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Using the braid-group formalism we study the consequences of gauge invariance for fractionally
charged anyonic quasiparticles in a two-dimensional multiply connected system. It is shown that gauge
invariance requires multicomponent wave functions, and leads to the emergence of a hidden topological
Z, symmetry with associated quantum number and unavoidable occurrence of level crossings for many-
body eigenstates. In certain situations, it relates the fractional charge to anyon statistics. The implica-
tions for the fractional quantum Hall effect are also discussed.
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Gauge invariance is known to play a fundamental role
in macroscopic quantum phenomena, such as flux quanti-
zation' in a superconducting ring and the integral quan-
tum Hall effect.> However, there is little understand-
ing of its role in the fractional quantum Hall effect
(FQHE),? though some suggestions have been made in
the literature.*® Recently, direct experimental evi-
dence’ has been reported for a quasiparticle of fractional
charge e* =e/3 in the FQHE with the Landau-level
filling factor v= 1, as predicted by Laughlin’s theory.®°
This makes urgent the need for a better theoretical un-
derstanding of gauge invariance for fractionally charged
quasiparticles.

Consider a cylindrical (or toroidal) system with a
magnetic flux @ through the hole. Gauge invariance''’
implies that all physical properties of the system are
periodic functions of ® with the period (flux quantum)
@y =hc/e, where e is the constituent (electron) charge.
The problem is under what conditions can a system of
quasiparticle excitations with fractional charge e* have,
as required by gauge invariance, a (g times, if e* =e/q)
smaller period ®; than the naturally expected ®F
=hc/e*.

To study this problem, we use the braid-group formal-
ism'' on a cylinder'? (or on a torus'®), appropriate for
anyonic'*'® quasiparticles in FQHE.'¢"'® We will show
that if the anyon system is described by a one-component
wave function, there is no period smaller than ®3. How-
ever, with the use of a multicomponent wave function,
we can derive the condition for the existence of a smaller
period, which lends to, in the cylinder case, the emer-
gence of a hidden topological Z, symmetry with associ-
ated quantum number, the n-ality, in the spectrum for
the many-body eigenstates. Here n is the smallest in-
teger satisfying n(e*/e) =integer. On a torus, gauge in-
variance implies a relation between e* and the statistics
6 for an irreducible braid-group representation (BGR),
and in the thermodynamic limit there are two noncom-
muting topological symmetries which lead to the ground-
state degeneracy. The revelation of topological Z, sym-

metry lends strong support to a ‘broken-symmetry”
scenario for the FQHE, proposed by Tao and Wu* some
time ago and refined recently by Thouless.®

According to the path-integral formalism,'' it is the
braid group which plays the same basic role for anyons
as the permutation group for usual bosons and fermions.
The braid group is nothing but the first homotopy group
of the N-anyon configuration space; and the anyon wave
function forms a representation of it. On a cylinder, the
braid-group generators consist of not only the usual o;
(i=1,...,N—1), which interchanges the ith and
(i + 1)th particles, but also of additional p; (j=1,.. .,
N) which represents moving a particle along a simple
loop around the hole once with j—1 particles to its left
(see Fig. 1). These generators satisfy

cioj=cj0o; (iZj*1), o0;0i+10i=0i+10i6i+1, (1)
pipj=pjpi,» oipj=pjoi (i=j,j—1), 0]
Pj+1=0;p;0;. (3)

1D unitary BGR’s are characterized '?> by two parame-
ters 6 and ®:

o; =exp(if) ,
4
p;j=explil26(j — 1) +2me*®/hcl} .

It is easy to see that the minimal change in @ that leads
to the same BGR is ®F. This is compatible with gauge
invariance (the existence of another period @), if and

[ J
/ — P
Py

FIG. 1. Braid-group generators on a cylinder. & is the cen-
tral flux through the hole.
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only if e* is an integral multiple of the constituent
charge e. Conversely, when the anyon quasiparticles
carry fractional charge e*, for the system to possess a
period smaller than ®§, the wave function must have
more than one component. So we are led to consider an
M-dimensional representation for o; and p;. We assume
the anyons obey scalar statistics: o; =e'°I; with I, be-
ing the M XM unit matrix. The representation of p; has
a factorized @ dependence:

p; (@) =expli2ne*®/hc} T, (5)

where T; are ®-independent M XM matrices satisfying
Ti+1=T;e*®. If e*/e=m/n with m,n mutually prime,
a smaller period ® implies the minimal period ®¢/n and
the unitary equivalence of the two BGR’s,

pi(@+®f/n)=p;(@) (j=1,...,N). (6)

It is sufficient to have this only for j =1. Multiplying the
eigenvalues of T by exp(i2n/n) should just shuffle
them, so M must be divisible by n. If M =n, the eigen-
values of 7| must consist of n phases o™ cyclic under
the multiplication of exp(i2z/n): Ay =Ao+2nk/n
(k=0,1,...,n —1) with Ao a constant determined by
the underlying microscopic physics. While reducible as a
BGR, this situation is irreducible under the large gauge
transformation which shifts ® by ®f/n. The form of
p; (@) is thus determined as

p; (@) =expliro+i20(j — 1) +i2nde*/hclw, (1)
with W a diagonal n X n matrix given by
W =diag{l,exp(i2z/n), . .. ,expli2z(n—1)/nl} , (8)

or in an appropriate basis,

01 0

—|i0o -

W=, w1l 9
10 -0

In such a basis, each base state changes into another if
one moves one anyon around the hole once, and returns
to itself after n rounds (up to a possible phase). For a
reducible case with M =nM’', there are M' copies like
this.

Similarly, we can discuss the torus case, in which
anyons require a multicomponent wave function.'>'® If
the latter forms an irreducible BGR, gauge invariance
relates the anyon charge to its (scalar) statistics 6. In
fact, for anyons on a torus with o; =e°I,;, (8/n)®§ is
always a period for ®. Note that on a torus, besides o;
there are generators t;,p; (i=1,...,N) corresponding
to moving the ith particle along one of the fundamental
noncontractible loops, as shown in Fig. 2. They satis-
fy,'>?% among other relations,
2i6

niy1=te ¥ piy1=pie?®, (10)

and 7; (p;) have a factorized ®, (®,) dependence as in
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FIG. 2. Braid-group generators p; and z; on a torus.

(5). Changing @, by (6/7)®¢ just gives rise to a phase
factor exp(2i6), which shifts 7; to 7;—. This only turns
the BGR into an equivalent one and therefore does not
alter any physical properties. For an irreducible BGR,
M =q for 6=r(p/q) with p and g mutually prime, there
are no other periods and the minimal period is ®¢/q. So
the period @y required by gauge invariance must be an
integral multiple of the latter, and therefore e*/e =m/q
with integer m. If the anyon charge does not satisfy this
condition, one has to use a collection of copies of the
same g-dimensional irreducible BGR. For the case irre-
ducible under gauge transformations, the number of
components of the wave function has to be M =ng,
where n is the “denominator” of e*/e, and the minimal
period of ® is /L, where L is the least common multi-
ple of n and gq.

The above conditions have very profound physical im-
plications. First, let us consider the cylinder case. For
fractionally charged quasiparticles to exist, their wave
function has to have n components with » > 1. To speci-
fy their many-body states, besides the positions one
needs an extra index, the index of components (or
“sheets”) s (=1, ...,n). We emphasize that this index
generally is not associated with individual quasiparticles.
Equation (7) shows that the operation of moving one
anyon (with others held fixed) around the hole is given
by, up to some phase, the winding operator W which acts
on the sheet indices. Note that W" =1, so its eigenvalues
are n cyclic like Z,. Normally the Hamiltonian H, no
matter how complicated it may be, with various interac-
tions, impurities or defects, or external field all included,
involves only the coordinates (or other degrees of free-
dom like spin) of individual particles, but not the sheet
index s of the many-body wave function. So H always
commutes with W, even if the tunneling process involv-
ing the creation and annihilation of a virtual pair of
quasiparticle and quasihole propagating across the
cylinder is included. So the eigenvalues of W,
exp(i2nk/n) or simply k(modn), give us a good quan-
tum number, the so-called n-ality, for the many-body en-
ergy eigenstates.

Because the (k,®) dependence of the eigenvalues of p;
is through the combination ®+k®¢ /n, the energy or any
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physical property satisfies
Ek,®,{a}) =f(@+kdF/n,{a}), (1)

where {a} is a set of usual quantum numbers. Thus the
energy spectrum is actually a collection of n sectors, each
corresponding to a one-component system with a central
flux differing from each other by &g /n, and therefore ad-
mits a smaller period &g /n.

Moreover, (11) implies the existence of level crossings
or spectral flow, since the energy E (k,®,{a}) with {a}
fixed is not necessarily a function of ®+kdF/n with
period ®¢/n. Because the topological n-ality is a good
quantum number that can never be violated by impuri-
ties, defects, or whatever, a gap can never be open at the
level-crossing points unless the two levels involved have
the same n-ality. This unavoidableness of level crossing
violates the Von Neumann-Wigner theorem,?' which as-
serts that generically levels do not cross when two pa-
rameters in a complex Hamiltonian are varied. Indeed
this theorem is not applicable here, because we have a
topological quantum number which does not exist generi-
cally.

A numerical result showing the pattern of level cross-
ings is given by Fig. 3. (The details will be presented
elsewhere.?®) Note in particular that the three lowest
levels flow into each other with a period L but for each
fixed level the period is 3 times larger. Though this kind
of pattern is not typical for an anyon system, there are
good reasons to believe that the ground states of a cylin-
drical FQH system have such a pattern of level cross-
ings. First, we argue that the ground state of a cylindri-
cal FQH system must also carry a topological n-ality k,
since it exists for each excited state containing fraction-
ally charged quasiparticles but is not associated with
individual quasiparticles. Furthermore, at least when
v=1/q (q odd), the energy of a given ground state

Energy

FIG. 3. Spectral flow of a three-anyon system on a 3% 3 cy-
lindrical lattice. The statistics is #/5 and the charge is /3.

should be periodic in the flux with period ®§ =ghc/e, as
Thouless recently has shown® for the Laughlin state on a
sphere with two small holes at the poles. Then the ex-
istence of a period ®y=®¢ /g implies that each time &
changes by @, there is a ground state equivalent to the
original one. Hence there must be a group of ¢
equivalent ground states whose energies depend on flux
® and flow into each other, in a manner like the lowest
three levels in Fig. 3. Each of them has a different g-
ality. Since the topological Z, symmetry prevents tran-
sitions between the equivalent ground states, energy-level
repulsion can never happen and level crossing will persist
even in the presence of impurities, defects, and so on.
Such a scenario is essentially what was proposed by Tao
and Wu* several years ago and recently refined by Thou-
less.® This has been shown by Niu, Thouless, and Wu??
to be sufficient to give the fractional quantization of the
Hall conductance in the topological approach. We have
a broken symmetry in the sense that originally one would
expect that the winding operator W is proportional to the
unit matrix, but actually it has unequal eigenvalues. The
previous failure to uncover this quantum number is due
to the fact that it does not exist on a disk or sphere.

A consequence of our results is that the v=1/qg FQH
edge states on a cylinder must, like the bulk states, carry
a Z,-like quantum number, as pointed out by Wen?? in a
different approach.

When put on a torus,?* the Laughlin states for v=1/g
with g odd correspond to an irreducible BGR.'? So from
gauge invariance alone we can infer that the fractional
charge of quasiparticles must be an integral multiple of
e/q. In the torus case, we have two noncommuting wind-
ing operators W, and W,, similar to (7), respectively,
corresponding to moving an anyon along different funda-
mental loops.?> (W ,W,=W,We%° since 7, and p,
satisfy a similar relation.'®) They are not symmetries of
a finite system: Because of tunneling of virtual quasipar-
ticle and quasihole pairs across the torus, H should con-
tain terms proportional to W, and W,. But such terms
are negligible in the thermodynamic limit,?® so we have
two noncommuting symmetries, and the spectrum has
g-fold exact degeneracy for each level of anyons. As ar-
gued before, we expect the same is true for the electronic
ground states that can support fractionally charged
anyonic excitations. Note that our topological sym-
metries giving rise to the ground-state degeneracy are
not the magnetic translation operators proposed in the
literature: 2?7 The latter can be broken by impurities,
but ours cannot.

In summary, we have shown that gauge invariance im-
poses significant constraints on the structure of the Hil-
bert space and the spectrum of a system if it supports
fractionally charged (anyonic) excitations. The fascinat-
ing consequences include the necessity of multicom-
ponent wave functions, the emergence of hidden topolog-
ical Z, symmetry with associated quantum number (the
n-ality) for many-body eigenstates, and the unavoidable
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occurrence of level crossings. In certain situations,
gauge invariance relates the fractional charge to anyon
statistics. Our topological discussion is quite general and
model independent, but does not tell what underlying
dynamical mechanism will give rise to the spectrum re-
quired by gauge invariance. Finally, it would be in-
teresting to speculate on the possible relevance to quarks,
which are also fractionally charged and carry a triality.
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