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We present a careful construction of anyons on a torus starting with the braid-group analysis.
The rules of Wen, Dagotto, and Fradkin for putting anyons on a torus are reproduced with some
minor improvements. The existence of noncontractible loops leads to braid-group representations
characterized not only by anyon statistics 6 but also by the magnetic fluxes ®, and ®, threading
through the holes of the torus. The three parameters are tangled with each other. We explore the
symmetries of the torus to separate the effects of ®, and @, from those of 6. It is shown that the
anyon system always has a smaller period /7 in ®, and @, than the natural period 1. We perform
several numerical calculations to investigate the spectral flow and consistency of the method and
find interesting features in the spectral flow, which are relevant in understanding the fractional

quantum Hall effect.

I. INTRODUCTION

Phase factors of wave functions present a delicate
problem in quantum mechanics. Typical examples are
the Aharonov-Bohm effect' and Berry phase,? where the
phase of the wave function on a topologically nontrivial
space plays a crucial role. In the path-integral formula-
tion, the statistics phase factors characteristic of a many-
particle system originate from the nontrivial topology of
the many-particle configuration space.>* They form a
representation of the fundamental group of the latter. In
three or higher dimensions, the allowed statistics is either
Fermi or Bose statistics. In two dimensions, however,
fractional statistics is allowed.>”7 Particles obeying frac-
tional statistics are called anyons. When two anyons are
interchanged, the wave function of the system gets a
complex phase e¢? (6 is the statistics parameter). This im-
plies that the system breaks parity and time-reversal sym-
metries even in the absence of an external magnetic field.

The realization of fractional statistics is first recog-
nized in the fractional quantum hall (FQH) effect where
there is a strong magnetic field perpendicular to the two-

dimensional sample,® as explicitly demonstrated by Aro-
vas, Schrieffer, and Wilczek.® The discovery of high-
temperature superconductivity brings a renewed interest
in strongly correlated electron systems. Recently, the
possibility of realization of anyons was argued by Laugh-
lin and co-workers'®”!2 who proposed that anyons play
an important role in high-T, materials. It is argued that
the doped holes in these materials behave as semions
(6=m/2), and mean-field theory with random-phase-
approximation fluctuations predicts that the ground state
of the anyon system is a superfluid.’>~!® Although it is
not clear yet whether anyons are relevant to real high-T,
materials, the behavior of an anyon system is a very in-
teresting problem to investigate at least theoretically.

For a two-dimensional system, the fundamental group
of the many-body configuration space is the braid group.
The structure of the braid group crucially depends on the
topology of the system. The planar case is the simplest,’
and the spherical case was first discussed by Thouless and
Wu!7 several years ago. Recently, Einarsson'® discussed
the braid group on a torus and showed that fractional
statistics (with 60, 7) on a torus is consistent only with
multicomponent wave functions (see also Ref. 19 for a
Chern-Simons theory). There are studies of anyons on an
annulus,?®?! and the present authors discussed the braid
group on an annulus and a cylinder in a previous paper.?
The structure of the braid group determines the allowed
statistics,!”'®22 and in some cases it determines the num-
ber of components of the anyon wave function.!® The
braid-group representation also determines the period of
spectral flow as a function of the flux threading through
noncontractible loops. If we consider gauge invariance
for fractionally charged excitations in an electronic sys-
tem, the braid-group analysis leads to some strong re-
striction on the number of components of the effective
wave function of the excitations.?’

Wen, Dagotto, and Fradkin?* recently proposed how
to put anyons on a torus. In the present paper, we explic-
itly construct anyons on a toroidal lattice by starting
from the braid group. The resultant rules to define
anyons are basically the same as those of Wen, Dagotto,
and Fradkin, but our derivation from the first principles
has the advantage of assuring their internal consistency,
which was not rigorously proved in Ref. 24.

Similar to the situation on a cylinder,?? the existence of
noncontractible loops on the torus leads to the appear-
ance of additional generators in the braid group corre-
sponding to moving an anyon along the noncontractible
loops. This in turn requires more parameters to fix the
braid-group representation, which can be identified as, in
the case at hand, the central fluxes ®, and ®, threading
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through the two holes of the torus. How do the physical
properties of the system depend on these fluxes? Using
the braid-group analysis, we will show that in addition to
the usual unit period for ®, and ®,, for anyons on a
torus with statistics 0, there is a smaller period given by
6/m. If 6=mp /q with p and ¢ mutually prime, then the
smallest period is actually 1/g rather than 1. So we are
led to expect, for example, that the energy spectrum of
anyons on a torus exhibits a period of 1/g in ¥, and P,.
Since in general a given energy level does not necessarily
have this period (it may have a larger period), we natural-
ly expect the emergence of spectral flow or level crossing,
in particular the rearrangements of energy levels as &,
and @, change by 1/q. These expectations are confirmed
by our numerical studies. The discovery of a smaller
period in the central fluxes, which is closely related to the
statistics of the anyons, is one of the main results of this
paper.

With our explicit construction, we perform several nu-
merical calculations to investigate the spectral flow and
to confirm the consistency of the method. We find in-
teresting features in the spectral flow which may have
special importance in the FQH effect.

In Sec. IT we first give a review of the relation of the
braid group to many-body quantum mechanics and then
derive several new results on the @, (®,) dependence of,
say, the energy spectrum of toroidal anyon system. In
Sec. III we show the explicit construction (rule) of the
anyons on the lattice with toroidal topology. The numer-
ical results are shown in Sec. IV. Discussions and sum-
mary are given in Sec. V.

II. BRAID GROUP ON A TORUS

Statistics in quantum mechanics can be clearly de-
scribed by the path-integral formulation.*>” The statis-
tics is a weight (phase factor) in the path integral con-
sistently assigned to each homotopy class of paths in the
many-body configuration space. In this sense, statistics is
determined by the representation of the first homotopy
group (fundamental group) of the configuration space. In
three and higher spatial dimensions, the fundamental
group of the many-particle configuration space is a per-
mutation group. Its one-dimensional representation cor-
responds to Fermi statistics or Bose statistics and the
higher ones to parastatistics.”> The fundamental group of
many-particle configuration space on a two-dimensional
surface is the braid group. One-dimensional representa-
tion of the braid group yields fractional statistics. Name-
ly, the scalar anyon wave function obeys the one-
dimensional representation of the braid group for the sur-
face on which it is defined. For anyons on a torus, we
have to use a representation whose dimension is larger
than one. In this case the anyon wave functions must
have more than one component.!®

The braid group By(S) for N anyons on a surface S is
the first homotopy group of the N-anyon configuration

space:
Cy=(SX - -+ XS—D)/Sy, (2.1

where, because of the hard-core nature of anyons, one has

YASUHIRO HATSUGAI, MAHITO KOHMOTO, AND YONG-SHI WU 43

to exclude the subset D ={(r,...,ry)|r,=r;,3i#}}
representing configurations with at least two of the parti-
cles located at the same site and Sy is the permutation
group of N particles which represents their indistingui-
shability.

The braid group on a torus is discussed by Birman?® in
detail. Its generators consist of & j» Pj, and T iz The
local-exchange operator &; (i =1,...,N —1) represents
an interchange of ith and (i + 1)th particle counterclock-
wise with no particles in the enclosed region. These gen-
erators are known to satisfy the following relations:

(i#jtl),

26

5,6;,=5,0; 2.2)

0i0;410,=0;410,0,4, - 2.3)
On the torus there are two kinds of additional operators
p; and 7; (j=1,...,N) which represent moving anyons

along noncontractible loops as shown in Fig. 1. These
generators satisfy

P;+1=0,p;0; , (2.4)
T, 1=0; 7,0, . 2.5)

(For the complete set of relations, see Birman.?%)

For & ;, the simplest representation is o =¢ % (for all j)
as usual, and one can interpret 6 as the anyon statistics.
(If the braid-group representation is M dimensional, this
means o ; is e'? times the M X M unit matrix. Such repre-
sentations describe the so-called scalar statistics in the
cases with M >1.) Then (2.4) and (2.5) imply that the

representations of p; and 7; satisfy

pj+1=p,exp(i20) , (2.6)
T;y1=7exp(—i20) . (2.7)
Using (2.6) and (2.7) repeatedly, one obtains
p;=piexp[i20(j —1)], (2.8)
7;=7exp[ —i20(j —1)] . (2.9)

J

To fix the braid-group representation, one needs to fix p,
and 7,. This implies that the existence of the generators

FIG. 1. Braid-group generators p; and 7; on a torus.
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p;and 7, requires additional parameters, in addition to 6,
to identify a braid-group representation on the torus.
Physically, this is not surprising since the existence of the
noncontractible loops makes it necessary to consider the
Aharonov-Bohm effect, that is, the effects of central
fluxes @, and @, threading through the holes (see Fig. 1).

We include the effects of these fluxes by setting
(2.10)
2.1

where W, and W, are M XM matrices with M being the
dimension of the representation. Thus p; and 7; are
given by

T1=exp(i2m® )W, ,
p1=exp(i2m® )W, ,

7= Wexp{i[ —20(j —1)+27d, ]} , (2.12)

p;j=W,exp{i[20(j —1)+27®,]} . (2.13)
Other useful relations for p; and 7; are'®2

mp;=p;Tie?? (i#j)), (2.14)

Tipy=piTie T2ON=D 2.15)
These relations together with (2.6) give

exp(i26N)=1 . (2.16)

This is one of the conditions that relates the allowed
values of 6 to the total anyon number N. By taking a
determinant of (2.14), one sees that 0 is also restricted by

exp(i26M)=1 . (2.17)

For an irreducible representation, M must be the
minimum integer which satisfies (2.17). If we set
6=mp /q with mutually prime integers p and g, we obtain
M =q.

To completely determine W, and W, let us consider
symmetries of the torus. If &, =®, =0, there is the x-y
symmetry; that is, the system is invariant if one ex-
changes x and y axes. This implies that we can transform
W, to W, by a unitary transformation so they are uni-
tarily equivalent. Thus the sets of the eigenvalues of W,
and W), should be the same. Also, (2.14) and (2.15) give a
relation between W, and W, as

W.W,=W,W,.e?. (2.18)
To satisfy these relations, in an appropriate basis, W, and
W, must be of the following form:

01
P00 .
= ’g . .
WezePlo o 1)
cl+‘r] 0
) 0 CZ+77
W,=e't o | (2.19)
0 cetm
i20

where ¢ =e'“” and 7) is an arbitrary integer. The origin of

10 763

the physical flux is determined by . The torus has a ro-
tational symmetry in the three-dimensional space which
reverses the direction of ®, and ®,. By the same rota-
tion, the orientations of the loops which represent p; and
7; also get reversed. Note that the effects of o ;’s are un-
changed by the operation. So we require the following
two equivalences:

(@) =Tyl (=D, , (2.20)

pj(®,)=pyL .  (—@,). 2.21)
From (2.20) and (2.21), we get

W, =w.1, (2.22)

cTw, =W, (2.23)

The equivalence requires that the two matrices have the
same set of eigenvalues. The eigenvalues of W, and W,
are given by {e'®c/|j=1,...,q}. Since c is given by
c=e?=exp(i2nmp/q), we have cW,~W, and
c—lWy:Wy. Also {c/[j=1,...,q} is equal to
{c7/|j=1,...,q}) as a set. Thus we can get the equality
for the two sets from (2.22) and (2.23):

{ebcle®c?, ... e
={e il e Tic2 . ,e“"gcq} . (2.29)
This implies that
£=0 or % modzf (2.25)

We cannot further resolve this ambiguity by this con-
sideration. In the numerical calculations below, we take
£=0. The form of (2.19) has been obtained previously in
Ref. 18, but the constraint (2.25) on £ is a new result of
this paper.

In the expression of W, in (2.19), we can get an
equivalent representation by taking a different 5. This
means that changing 7 is a gauge transformation, and it
does not affect the physical quantities. To change 7 to
n+1 corresponds to changing ®, to ®,+6/7. This
means the period of the flux is reduced to 1/¢q [recall that
the original period for the phase factors in (2.10) and
(2.11) is 1]. Thus all the physical quantities are periodic
functions of ®, and ®, with a period 1/g. For example,
an eigenenergy E, must satisfy

E,(®,,®,)=E, |®, +l,<1>y J

q

=E, {(Dx,fby +1. (2.26)

q9

The existence of a smaller period in ®, and ®, than
the natural period of one looks a bit surprising at first
glance. Here we give another proof for this result which
makes it physically more understandable. Geometrically,
because of the periodic boundary conditions on a torus,
there is intrinsically not any difference between the two
loops corresponding to, say, p; and §;, ;. However, their
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representation matrices p; and p; ,, are not identical, but
related to each other by (2.6). The only way that (2.6) can
be consistent with the geometrical periodicity mentioned
above is that p; and p; ,; are unitarily equivalent to each
other; this can be directly verified for the explicit expres-
sion of p; given by (2.13) and (2.19). On the other hand,
(2.13) implies that if we shift ®, by an amount 6/, then
p; changes into p; ., and we obtain an equivalent repre-
sentation, which describes exactly the same system.
Therefore, any physical property of the anyon system is a
function periodic in ®, with period 1/q if 6=mp/q. In
Sec. IV numerical results will be shown to confirm the ex-
istence of this small period.

When we consider the ground-state energy, there is
another symmetry. As discussed later,the Hamiltonian of
the system depends on 7;(®,) and p;(®,). The
Schrodinger equation is

H(®,,®,)¥V(®,,0,)=E (O, d,V(D,,d,) . (227

The dependence on @, and @, is due to that of 7,(P,)
and p;(®,). Let us take a complex conjugate of 7,(P,)
and p;(®,) in (2.12) and (2.13). We can also show that
Wi~W, and Wy ~W, both for §=0 and 7/g. Thus we
have

H(®,,®,)*=H(—d,—d,) . (2.28)

If we take a complex conjugate of (2.27) and consider that
E(®,,®D,) is real, (2.28) means that

E(®,,®,)=E(—®,—®,) . (2.29)
Again, this is consistent with the rotational symmetry of

the torus in three-space which reverses the sign of both
P, and P,.

III. PUTTING ANYONS ON A TORUS

To investigate anyons on a torus numerically, one has
to be able to define anyons on a two-dimensional lattice
(we consider an L, XL, lattice) with periodic boundary
conditions for both x and y directions. The guiding prin-
ciple for doing this is to produce necessary phase factors
for all noncontractible loops in the many-body
configuration space which are consistent with the braid-
group representation. Wen, Dagotto, and Fradkin?* pro-
posed a set of rules for putting anyons on a torus by clev-
er guesswork and performed several consistency checks.
But they were not able to prove rigorously the internal
consistency of their rules. Our construction, while giving
basically the same rules as theirs (with some minor im-
provements), clarifies the origin of the rules from the
braid group point of view. This not only makes some
peculiarities understandable, but also provides a theoreti-
cal proof for the internal consistency. We have previous-
ly constructed several sets of rules to define anyons on a
lattice with annulus or cylinder topology.?! The idea is to
combine two different sets of rules on the annulus for
noncontractible loops in the x and y directions of the
torus.
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A. Hamiltonian and M-component basis
The Hamiltonian of the anyon system is given by
i6,.
H=-—3Y chel Ue;+H.c. ,
ij)
where the summation is over the nearest neighbors and c;
is the hard-core boson operator at site i,'* satisfying

[c,»,c;r]=8

(3.1

(3.2)
(3.3)

The phase factor 6;;=—6; is defined on the link (i,j),

and it is determined by the string rule explained in the
following subsection. Here we may identify 6;; as

ij »

c,-TciTz .

2me*
— | TA-dl,
ch fl d

where A is a total vector potential; the quantity
1 _e*
Py 9,~j—jh‘iﬁas A.dl

around §

1
Y J,B-as

is the total (statistical plus real) magnetic flux through

C

the area S in units of the flux quantum ®5=——. In

e
these expression e* is the charge of anyons. In Secs. II,
I11, and IV, we take ®5=1.

The Hilbert space of the system is spanned by the basis
with base vectors labeled by the positions of the particles
and with an extra component index

{r,Tp 5Ty ]Lk) (K=1,2,...,M), (3.4)

where r; is the two-dimensional coordinate vector of the
Jjth particle and k specifies the component. Here the or-
der of 1, is irrelevant in this basis. For a one-component
wave function (used in the annulus or cylinder geometry),
the basis is just given by |{r,T,,. . ., Ty} ). We may inter-
pret (3.4) as M copies of one-component bases. We may
call the index k as a sheet index in this sense. From (3.1)
we can determine hopping matrix elements between the
base vectors (3.4).

B. Explicit construction of the string rule

Since the rule for incorporating the fluxes ®, and @, is
well-known, here we only discuss the rules with
@, =®,=0. We define the anyon system by an appropri-
ate assignment of the phases 0;;, which should be con-
sistent with the braid-group representation we discussed
before. Such an assignment of 6;; can be obtained by as-
signing strings as follows. Assign to each anyon located
at, say, the site (m,n) a vertical 6 string from the adjoin-
ing plaquette (m+1+6n, n—1) to (m+3++dn, )
where it is turned into a horizontal 26 string which al-
ways ends at the one and same point (L, + 1, 1) as shown
in Fig. 2. Here & is an infinitely small positive number to
avoid the ambiguity in the positions of the vertical strings
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CutB

Particle
Flux tube

0 String

20 String

Periodic boundary condition along x direction

FIG. 2. String rule to define anyons on a toroidal lattice which satisfies the requirement of the braid-group representation.

when several particles have the same x coordinate. If an
anyon hops from left to right across such a vertical 6
string, the change in phase is given by e **% the hopping
in the opposite direction across the string would give rise
to an opposite phase e "% If a @ string sweeps an anyon,
we determine the phase factor as if the anyon crosses the
6 string. If an anyon hops upward across a 20 string, the
change in phase is given by e *'2%, and if it hops down-
ward, the change in phase is given by e ~'2%, In addition
to giving o j=ei9, these 6 and 20 strings are designed so
as to satisfy (2.6) and (2.7).

To realize an M-dimensional representation for g; and
7; fully, we have to put two cuts as shown in Fig. 2.
First, we consider the generators g j’s. The representation
for p; is diagonal as shown in (2.13) and (2.19). This im-
plies that when an anyon hops across the cut 4 upward,
the sheet index of the wave function does not change, but
the phase change depends on the sheet index k of the
state and is given by ¢¥ T7=¢/20k+7)  Thys we assign to
the cut A the phase factor

exp[i26(k +7)] . (3.5)

We have to note that there is an important correction
for hopping in the y direction across the horizontal
boundary at y =Ly +%. In this case, we have to add an

i6(X, —1)

m

additional phase factor e , where X, is the num-
ber of particles which have the same x coordinate m as
the particle that goes across the boundary. Necessity of
this correction originates from the ordering the vertical 6
strings of the particles having the same x coordinate ac-
cording to their y coordinates, exactly the same as in the
annulus case discussed in our previous paper.?? This
correction rule improves that of Wen, Dagotto, and
Fradkin (Fig. 11 in Ref. 24).

Next, let us consider the generators 7;’s. The represen-
tation for 7; shown in (2.12) and (2.19) is not diagonal in

the sheet index. In accordance to the form of the matrix
W, shown in (2.19), we require that when the particle
hops across the cut B from left to right, the index k de-
creases from k to k —1. Furthermore, we assign e~ ~1?
to such hopping to compensate an unphysical contribu-
tion to @, from anyon fluxes. This point is explained in
detail in our previous paper?’ where this correction is
used to define “rule B for the anyon system on an an-
nulus. (This correction is not mentioned in Ref. 24.) The
effects of the cut B are

|k(sheet index)) —|k —1) ,
exp[i(N —1)0] .

(3.6)
3.7)

From these rules on the torus, it seems that there is a
finite flux tube at the end point O of the strings (see Fig.
2). One can, however, check that this is not so. Consider
moving a particle around O along a clockwise loop as
shown in Fig. 3. We assume the original sheet index is k.

CutB

Te . .
O C
® L f
‘) r‘\I T I
‘l III

11

hd
O)
(

O)

Cut A

III
FIG. 3. Effect of the end point of the strings.
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In process I the change in the phase is ¢®¥ 1 and the
sheet index becomes k —1. In process II the phase
change is e 20k +71=1 pecause the sheet index is de-
creased to k — 1. In process III the sheet index returns to
k and the phase change is e "%~V ~1_ In the last process
1V, the phase change is @120k +1) 5 120N =1 where the
first factor comes from cut A and the second factor
comes from the 26 strings of the remaining particles.
Thus there is no net change in sheet index and the total
change of the phase is e %Y, which is 1 due to (2.16).

IV. NUMERICAL RESULTS

We treat an L, XL, finite-size system with N particles
by an exact diagonalization and denote it by L, XL, /N.
For a small system, we use the usual packages of a com-
bination of the Hauseholder method (to get eigenvalues)
and the bisection method (to get eigenvectors). We can
get all the states for a small system such as 3X3/3. For
a larger lattice, we also use the Lanczos method to obtain
eigen energies. We calculate not only the ground-state
energies, but also excited energies as a function of ®, and
D,.
Write 6=mp /g, where p and g are mutually prime in-
tegers. We calculate many cases with different choices of
6 and N. Here we present some typical examples. In Fig.
4 we set @, to be zero and show the energies as a func-
tion of @, (a) for 77'% statistics in the 3 X3 /3 system, (b)
for 7 statistics (semion) in the 3X3/4 system, and (c)
for 72 statistics in the 3X3/7 system. They show that
the spectrum is indeed invariant if we change ®, to
@, +1/q. The period of each level, however, is generally
neither 1/g nor 1. in some cases [Figs. 4(a) and 4(b)],
several levels are separated from the other levels; that is,
there is an energy gap between a set of low-lying states
and others. One can see that there are always at least g
equivalent states which transform into each other when
@, changes to ®, +n/q. The degeneracy of each level is
at most 2, and we do not observe the g-fold degeneracy
claimed by Wen and Niu?’ from an effective theory of the
FQH effect on the torus. Presumably, the g-fold degen-
eracy is lifted by the finite-size effect discussed by them.

We show the ground-state energy versus (®,,®,) plot
in Fig. 5. The energy diagram is symmetric under ex-
changing ®, and @, or under reversing the sign of both.
It is consistent to the braid-group consideration in Sec.
I11.

V. SUMMARY AND DISCUSSIONS

In this paper we have presented a careful construction
of anyons on a torus starting from the braid-group
analysis. Our main concern is the relationship to the
braid group on the torus and the topological features
arising from the existence of noncontractible loops.

To define a representation of the braid group on the
torus, we have to include the central fluxes ®, and ®,.
A braid-group representation is characterized by three
parameters (6,P,,P,), and they are tangled with each
other. We have explored the symmetries of the torus to

YASUHIRO HATSUGAI, MAHITO KOHMOTO, AND YONG-SHI WU 43

Energy

Energy

Energy

0.00 0.20 0.40 0.60 0.80 1.00

FIG. 4. Spectral flow in anyon systems with (a) 3X3/3 and
6=1m/3, (b) 3X3/4 and 6=mw/2 (semion), and (c) 3X3/7 and
0=2m/17.



43 ANYONS ON A TORUS: BRAID GROUP, AHARONOV-BOHM . ..

Spectral Flow

-8.0
-8.1
-8.2

-8.3
-8.4

0

FIG. 5. Spectral flow in 3X3/4 and 6= /4 anyon system as
a function of (®,,®,). It shows that there are symmetries:
E(®,,®,)=E(—®,,0,)=E(D,,—®,)=E(D,,D,).

separate the effects of the physical flux ®, and @, from
those of 8. We also conclude that the physical observ-
ables are invariant under changing both signs of ®, and
®,. Though our Eq. (2.29) is consistent with the general
consideration of Byers and Yang,?® the argument for it is
different. They have explored the time-reversal symme-
try which is no longer true for anyons. Instead, we ex-
ploited the rotational symmetry of the toroidal geometry
in three-space.

Let us explicitly introduce the flux quantum
®5=hc/e* in the following. We have calculated the
spectral flow for several small systems. The spectrum re-
turns to itself when we change ®, to &, +(p/q)®; be-
cause of the new gauge invariance of the representation
of the braid group under changing 7 in (2.19). Physical-
ly, this can be easily understood, at least in the limiting
case in which hopping matrix elements across the bound-
ary at (L,,j,)—(1,j,) are infinitesimally small. In this
case, the effect of 7,’s is negligible and the system is
essentially ¢ decoupled copies of an annulus. The g annu-
luses have different twisted boundary conditions specified
by W, in (2.19); that is, the kth sheet feels a 26(k +7) ex-
tra flux through the hole of the annulus. This means that
the origins of the ®, for the kth and (k + 1)th annuluses
differ by ®3p /q and explains why, at least in this limit,
the system has an invariance under changing ¢, by
o5 /q.

Furthermore, we note that the ground states we ob-
tained from our numerical calculation are not always g-
fold degenerate, but this is not in conflict with the expec-
tation that the ground state is at least g-fold degenerate
by an effective-field-theoretical argument.?’” This is be-
cause our results are for finite anyon systems, but the
effective-field-theory argument is applicable only in the
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thermodynamic limit. To define the thermodynamic lim-
it, we have to treat a fixed-density system; that is, we
have to treat more particles when we consider a larger
system and consider the energy per particle. In this limit,
it is natural to expect the effects of the twisted boundary
condition become negligible. This implies that there is no
spectrum flow for energy per particle [the (E /N)-® dia-
gram becomes horizontal lines] and the g sheets described
above should give the same energy per particle; that is,
the ground state is g-fold degenerate in the thermo-
dynamic limit.

Finally, let us consider the relation of our results to the
fractional quantum Hall (FQH) effect. When the Landau
level filling is v=1/gq, it is widely believed that excita-
tions of the system are quasiparticles which have frac-
tional charge e*=e/q and statistics =m1/g.%%%%%
Our consideration discussed above holds correct even if
there is a strong magnetic field. There are two types of
gauge invariance in this system. The period ®§ implies
the gauge invariance of the fractionally charged quasipar-
ticle. We note that in this case the period ®§/q=®,
coincides with that for gauge invariance of the constitu-
ent particle (the electron). Otherwise, we have to intro-
duce other excitation to recover the gauge invariance.
We have discussed the situation in detail for the annulus
system in previous article.?®

Using the argument that there are two kinds of gauge
invariances, we can discuss the FQH effect in the way of
Laughlin® and Halperin®® for the integral case. Our con-
sideration has been for a torus; however, we may treat an
annulus as a limiting case of it as discussed above. An ar-
gument for the FQH effect by the gauge invariance for
electrons was proposed by Tao and Wu?! and refined by
Niu, Thouless, and Wu3? and by Thouless.’> We follow
this argument from the anyon’s point of view. It is
known that the quasiparticles in the FQH system with
the filling v=1/q are anyons with e*=e /g and 6=1/q.°
Let us assume that the Fermi energy lies in a gap caused
by the strong magnetic field. The FQH system has the
property that when we increase the central flux by
AD=d§ [with @ determined by the anyon (quasiparti-
cle) charge e*}, the system returns to its original state.
Since ®f is exactly an integral multiple (g times) of the
period @, determined by the electron charge (®,=hc /e),
the topological arguments presented in Ref. 32 guarantee
that exactly n electrons are transported across the poten-
tial difference V,. (Note that the transported particles
are not anyons but electrons because the anyons are only
quasiparticles in the FQH effect.) Thus the change in en-
ergy is given by AE=neV,. We use a formula for the
current by Byers and Yang:?®

I=c£.

v (5.1)

It implies that Hall conductance may be fractional as

0. =

n
noe” (5.2)
Xy q h



10 768

ACKNOWLEDGMENTS

Y.S.W. acknowledges financial support from the Japan
Society for Promotion of Sciences and the warm hospital-

YASUHIRO HATSUGAI, MAHITO KOHMOTO, AND YONG-SHI WU 43

ity at the Institute for Solid State Physics, University of
Tokyo, which made this collaboration possible. His work
was supported in part by U.S. National Science Founda-
tion Grant No. 8706501.

ly. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).

2M. V. Berry, Proc. Soc. London, Ser. A 392, 45 (1984).

3M. G. G. Laidlaw and C. M. Dewitt, Phys. Rev. D 3, 1275
(1975).

4L. S. Schulman, Techniques and Applications of Path Integra-
tion (Wiley, New York, 1981).

5J. M. Leinaas and J. Myrheim, Nuovo Cimento B 37, 1 (1977).

SF. Wilczek, Phys. Rev. Lett 48, 1144 (1982); 49, 957 (1982).

7Y.S. Wu, Phys. Rev. Lett. 52, 2103 (1984); 53, 111 (1984).

8See, e.g., The Quantum Hall Effect, edited by R. E. Prange and
S. M. Girvin (Springer-Verlag, New York, 1987).

9D. Arovas, J. R. Schrieffer, and F. Wilczek, Phys. Rev. Lett.
53, 722 (1984).

10V, Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095
(1987).

1R, B. Lauglin, Phys. Rev. Lett. 60, 2677 (1988).

12R. B. Laughlin, Science 242, 525 (1988).

13A. L. Fetter, C. B. Hanna, and R. B. Laughlin, Phys. Rev. B
39, 9679 (1989).

14C. B. Hanna, R. B. Laughlin, and A. L. Fetter, Phys. Rev. B
40, 8745 (1989).

15Y. -H. Chen, F. Wilczek, E. Witten, and B.I. Halperin, Int. J.
Mod. Phys. B 3, 1001 (1989).

16y, Kitazawa and H. Murayama, Phys. Rev. B 41, 11101
(1990).

17D, J. Thouless and Y. S. Wu, Phys. Rev. B 31, 1191 (1985).

18T, Einarsson, Phys. Rev. Lett. 64, 1995 (1990).

19Y. Hosotani, Phys. Rev. Lett. 62 2785 (1989).

20G, S. Canright, S. M. Girvin, and A. Brass, Phys. Rev. Lett.
63, 2291 (1989).

21G. S. Canright, S. M. Girvin, and A. Brass, Phys. Rev. Lett.
63, 2295 (1989).

22y, Hatsugai, M. Kohmoto, and Y. S. Wu, Phys. Rev. B 43,
2661 (1991).

23y. S. Wu, Y. Hatsugai, and M. Kohmoto, Phys. Rev. Lett. 66,
659 (1991).

24X. G. Wen, E. Daggoto, and E. Fradkin, Phys. Rev. B 42,
6110 (1990).

25Y. Ohnuki and S. Kamefuchi, Quantum Field Theory and
Parastatistics (Tokyo University Press, Tokyo, 1982).

26, S. Birman, Commun. Pure Appl. Math. 22, 41 (1969).

27X. G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990).

28N. Byers and C. N. Yang, Phys. Rev. Lett. 7, 46 (1961).

29R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).

30B. 1. Halperin, Phys. Rev. Lett. 30, 1583 (1984).

3IR. Tao and Y. S. Wu, Phys. Rev. B 31, 6859 (1985).

32Q. Niu, D. J. Thouless, and Y. S. Wu, Phys. Rev. B 31, 3372
(1985).

33D. Thouless, Phys. Rev. B 40, 12 034 (1989).



