation that we have available to re
onstru
t f(t) 
omes from the a priori knowledge on
µ(x) and the measurements of Rµ(s, α). We established that perfe
t measurement of Rµ(s, α)for the lines interse
ting the FOV imply that µ is uniquely determined. Now we will study whathappens when we allow errors in the measurements.In the presen
e of noise the measurements are not exa
tly Rµ(s, α) anymore and we denotethem as Rmµ(s, α). For a given line L we 
an 
ompute the left hand side of the DBP formulausing Rmµ(s, α) instead of Rµ(s, α) (equation (3.2)) and then restri
t the problem to 1D likein se
tion 4.1. We denote by gm(t) the fun
tion obtained using the pres
ribed pro
edure. If themeasurements were perfe
t the DBP formula tells us that gm(t) = Hf(t), but in the presen
e ofnoise this needs not be the 
ase.4.2. Setting of the Problem.In this subse
tion and the next ones, the variable x will denote a point in R, as in se
tion 2.This is for simpli
ity of notation when doing referen
es to 
omplex variables.Let us assume without loss of generality, that supp f ⊂ (−1, 1). We observed in the 
aseof noiseless measurements, that Hf(x) 
an be obtained from the measured data for the points
x ∈ (a, e), while f(x) is known for x ∈ (b, c). The points −1 < a < b < c < e < 1 are spe
i�edin �gure 4.1.Re
all the inversion formula for the trun
ated Hilbert transform:

√

1 − x2f(x) = C +
1

π
p.v.∫ 1

−1

Hf(y)

x − y

√

1 − y2dyand let us split the integral as follows. De�ne
h1(x) = C +

1

π
p.v.∫ e

a

Hf(y)

x − y

√

1 − y2dy (4.1)
h2(x) =

1

τ(x)

1

π

[ p.v.∫ a

−1

Hf(y)

x − y

√

1 − y2dy + p.v.∫ 1

e

Hf(y)

x − y

√

1 − y2dy
] (4.2)where τ(x) will be spe
i�ed later and C = 1

π

∫

R
fdx = 1

π

∫

L
µ dl. I.e. we 
an write

√

1 − x2f(x) = h1(x) + τ(x)h2(x) (4.3)where h1(x) 
orresponds to the part that 
ould be obtained from noiseless measurements while
h2(x) is de�ned with the values of Hf(x) that 
annot be 
omputed from the measurements. Inthis 
ontext, errors in the measurements translate into errors in the value of h1(x) and thereforethe uniqueness given by Corollary 4.1 is lost.Nonetheless, we would like to know if it is possible to obtain a reasonable re
onstru
tion whenthe errors in the measurements are small, i.e. when the errors in Rm(s, α) and gm(t) are small.We will ta
kle this stability question in two steps. As we mentioned above, h1(x) 
orre-sponds to the part of f(x) that 
an be obtained from noiseless measurements, and errors in themeasurements imply errors in h1(x). The �rst step, in
luded in this subse
tion and the next
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onsist in giving a 
riterion that allow stable re
onstru
tion but whi
h relies on having abound for the error in h1(x). The error in h1(x) is not straightforwardly related to the errors inthe measurements Rm(s, α) or the errors in gm(t), and therefore the 
riterion presented in thissubse
tion is an indire
t one and it is somewhat te
hni
al. The se
ond step, whi
h is dis
ussedin subse
tion 4.5, analyzes how bounds in the errors of Rm(s, α) and gm(t) 
an be translatedinto bounds for the error in h1(x), i.e., in subse
tion 4.5 we obtain a set of 
onditions that referdire
tly to the errors in Rm(s, α) and gm(t) and that allow for a stable re
onstru
tion.Now we fo
us on the main goal of this subse
tion: a 
riterion that ensures that a 
andidatere
onstru
tion fr will be 
lose to the original fun
tion f , at least for the points inside the interval
(a, e). The 
riterion that leads to the stability bounds of Theorems 4.2 and 4.3 is written as
fr ∈ Sǫ (the de�nition of the set Sǫ is given below) and it 
an be roughly summarized asfollows. Let Hfr be the Hilbert transform of the 
andidate re
onstru
tion fr and let h1,r beobtained using equation (4.1) with Hfr(y) instead of Hf(y) and Cr :=

∫

R
fr(y)dy instead of

C =
∫

R
f(y)dy. We will request that for x ∈ (a, e) the error of h1,r(x) is not too large, namely,we will request that there is a non-negative 
ontinuous fun
tion E(x) su
h that,

|h1,r(x) − h1(x)| < ǫE(x) for x ∈ (a, e) with E(x) ≤ 1 for x ∈ (b, c) (4.4)This is a somewhat te
hni
al 
ondition that amounts to a tight uniform 
ontrol over the error
|h1,r(x) − h1(x)| in the interval (b, c), while allowing for the possibility of a larger error in therest of the interval (a, e), as de�ned by the fun
tion E(x). A 
ondition requiring a uniformbound over all of (a, e), espe
ially near a and e, may be too restri
tive sin
e, as we approa
hthe region of in
omplete measurements, it might be impossible to 
ontrol the pre
ision of there
onstru
tion fr, and h1,r is related to fr by equation (4.3).Let us des
ribe expli
itly the set Sǫ. Due to the non-lo
al nature of the Hilbert transformwe need to add an a priori bound on |Hf | for x ∈ (−1, a) ∪ (e, 1). We know that f ∈ C∞

0 (R)and therefore Hf ∈ C∞(R). Hen
e |Hf(x)| is uniformly bounded for x ∈ (−1, a)∪ (e, 1) and weassume that we know 
onstants M1 and M2 su
h that
1

π

√

1 − x2|Hf(x)| ≤
{

M1/2 for x ∈ (−1, a)

M2/2 for x ∈ (e, 1)We de�ne Sǫ as the set of smooth and 
ompa
tly supported fun
tions fr ∈ C∞
0 (R) that satisfythe following four 
onditions:

Sǫ :=
{

fr ∈ C∞
0 (R) :

- supp fr(x) ⊂ (−1, 1) (we know that supp f(x) ⊂ (−1, 1)).- fr(x) = f(x) for x ∈ (b, c) (re
all that f(x) is known in (b, c)).- |h1,r(x) − h1(x)| < ǫE(x) for x ∈ (a, e) with E(x) ≤ 1 for x ∈ (b, c)- 1
π

√
1 − x2|Hfr(x)| <

{

M1/2 for x ∈ (−1, a)

M2/2 for x ∈ (e, 1)

}The fun
tion E(x) is any arbitrary non-negative 
ontinuous fun
tion on (a, e) satisfying
E(x) ≤ 1 for x ∈ (b, c).One of the main results in this paper is to show that for any fr ∈ Sǫ the re
onstru
tion error
|fr(x)−f(x)| is bounded by equation (4.6). Now we make some 
omputations that help us provesu
h result. Let us denote the re
onstru
tion error as ferr(x) := fr(x) − f(x). De�ne h1,err(x)and h2,err(x) using equations (4.1) and (4.2) with f(x) repla
ed by ferr(x). Observe thatequation (4.3) holds with ferr, h1,err and h2,err instead. The assumption fr(x) ∈ Sǫ translatesinto

• supp ferr(x) ⊂ (−1, 1)
• ferr(x) = 0 for x ∈ (b, c)
• |h1,err(x)| < ǫE(x) for x ∈ (a, e) with E(x) ≤ 1 for x ∈ (b, c)
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• 1

π

√
1 − x2|Hferr(x)| <

{

M1 for x ∈ (−1, a)

M2 for x ∈ (e, 1)We will bound |ferr(x)| in terms of ǫ for x ∈ (a, b). Be
ause of (4.3) it will be enough tobound τ(x)h2,err(x) in terms of ǫ for x ∈ (a, b). The bound we �nd is not a norm or uniformbound, but instead it is a pointwise bound that depends on the position of x with respe
t to
−1, a, b, c, e, 1.Sin
e ferr(x) = 0 for x ∈ (b, c) equation (4.3) implies,

|h2,err(x)| =
∣

∣

∣

h1,err(x)

τ(x)

∣

∣

∣
<

ǫ

|τ(x)| ∀x ∈ (b, c) (4.5)Also, we 
an extend the de�nition of h2,err(z) to z ∈ C \ ((−1, a) ∪ (e, 1)) by just repla
ing xby z in the de�nition of h2,err(x). The extended fun
tion h2,err(z) will be analyti
 in any subsetof C \ ((−1, a)∪ (e, 1)) as long as τ(z) is analyti
 there. The in
lusion of the fun
tion τ(z) in thede�nition of h2,err(z) is due to the singular behavior of the integrals ∫ a

−1
Hferr(y)

z−y

√

1 − y2dy and
∫ 1

e

Hferr(y)
z−y

√

1 − y2dy for z ∈ (−1, a) and z ∈ (e, 1) respe
tively. For a �xed domain Ω, we willsee shortly that we 
an 
hoose an analyti
 fun
tion τ(z) that is easy to analyze and that in Ωhas the same behavior as these integrals. That way h2,err(z) 
an be bounded and Nevanlina'sprin
iple 
an be applied.4.3. Bound for x ∈ (a, b).Consider Ω to be the disk of diameter (a, c) and remove the subinterval (b, c). Let D = (b, c) ⊂
∂Ω (i.e Ω and D are like in Lemma 2.5). De�ne,

τ(z) := κ +

∫ a

−1

1

z − y
dy with κ :=

M2 ln
(

1−c
e−c

)

M1
.This fun
tion τ(z) is analyti
 in Ω and, as proved in the appendix B, |h2,err(z)| <

√
2M1for z ∈ ∂Ω \ D. Also, for x ∈ (b, c), |τ(x)| = κ + ln( x+1

x−a
). Inequality (4.5) then implies

|h2,err(z)| < ǫ

κ+ln( c+1

c−a
)
for z ∈ D = (b, c). Using Nevanlina's prin
iple (Theorem 2.4) andformula (4.3) we 
on
lude the following theorem.Theorem 4.2. If fr is a re
onstru
tion satisfying the 
onditions imposed by fr ∈ Sǫ, where Sǫis de�ned in Subse
tion 4.2, then for any x ∈ (a, b),

√

1 − x2 |fr(x)−f(x)| <
[

ǫE(x)+
√

2M1(κ+ln(
x + 1

x − a
))

( ǫ√
2M1(κ + ln( c+1

c−a
))

)1−ω(x)]

. (4.6)The fun
tion ω(x) = 4
π

arctan
√

2(b−x)(c−a)
(c−a)2−(2b−a−c)(2x−a−c) is the Nevanlina's exponent that was
al
ulated in Lemma 2.5.In order to identify the 
onsequen
e of this result, we rewrite the bound in Theorem 4.2 in aless expli
it form (assume 0 < ǫ ≤ 1):

|fr(x) − f(x)| ≤ K(x)ǫδ(x), with δ(x) = 1 − ω(x).The fun
tion δ(x) > 0 is 
ontinuous and satis�es limx→b δ(x) = 1 and limx→a δ(x) = 0, a
tuallythis fun
tion is δ(x) = 1 − ω(x). The fun
tion K(x) is also 
ontinuous and limx→b K(x) =
(κ + ln( b+1

b−a
))/(κ + ln( c+1

c−a
)) < ∞ while limx→a K(x) = ∞. Written in this form the bound
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Figure 4.2. a) The attenuation fun
tion is known a priori in the region A. b)In redu
tion to 1D, region A 
orresponds to the intervals (b, c) ∪ (d, e).implies the following: a

urate re
onstru
tion is possible near b, and re
onstru
tion shouldbe
ome more unstable as we approa
h a.With respe
t to the re
onstru
tion of µ over the line L, Theorem 4.2 implies re
onstru
tionshould be a

urate near the region A, where µ is assumed to be known, while re
onstru
tionshould be less a

urate as we move far from the region A towards the region of in
ompletemeasurements.By symmetry, the points in the interval (c, e) admit a bound of exa
tly the same kind. Weskip su
h 
omputation and we fo
us on studying the 
ase of a di�erent region A.4.4. Points Between Regions Where µ is Known.We study what happens when we restri
t the attenuation fun
tion µ to a line L as the one in�gure 4.2a). As before, we redu
e the analysis to a 1D problem, and uniqueness follows in thesame way.We modify the list of 
onditions that imply a bound for the re
onstru
tion error, a

ordinglyto the situation presented in �gure 4.2. Let us de�ne S̃ǫ as the set of smooth 
ompa
tly supportedfun
tion fr satisfying,
S̃ǫ :=

{

fr ∈ C∞
0 (R) :

- supp fr(x) ⊂ (−1, 1)- fr(x) = f(x) for x ∈ (b, c) ∪ (d, e)- |h1,r(x) − h1(x)| < ǫE(x) for x ∈ (a, e)with E(x) ≤ 1 for x ∈ (b, c) ∪ (d, e).- 1
π

√
1 − x2|Hfr(x)| <

{

M1/2 for x ∈ (−1, a)

M2/2 for x ∈ (e, 1)

}As in subse
tion 4.2, let ferr(x) := fr(x)−f(x) denote the re
onstru
tion error. Sin
e fr ∈ S̃ǫthe following set of 
onditions repla
e those of subse
tion 4.2:
• supp ferr(x) ⊂ (−1, 1)
• ferr(x) = 0 for x ∈ (b, c) ∪ (d, e)
• |h1,err(x)| < ǫE(x) for x ∈ (a, e) with E(x) ≤ 1 for x ∈ (b, c) ∪ (d, e).
• 1

π

√
1 − x2|Hferr(x)| <

{

M1 for x ∈ (−1, a)

M2 for x ∈ (e, 1)
(twi
e the a priori bound on Hf(x))To obtain a bound for the re
onstru
tion error it is enough to bound h2,err(x). In order to dothis we 
onsider adequate domains Ω= {a disk minus a subinterval of the diameter} and fun
tions
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τ(z) with the right behavior in ea
h Ω. Appli
ations of Nevanlina's prin
iple for h2,err(z) willthen produ
e the desired bounds.The interval (c, d) is 
ontained in the domains Ω1 and Ω2 des
ribed in �gure 4.2b). Namely,we obtain Ω1 by removing the interval D1 = (b, c) from the disk of diameter (b, d). Sin
e Ω1 isfar from (−1, a)∪ (e, 1) we 
an 
onsider di�erent 
andidates for the fun
tion τ(z). We obtain Ω2by removing the interval D2 = (d, e) from the disk of diameter (c, e). Let us de�ne the followingfun
tions:

τ1(z) := κ1 +

∫ a

−1

1

z − y
dy with κ1 :=

M2 ln
(

1−d
e−d

)

M1

τ2(z) := κ2 +

∫ 1

e

1

y − z
dy with κ2 :=

M1 ln
(

c+1
c−a

)

M2

τ3(z) := κ3 +

∫ 1

e

1

y − z
dy with κ3 :=

M1 ln
(

b+1
b−a

)

M2
.After a slight modi�
ation of appendix B, the analysis leading to Theorem 4.2 is valid for Ω1with τ1(z), for Ω2 with τ2(z), and for Ω1 with τ3(z). The appli
ation of Nevanlina's prin
ipleon those three di�erent settings provide us with the bounds (4.7), (4.8), (4.9) in Theorem 4.3.In addition to that, sin
e Ω1 is far from (−1, a) ∪ (e, 1) then h2,err(z) does not have a singularbehavior in Ω1, and we 
an 
onsider Ω1 with τ4(z) := 1. Inequality (4.5) implies |h2,err(z)| ≤ ǫ for

z ∈ (b, c), while the se
ond part of appendix B shows that |h2,err(z)| ≤ M1 ln
(

c+1
c−a

)

+M2 ln
(

1−d
e−d

)for z ∈ ∂Ω1 \D1. An appli
ation of Nevanlina's prin
iple in this 
ase provide us with the bound(4.10) in Theorem 4.3.Theorem 4.3. For a re
onstru
tion fr(x) satisfying fr ∈ S̃ǫ we have the following bounds atpoints x ∈ (c, d). Using Ω1 with τ1(z) we obtain
√

1 − x2|fr(x)−f(x)| <
[

ǫE(x)+
√

2M1(κ1+ln(
x + 1

x − a
))

( ǫ√
2M1(κ1 + ln( c+1

c−a
))

)1−ω1(x)] (4.7)where ω1(x) = 4
π

arctan
√

2(x−c)(d−b)
(d−b)2−(2c−d−b)(2x−d−b) .Using Ω2 with τ2(z) we obtain

√

1 − x2|fr(x)−f(x)| <
[

ǫE(x)+
√

2M2(κ2+ln(
1 − x

e − x
))

( ǫ√
2M2(κ2 + ln(1−d

e−d
))

)1−ω2(x)] (4.8)where ω2(x) = 4
π

arctan
√

2(d−x)(e−c)
(e−c)2−(2d−c−e)(2x−c−e) .Using Ω1 with τ3(z), we obtain

√

1 − x2|fr(x) − f(x)| <
[

ǫE(x) +
√

2M2(κ3 + ln(
1 − x

e − x
))

( ǫ√
2M2(κ3 + ln(1−d

e−d
))

)1−ω1(x)]

.(4.9)Using Ω1 with τ4(z) := 1, we obtain
√

1 − x2|fr(x)−f(x)| <
[

ǫE(x)+
(

M1 ln
( b + 1

b − a

)

+M2 ln
(1 − d

e − d

)

)( ǫ

M1 ln
(

b+1
b−a

)

+ M2 ln
(

1−d
e−d

)

)1−ω1(x)]

.(4.10)Whi
h bound is better a
tually depends on the values of a, b, c, d, e, M1, M2 and the lo
ationof the point x in the interval (c, d).



16 M. COURDURIER1, F. NOO2, M. DEFRISE3, H. KUDO4
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δ δ δ δ δ δ

ea ca c ebbFigure 4.3. Relevant intervals after smoothing.Let us rewrite the 
ombination of the bounds in Theorem 4.3 in a less expli
it way (assume
ǫ ≤ 1):

|fr(x) − f(x)| ≤ K(x)ǫδ(x)with δ(x) > 0 and K(x) 
ontinuous. The main di�eren
e with respe
t to the bound in subse
tion4.3 is that now, by putting together the bounds in Theorem 4.3, the fun
tions δ(x) and K(x)satisfy limx→c δ(x) = limx→d δ(x) = 1, while limx→c K(x) < ∞ and limx→d K(x) < ∞. Inparti
ular, for δ = min(c,d) δ(x) > 0 and K = max(c,d) K(x) < ∞ we have:
|fr(x) − f(x)| ≤ Kǫδ.This is a uniform bound for the re
onstru
tion of f in the interval (c, d). The intuition thatstability should be a
hievable inside the whole interval (c, d) is veri�ed: when we move insidethe interval (c, d) we stay away from the regions of in
omplete data.4.5. Stability based on measurements errors.In the previous subse
tions we bounded the re
onstru
tion error |fr(x)− f(x)| for the points

x inside the FOV. But these results are not easy to interpret be
ause they require fr ∈ Sǫ, andthat means that we have to bound the error |h1,r(x)− h1(x)| of the intermediate fun
tion h1(x)de�ned by equation (4.1). A more useful error bound for the re
onstru
tion would be expressedin terms of the error for quantities related dire
tly to the measurements, namely Rm(s, α) and
gm(t).In this subse
tion we study how to bound the re
onstru
tion error only from the knowledgethat Rm(s, α) and gm(t) 
ontain small errors plus the a priori knowledge. The answer is notstraightforward. The 
ondition fr ∈ Sǫ requires us to bound |h1,r(x) − h1(x)| and h1(x) is
omputed from Hf(x) as de�ned in equation (4.1). In the noiseless 
ase we know that gm(x) =Hf(x) and therefore, even in the presen
e of noise, we may want to 
onstru
t fr su
h that
Hfr = gm, this is a good idea but it does not produ
e fr ∈ Sǫ: even if the error |Hfr − Hf |is very small there is no guarantee that h1,r will be 
lose to h1 (su
h a fa
t 
an be noted byobserving that the Hilbert transform of a dis
ontinuous fun
tion is not bounded, and it wouldbe unrealisti
 to assume 
ontinuity 
onstraints on the error |gm −Hf |).We over
ome this problem by re
onstru
ting instead a smooth approximation f of the originalattenuation fun
tion f . We de�ne f(x) := φ ∗ f(x) :=

∫

R
φ(x − y)f(y)dy as the 
onvolution of

f with a smooth non-negative blurring kernel φ(x) ∈ C∞
0 (R), φ being su
h that ∫

R
φ(x)dx = 1and with bounded support supp φ ⊂ (−δ, δ). We are in the setting of subse
tion 4.2 (see �gure4.1) and we assume that δ > 0 is small enough to satisfy −1 + δ < a, b + δ < c − δ, e < 1 − δ(see �gure 4.3).We assume the following a priori information about f :

• supp f ⊂ (−1 + δ, 1 − δ) hen
e supp f ⊂ (−1, 1).
• f(x) is known for x ∈ (b, c).
• We know 
onstants M1 and M2 su
h that

1

π
|Hf(x)| ≤

{

M1/2 for x ∈ (−1 − δ, a + 2δ)

M2/2 for x ∈ (e − 2δ, 1 + δ)
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ribed by the followingbounds
|gm(x) −Hf(x)| < ǫ for x ∈ (a, e) and |Rmµ(s0, α0) − Rµ(s0, α0)| < ǫ (4.11)where (s0, α0) parameterize the line L that de�nes f , hen
e Rµ(s0, α0) =

∫

R
f(y)dy.We de�ne the set Aǫ of admissible solution estimates as

Aǫ :=
{

fr ∈ C∞
0 (R) :

- supp fr ⊂ (−1 + δ, 1 − δ)- fr(x) = f(x) for x ∈ (b, c)- 1
π
|Hfr(x)| ≤

{

M1/2 for x ∈ (−1 − δ, a + 2δ)

M2/2 for x ∈ (e − 2δ, 1 + δ)- Hfr(x) − gm(x) = λ(x) for some λ with |λ(x)| < ǫ for x ∈ (a, e)- |
∫

R
fr(y)dy − Rmµ(s0, α0)| < ǫ

}The �rst three 
onditions in the de�nition of Aǫ 
orrespond exa
tly to the a priori knowledgeabout f(x). The last two 
onditions in Aǫ 
orrespond to the bounds of the measurementserrors, as spe
i�ed by (4.11). Therefore the original fun
tion f(x) is an admissible solution, i.e.
f ∈ Aǫ, and if fr ∈ Aǫ we will say that fr is 
ompatible with the a priori information and themeasurements.As mentioned before, just the fa
t that fr ∈ Aǫ does no guarantee that fr ∈ Sǫ. Whatwe will show though, is that for any admissible solution fr ∈ Aǫ the 
onvolution φ ∗ fr(x), asa re
onstru
tion of f(x) = φ ∗ f(x), has a bounded re
onstru
tion error. In order to establishthat let us de�ne a = a+δ, b = b+δ, c = c−δ and e = e−δ (see �gure 4.3) and let us de�ne the set

Aǫ :=
{

f r ∈ C∞
0 (R) :

- supp fr ⊂ (−1, 1)- fr(x) = f(x) for x ∈ (b, c)- 1
π

√
1 − x2|Hfr(x)| ≤

{

M1/2 for x ∈ (−1, a)

M2/2 for x ∈ (e, 1)- Hf r(x) − φ ∗ gm(x) = φ ∗ λ(x) for some |λ(x)| < ǫ for x ∈ (a, e)- |
∫

R
fr(y)dy − Rmµ(s0, α0)| < ǫ

}

Sin
e φ ∗ (Hf) = H(φ ∗ f) it easy to 
he
k that, if fr ∈ Aǫ then φ ∗ fr ∈ Aǫ. In parti
ular
f ∈ Aǫ. We also de�ne the following set

Sǫ :=
{

fr ∈ C∞
0 (R) :

- supp f r(x) ⊂ (−1, 1)- fr(x) = f(x) for x ∈ (b, c)- 1
π

√
1 − x2|Hfr(x)| <

{

M1/2 for x ∈ (−1, a)

M2/2 for x ∈ (e, 1)- |h1,r(x) − h1(x)| < ǫE(x) for x ∈ (a, e) with E(x) ≤ 1 for x ∈ (b, c)

}where h1,r(x) (respe
tively h1(x)) are 
al
ulated using equation (4.1) with f r instead of f (re-spe
tively f instead of f), and with a and e instead of a and e. The 
onstant ǫ is proportional to
ǫ and E(x) is a 
ontinuous fun
tion in (a, e) with E(x) ≤ 1 for x ∈ (b, c). The pre
ise des
riptionof e and E(x) are in Appendix C, where it is also shown that if (4.11) holds then Aǫ ⊂ Sǫ andtherefore φ ∗ fr ∈ Sǫ for any fr ∈ Aǫ. Lets stop one se
ond to noti
e the following: the lasttwo 
onditions in the de�nition of Aǫ are bounds of the 
andidates 
ompared to the measure-ments, but the last 
ondition in Sǫ involves f and not the measurements. Roughly speaking,this transition is possible be
ause f ∈ Aǫ and all the fun
tions in Aǫ are 
lose to ea
h other.We observe that the set Sǫ 
oin
ides with the 
riterion introdu
ed in subse
tion 4.2 (listed inthe set Sǫ), provided that we repla
e a, b, c, e, ǫ and E(x) by a, b, c, e, ǫ and E(x). Using Theorem
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tight knowledge

loose knowledge

FOV

object

c)

Figure 5.1. Des
ription of the numeri
al experiment. a) The re
tangular FOVis 
ompletely 
ontained in the Shepp-Logan phantom. b) The attenuation µ isknown in region A. We use DBP on horizontal lines L. 
) We assume weapproximately know the support of the obje
t.4.2 we 
on
lude. For any admissible solution fr ∈ Aǫ the error |φ∗fr(x)−f (x)| will be boundedby equation (4.6), with the 
orresponding substitutions.5. Numeri
al ExperimentsIn order to support numeri
ally the previous results we 
onsider the situation des
ribed in�gure 5.1a). The Shepp-Logan phantom is enlarged 2.5 times, so its ellipse axes are 4.6 and 3.45.We 
onsider a re
tangular FOV of 1.5 × 2 lo
ated in the 
enter of the phantom, the fa
t thatthe FOV is a re
tangle does not 
hange the theory and makes the presentation of the numeri
alresults 
learer. A total of 1200 parallel-beam proje
tions over an angular range of 180◦ are
omputed. On ea
h proje
tion, lines are sampled at every 2/256 of distan
e and the lines notinterse
ting the FOV are trun
ated. The FOV is re
onstru
ted as an image of 192× 256 pixels.The gray strips in �gure 5.1b) 
orrespond to the region A, where the attenuation is known apriori. The region A divides the FOV in the regions B, C and D, to the left, in between and tothe right of A respe
tively. With respe
t to the support of the obje
t we 
onsider two situations(see �gure 5.1
)): we have the knowledge that the phantom is 
ontained inside a region 1.2times its original size, labelled �tight support� 
ase; or we have the knowledge that the obje
t is
ontained in a region 1.8 times its original size, labelled �loose support� 
ase.Consider an horizontal line L as the one in �gure 5.1b). Let f(x) be the restri
tion of µ tothat line and let fr(x) be the re
onstru
tion of f(x). The a priori knowledge on µ 
orrespondsto the following knowledge on f(x),- f(x) is known ∀x ∈ (−.55,−.45) ∪ (.45, .55).- f(x) = 0 ∀x /∈ (−di, di). Let d be the interse
tion of the line L and the boundary of thephantom as in �gure 5.1, di = 1.2 × d for the �tight support� 
ase, di = 1.8 × d for the�loose support� 
ase.- f(x) ≥ 0 sin
e it is a density fun
tion.From the measurements we 
ompute- gm(x) ∀x ∈ (−1, 1), 
omputed using the measurements in the DBP formula (3.2).- Rmµ(s, π
2 ), the measurement on the horizontal line L.The re
onstru
tion of f(x) is done by trying to �nd a fun
tion fr in the interse
tion of thefollowing sets:
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Figure 5.2. Left: noiseless re
onstru
tion with only the �tight support� knowl-edge. The display window is [0.874,0.926℄ instead of [0.994,1.046℄. Right: re-
onstru
tion with noise and �tight support� knowledge, display window[0.874,0.926℄
E1 := {f̃ ∈ L2(R) : f̃(x) = f(x) ∀x ∈ (−.55,−.45)∪ (.45, .55)}
E2 := {f̃ ∈ L2(R) : f̃(x) = 0 ∀x /∈ (−di, di)}
E3 := {f̃ ∈ L2(R) : f̃(x) ≥ 0}
E4 := {f̃ ∈ L2(R) : |Hf̃(x) − gm(x)| ≤ ǫ ∀x ∈ (−1, 1)}
E5 := {f̃ ∈ L2(R) :

∫ di

−di

f̃(x)dx = Rmµ(s, π
2 )}Observing that the mentioned sets are 
onvex, the s
heme followed to �nd fr(x) in the in-terse
tion of the Ei is by iteratively proje
ting into them, in the order E2, E4, E1, E5, E3. Theproje
tion operators on the sets above are straightforward ex
ept for the proje
tion on E4. De-note as P4 : L2 → E4 ⊂ L2 the orthogonal proje
tion on E4. This operator takes the followingform [11℄: for f̃ ∈ L2(R) let

ϕ(x) :=

{

Hf̃(x) x /∈ (−1, 1)

max
{

gm(x) − ǫ, min
{

gm(x) + ǫ,Hf̃(x)
}

}

x ∈ (−1, 1)then P4f̃ = H−1ϕ.The methodology des
ribed above is essentially the DBP-POCS method in [11℄.In �gure 5.2 we present the re
onstru
tion obtained if we do not in
lude the a priori knowledge,i.e. without proje
ting on E1. Without the a priori knowledge the re
onstru
ted value of theattenuation fun
tion is shifted and it presents strong low frequen
y artifa
ts, this is a large biasin the re
onstru
tion and is the kind of behavior that usually shows up in the interior problem.Re
onstru
tions in
luding the a priori knowledge, i.e. in
luding the proje
tion on E1, are shownin �gure 5.3. For region C, 
ontained in between regions of a priori knowledge, we observe thatre
onstru
tions are a

urate and stable even with noisy data and only with a loose knowledgeabout the support of the attenuation. In regions B and D the re
onstru
tions tend to be morea

urate near the region of a priori knowledge, and be
omes less a

urate as we move away fromit. Artifa
ts appear towards the region of in
omplete measurements and re
onstru
tion near theregion of in
omplete measurements depends importantly on the knowledge about the support ofthe fun
tion. The quantitative aspe
ts of the re
onstru
tions in �gure 5.3 are also illustrated bypro�les in �gure 5.4.
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Figure 5.3. Top left: noiseless re
onstru
tion with a priori knowledge in Aand �tight support� knowledge. Top right: re
onstru
tion under noise withknowledge as in top left. Bottom left: noiseless re
onstru
tion with a prioriknowledge in A and �loose support� knowledge. Bottom right: Re
onstru
tionunder noise with knowledge as in bottom left. All re
onstru
tions displayed onthe original phantom display window [0.994,1.046℄.The table in �gure 5.5 shows the e�e
t of noisy data for re
onstru
tion, with and without apriori knowledge, in the �tight support� 
ase. We also in
lude the bias of the re
onstru
tion withrespe
t to the original phantom. Namely, let µ(x) be the attenuation fun
tion of the originalphantom, let µr(x) be the re
onstru
tion without noise and let µr,n(x) be the re
onstru
tionobtained with Poisson noise added to the data. On ea
h ROI we 
ompute the standard deviationsand biases as
SDROI =

√

∑

x∈ROI(µr(x) − µr,n(x))2

#{x : x ∈ ROI} , BIASROI =

∑

x∈ROI |µ(x) − µr(x)|
#{x : x ∈ ROI} .We noti
e in �gure 5.5 that all the standard deviations, with and without a priori knowledge,are on the same order of magnitude, while the bias in the re
onstru
tion with a priori knowledgeis mu
h smaller than the bias in the re
onstru
tion without a priori knowledge. We also observethat, going from re
onstru
tion without a priori knowledge to re
onstru
tion with a priori knowl-edge, the standard deviation in regions B and D in
reases by 12% and 15% respe
tively, whilein region C the standard deviation in
reases only by 1.6% (and be
omes about 3% smaller thanthe standard deviations in regions B and D). I.e. for the ROI C, lo
ated between regions of a
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Figure 5.4. Example of a pro�le line of the re
onstru
tion, supp1 and supp2
orrespond to the �tight support� and �loose support� 
ases respe
tively. The�rst graph is noiseless re
onstru
tion, the se
ond graph is the pro�le of noisyre
onstru
tion. With no noise added to the data, the re
onstru
tion with sup-port 1 is very 
lose to the original phantom, ex
ept near the edges; a

ordingly,the 
urves for these two images 
an only be distinguished near the edges.priori knowledge, the re
onstru
tion that in
ludes the a priori knowledge is mu
h more a

uratethan the re
onstru
tion without the a priori knowledge while the standard deviation remainsessentially un
hanged. 6. ExtensionsFor Theorems 4.2 and 4.3 we 
an relax our a priori knowledge on the attenuation fun
tion. Forthe a priori knowledge it is enough to assume that we know µǫ0(x) su
h that |µǫ0(x)−µ(x)| ≤ ǫ0for x ∈ A. In the 
omputations leading to Theorems 4.2 and 4.3 this extra ǫ0 
an be absorbed in
h1,err, and the bounds presented in Theorems 4.2 and 4.3 are still valid if we repla
e ǫ by ǫ + ǫ0.A se
ond extension is with respe
t to the a
quisition geometry assumed in this paper. Weassumed that the measurements were either a
quired in parallel beam geometry or that they wererebinned into a parallel beam parametrization. This assumption was done in order to simplify
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B-ROI C-ROI D-ROI SD and Bias. SD and Bias. �TightOnly �Tight support� support� + µ known in A

B-ROI 2.89× 10
−3 | 0.15 3.32× 10

−3 | 2.09 × 10
−04

C-ROI 3.16× 10
−3 | 0.10 3.21× 10

−3 | 3.74 × 10
−04

D-ROI 2.95× 10
−3 | 0.15 3.30× 10

−3 | 3.58 × 10
−04Figure 5.5. SD shows the standard deviation of the noisy re
onstru
tion withrespe
t to the noiseless re
onstru
tion. Bias shows the average bias of the noise-less re
onstru
tion 
ompared to the original phantom. The size of ea
h ROI is

0.4 × 0.2.the presentation and it is not stri
tly ne
essary. The expli
it parallel beam parametrization wasused only in Corollary 3.2. There is an analogous formula relating the fan beam or 
one beammeasurements to the dire
tional Hilbert transform [24℄. On
e the dire
tional Hilbert transformof the attenuation fun
tion is obtained, the rest of the analysis is the same. An extension to thefan beam geometry is dire
t. Nonetheless, in the 
ase of 
one beam geometry, trun
ation of thedata set 
an take a 
ompli
ated form, and it is not easy to 
hara
terize all the segments alongwhi
h the dire
tional Hilbert transform 
an be 
omputed from the available data.Throughout the paper we have been pi
turing the FOV as a 
ir
ular region. However, as wesaw with the simulation, the FOV does not need to be 
ir
ular; it 
an be re
tangular or it 
antake less regular shapes. Note however, that the FOV will always be 
onvex or the union of
onvex sets [3℄. 7. Con
lusionIn the present paper we studied the interior problem of Computerized Tomography. We 
on-
luded that adding extra knowledge on the support of the attenuation fun
tion, and addingknowledge of the value of the attenuation fun
tion in a subregion of the FOV, the measurementsare enough to uniquely determine the fun
tion all over the obje
t. Additionally, we proved thatany 
andidate re
onstru
tion satisfying the set of 
onditions in subse
tion 4.2 (or the 
onditionsin subse
tion 4.4) has a re
onstru
tion error bounded by equation (4.6) (respe
tively equations(4.7)(4.8)(4.9)(4.10)). These bounds establish that a

urate re
onstru
tion is possible for pointsinside the FOV if they are near the region where the attenuation is known. The same bounds sug-gest that re
onstru
tion be
omes unavoidably unstable as we approa
h the region of in
ompletemeasurements. Last, we showed that re
onstru
tion 
an be stable along any interval in the FOVthat is 
ontained in between two regions where the attenuation is known. All our theoreti
alpredi
tions were illustrated by numeri
al re
onstru
tions using the DBP-POCS method of [11℄.The re
onstru
ted attenuation showed good a

ura
y and stability as suggested by Theorems4.2 and 4.3, thus supporting our results for the interior problem with a priori knowledge.The possibility of stable re
onstru
tion for the interior problem has interesting 
onsequen
esfor the problem of Computed Tomography with trun
ated data. For example, in low-dose 
ardia
CT the region of interest is well inside the patient and image re
onstru
tion on a redu
ed FOVtranslates into a redu
ed radiation dose. The required a priori knowledge about the support of
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tion is easy to obtain, at least loosely (the patient is inside the s
anner).More di�
ult is to obtain the a priori knowledge of the attenuation fun
tion in a subregion of theFOV. Some suggestions are to 
omplement the CT measurements with other imaging te
hniquesor to try to identify a region of tissue or bone inside the FOV for whi
h the attenuation fun
tion
an be guessed with good enough a

ura
y.A 
ase in whi
h the a priori knowledge is not hard to obtain is when performing multipleCT s
ans of the same region in a short period of time. For instan
e, when 
ondu
ting a s
anbefore and after a 
ontrast agent has been administered. With the �rst full s
an the non-dyedattenuation 
oe�
ients are determined, and any region not a�e
ted by the 
ontrast agent is aregion of a priori knowledge for the subsequent s
ans. If su
h a region 
an be identi�ed and we areinterested only in an image of a lo
alized region well inside the body (as in the 
ase of urography),the results of stable re
onstru
tion for the interior problem with a priori knowledge would allowto redu
e the FOV for the subsequent s
ans and therefore redu
e the overall radiation dose onthe patient. 8. A
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ial views of the NIH. 9. Appendix9.1. Appendix A. We say that a fun
tion f is in Cσ(Rn), with 0 < σ ≤ 1, if for any point
x ∈ R

n there exist 
onstants C and δ > 0 su
h that
|f(y) − f(x)| < C|x − y|σ for any y satisfying |y − x| < δ.We say f ∈ C∞(R) if it is di�erentiable to any order.The support of a fun
tion f , denoted as supp f , is de�ned as the 
omplement of the largestopen set in where f vanishes. We say that f ∈ Cσ

0 (Rn) if it is in Cσ(Rn) and also has 
ompa
tsupport. Analogously for C∞
0 (Rn).9.2. Appendix B. Let Ω be the dis
 of diameter (a, c) with −1 < a < c < e < 1 and let

k(z) :=
1

π

[ p.v.∫ a

−1

Hf(t)

z − t

√

1 − t2dt + p.v.∫ 1

e

Hf(t)

z − t

√

1 − t2dt
]

.Assume that
1

π

√

1 − t2|Hf(t)| <

{

M1 for t ∈ (−1, a)

M2 for t ∈ (e, 1)



24 M. COURDURIER1, F. NOO2, M. DEFRISE3, H. KUDO4then for z = x + iy with Re(z) = x ∈ (a, c) we have,
|k(z)| < M1

∣

∣

∣

∫ a

−1

1

z − t
dt

∣

∣

∣
+ M2

∫ 1

e

∣

∣

∣

1

t − z

∣

∣

∣
dt

≤ M1

∣

∣

∣

∫ a

−1

1

z − t
dt

∣

∣

∣
+ M2

∫ 1

e

1

t − x
dt

≤ M1

(∣

∣

∣

∫ a

−1

1

z − t
dt

∣

∣

∣
+

M2 ln
(

1−c
e−c

)

M1

)

≤
√

2M1

∣

∣

∣

∫ a

−1

1

z − t
dt +

M2 ln
(

1−c
e−c

)

M1

∣

∣

∣where the last step is valid sin
e Re( ∫ a

−1
1

z−t
dt

) and M2 ln
(

1−c

e−c

)

M1
are both non-negative.Additionally, for z = x + iy with Re(z) = x ∈ (c, d) we also have

|k(z)| < M1

∣

∣

∣

∫ a

−1

1

z − t
dt

∣

∣

∣
+ M2

∫ 1

e

∣

∣

∣

1

t − z

∣

∣

∣
dt

≤ M1

∫ a

−1

1

x − t
dt + M2

∫ 1

e

1

t − x
dt

≤ M1 ln
( b + 1

b − a

)

+ M2 ln
(1 − d

e − d

)

.9.3. Appendix C. As mentioned in subse
tion 4.5, assuming that (4.11) holds, we want toprove that Aǫ ⊂ Sǫ. The 
onstant ǫ will be proportional to ǫ and E(x) will be a 
ontinuousfun
tion in (a, e) with E(x) ≤ 1 for x ∈ (b, c). Re
all that φ ∈ C∞
0 (R) is su
h that ∫

R
φ(x)dx = 1and supp φ ⊂ (−δ, δ).We are assuming that (4.11) holds, i.e. we assume that

|gm(x) −Hf(x)| < ǫ for x ∈ (a, e) and |Rmµ(s0, α0) − Rµ(s0, α0)| < ǫ (9.1)and given (9.1) we want to prove that the following two 
onditionsHf r(x) − φ ∗ gm(x) = φ ∗ λ(x) for x ∈ (a, e) for some |λ(x)| < ǫ for x ∈ (a, e) (9.2)
|
∫

R

fr(y)dy − Rmµ(s0, α0)| ≤ ǫ (9.3)imply
|h1,r(x) − h1(x)| < ǫE(x) for x ∈ (a, e) with E(x) ≤ 1 for x ∈ (b, c) (9.4)where h1,r(x) (respe
tively h1(x)) are 
al
ulated using equation (4.1) with f r instead of f (re-spe
tively f := φ ∗ f instead of f), and with a := a + δ and e := e − δ instead of a and

e. First we will use (9.1) to eliminate referen
e to the measurements in (9.2) and (9.3). Re
allthat φ ∗ (Hf) = H(φ ∗ f) = Hf and that the 
onvolution is linear. Hen
e (9.2) implyHfr(x)−Hf(x) = [Hf r(x)−φ ∗ gm(x)] + [φ ∗ gm(x)−φ ∗Hf(x)] = φ ∗ (λ(x) + [gm(x)−Hf(x)])and letting λ̃(x) := λ(x) + [gm(x)−Hf(x)] the �rst bound in (9.1) allows us to repla
e (9.2) byHfr(x) −Hf(x) = φ ∗ λ̃(x) for x ∈ (a, e) for some |λ̃(x)| < 2ǫ for x ∈ (a, e) (9.5)
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e (9.3) we use the se
ond bound in (9.1) and the fa
t that Rµ(s0, α0) =
∫

R
f(y)dy =

∫

R
f(y)dy to obtain

|
∫

R

f r(y)dy −
∫

R

f(y)dy| ≤ 2ǫ (9.6)Now we use (9.5) and (9.6) to prove (9.4). Re
alling the de�nition of h1 and h1,r (with the
orresponding substitutions in formula (4.1)) we have
|h1,r(x) − h1(x)| ≤ 1

π
|
∫

R

f r(y)dy −
∫

R

f(y)dy| + | 1
π
p.v.∫ e

a

Hfr −Hf(y)

x − y

√

1 − y2dy|

≤ 2ǫ

π
+ | 1

π
p.v.∫ e

a

φ ∗ λ̃(y)

x − y

√

1 − y2dy| (9.7)and we are left to bound | 1
π
p.v.∫ e

a

φ∗λ̃(y)
x−y

√

1 − y2dy|. Let us write √

1 − y2 =
√

1 − x2 + κ(y, x)with κ(y, x) :=
(
√

1 − y2 −
√

1 − x2
), then

| 1
π
p.v.∫ e

a

φ ∗ λ̃(y)

x − y

√

1 − y2dy| ≤
√

1 − x2
∣

∣

1

π
p.v.∫ e

a

φ ∗ λ̃(y)

y − x
dy

∣

∣ (9.8)
+

∣

∣

1

π
p.v.∫ e

a

φ ∗ λ̃(y)

y − x
κ(x, y)dy

∣

∣ (9.9)In order to bound (9.9) we observe that supy∈(a,e) |φ ∗ λ̃(y)| ≤ supy∈(a,e) |λ̃(y)| ≤ 2ǫ, that
sup(y,x)∈[a,e]×[a,e] |κ(y,x)

x−y
| =: C1 < ∞ and that (a, e) ⊂ (−1, 1), hen
e

∣

∣

1

π
p.v.∫ e

a

φ ∗ λ̃(y)

y − x
κ(x, y)dy

∣

∣ ≤ 4C1ǫ

π
(9.10)In order to bound the right hand side of (9.8) let us de�ne G : R → R as

G(x) :=

{

λ̃(x) for x ∈ (a, e) = (a − δ, e + δ)

0 otherwiseWe have the following properties for G,
φ ∗ G(x) = φ ∗ λ̃(x) for x ∈ (a, e) (9.11)
sup
x∈R

|φ ∗ G(x)| ≤ 2ǫ (9.12)supp (φ ∗ G) ⊂ (−1, 1) (9.13)
[H(φ ∗ G)](x) = [(Hφ) ∗ G](x) (9.14)Sin
e φ ∈ C∞

0 (R) we have that Hφ ∈ C∞(R) and Hφ(x) → 0 as |x| → ∞. Hen
e supx∈R
|Hφ(x)| =:

C2 < ∞ and C2 depends only on φ. With (9.12), (9.13) and (9.14) this implies
∣

∣H(φ ∗ G)(x)
∣

∣ =
∣

∣(Hφ) ∗ G(x)
∣

∣ ≤ C2

∫

R

∣

∣G(y)
∣

∣dy =≤ 4C2ǫ. (9.15)For x ∈ (a, e) we use (9.12) to 
ompute dire
tly that
∣

∣

1

π
p.v.∫

(−1,a)∪(e,1)

φ ∗ G(y)

y − x
dy

∣

∣ ≤ 1

π

∫

(−1,a)∪(e,1)

2ǫ

|y − x|dy =
2ǫ

π

(

ln(
x + 1

x − a
) + ln(

1 − x

e − x
)
)

.(9.16)
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on
lude that for x ∈ (a, e)

√

1 − x2
∣

∣

1

π
p.v.∫ e

a

φ ∗ λ̃(y)

y − x
dy

∣

∣ ≤
∣

∣H(φ ∗ G)(x) − 1

π
p.v.∫

(−1,a)∪(e,1)

φ ∗ G(y)

y − x
dy

∣

∣

≤ ǫ
[

4C2 +
2

π

(

ln(
x + 1

x − a
) + ln(

1 − x

e − x
)
)] (9.17)Finally, putting together (9.7), (9.10) and (9.17) we 
on
lude that for x ∈ (a, e)

|h1,r(x) − h1(x)| ≤ 2ǫ

π
+

4C1ǫ

π
+ ǫ

[

4C2 +
2

π

(

ln(
x + 1

x − a
) + ln(

1 − x

e − x
)
)] (9.18)Let C = 2+4C1

π
+

[

4C2 + 2
π

(

ln( b+1
b−a

) + ln(1−c
e−c

)
)], de�ning ǫ := Cǫ, whi
h is proportional to

ǫ. Let E(x) = 1
C

{

2+4C1

π
+

[

4C2 + 2
π

(

ln( x+1
x−a

) + ln(1−x
e−x

)
)]}, whi
h is 
ontinuous in (a, e) with

0 ≤ E(x) ≤ 1 for x ∈ (b, c). Then (9.18) 
orresponds exa
tly to
|h1,r(x) − h1(x)| ≤ ǫE(x). (9.19)Referen
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