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The band-gap energies of tetrahedrally bonded semiconductors are approximately reproduced by
a local-density-functional ab initio calculation including a bond self-interaction correction based
on the viewpoint of bond orbitals. The calculations are performed by the ab initio tight-binding
method (the most localized linear muffin-tin orbital method including a real-space combined
correction). Results of Si, GaAs, AlAs, and superlattices (GaAs),(AlAs), for n=1,2 are present-
ed. The energies of the band gaps and conduction-band levels agree with the results of other
empirical calculations and experiments. The conduction-band minima for superlattices locate at

different k points for n=1 and 2.

I. INTRODUCTION

A number of first-principle electronic structure calcu-
lations have been reported for various classes of materi-
als, atoms, molecules, clusters, surfaces, and bulk solids.
In principle, electronic structures of small finite systems
can be calculated exactly by the Hartree-Fock (HF)
configuration-interaction (CI) method. But for infinite
systems with many-body effects, in other words, with
correlation effects, the calculation of the HF-CI method
is impossible. Accordingly, modern band-structure cal-
culations are mostly based on the Kohn-Sham density-
functional (DF) theory.! In this theory, a many-body
system with correlation is mapped into a virtual nonin-
teracting system, where the interaction energy of the real
physical system is well approximated by a self-consistent
one-body potential. In practice, we use a local approxi-
mation of the DF theory (LDF). These LDF calcula-
tions of metals involving transition metals have provided
successful results as to their ground-state properties,
such as the cohesive properties and the ground-state
magnetization. However, the band-gap energies of semi-
conductors and insulators and ionization potentials of
atoms are always underestimated. In recent years, many
studies have been devoted to this band-gap problem.
Perdew et al.?® and Sham et al.* had, respectively,
found the discontinuity of the exchange-correlation po-
tential with respect to an infinitesimal change of an elec-
tron number. These studies have shown that an un-
derestimated band-gap energy is not due to the local ap-
proximation but inherent to the DF theory. What we
should do next is to calculate the discontinuity in the
framework of the DF theory.® But in practice this ap-
proach seems to lose the advantages of a LDF method.
So we follow another approach of Perdew and Zunger.®
They selected a physical picture rather than the exact-
ness of the framework of the DF theory. They imposed
a condition on the exchange-correlation potential (xc po-
tential) so that a physical one-particle state should not
interact with itself, in other words, a self-interaction (SI)
energy of the physical state should vanish. This self-
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interaction correction (SIC) formalism is out of the DF
theory, because resulting one-particle potentials depend
on the orbitals. Even so the results for this SIC LDF
calculation of atoms are much better than the original
LDF results. In this point this atomic SIC LDF pro-
cedure is practically useful and efficient. However, they
had initially pointed out that the atomic SIC LDF calcu-
lation cannot be applied to infinite systems, because the
atomic SIC term vanishes for infinitely extended states.
Heaton et al.” used a nearly atomic SIC with the LCAO
basis and obtained excellent results for large energy gaps
of insulators. This procedure seems to be incapable of
describing the narrow gaps of semiconductors. In this
paper we present a simple and efficient SIC for bulk
solids based on the bond orbitals, which we call the bond
SIC, and we show that the bond SIC improves the un-
derestimation of the LDF band-gap energies.

The calculation is performed by the most localized
linear muffin-tin orbital (LMTO) method based on the
atomic sphere approximation (ASA) including so-called
combined correction terms.®~!! This method is an accu-
rate ab initio tight-binding method. The basis set is
minimal and most localized within the framework of a
linear method, and there is no empirical parameter. The
system can be described by the real-space tight-binding
parameters up to the third nearest-neighbor pairs.

The basic formulation of the most localized LMTO
method is briefly presented in Sec. II. In Sec. III we dis-
cuss the SIC of bulk solids, and present an approximated
bond SIC scheme used in the present work. In Sec. IV
we apply this method to Si, GaAs, AlAs, and
(GaAs), (AlAs),, for n=1,2 and discuss them. We
summarize the results in Sec. V.

II. THE MOST LOCALIZED LMTO METHOD
AND THE COMBINED CORRECTION

In this section we summarize the most localized linear
muffin-tin orbital method (most localized LMTO) includ-
ing the combined correction terms. There are many ap-
proaches for calculating electronic structures. By the
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traditional APW or KKR methods we have to solve an
energy-dependent secular equation to determine the en-
ergy eigenvalues, and the energy dependence has its rise
in energy-dependent wave functions in an implicit way.
In the linear method we expand wave functions in terms
of energy deviation about the neighborhood of our in-
terest. As a result, we get a homogeneous secular equa-
tion.® In the LMTO method, the space is divided into
overlapping spheres (atomic spheres) having centers at
atomic positions, then the secular equation is perfectly
decomposed into two parts, i.e., a structure part (the
structure constant) independent of the atomic character
and potential-dependent parameters (the potential pa-
rameters) that have transparent physical meaning.

In the original LMTO method, it is formulated in a
k-space representation. On the other hand, many empir-
ical tight-binding calculations have been successfully re-
ported for various materials. And it seems natural that
the electronic structure is not affected by the farther en-
vironment even in a periodic system. This fact implies
that the basic electronic structures of materials are ap-
proximately described by short-range interactions in a
real space. This is realized in the most localized LMTO
method.’~!!

In this method the structure of the system is
represented by the matrix S having indices in a real
space (the screened structure constant). This decays so
rapidly in a real space that Sgg. is almost zero for the
fourth-nearest-neighbor pairs. The S matrix satisfies the
following Dyson type equation as

§S=S+LSQ0S+508), 2.1
where matrix S is the bare structure constant which has
an analytic expression and has a long-range tail. The di-
agonal matrix Q is introduced to make S localize and its
elements are usually chosen as’

0,=0.3485, 0,=0.05303, Q,=0.010714.  (2.2)

The resulting Hamiltonian and overlap matrix are
represented in the following tight-binding (two center)
form:

H) g =E g 8rr8r1 +hroLirL (2.3)

Oz(zz'}.';RL =8rr:drr» (2.4)
where R denotes an atomic site and the L =(/,m) is an
abbreviated notation of an azimuthal quantum number /
and a magnetic quantum number m. The E p; is an en-
ergy where we linearize the L character wave function of
R site. The reduced Hamiltonian & can be calculated in
terms of the S and some potential parameters. The
above Hamiltonian is accurate in the second order of
(E —E  g; ) and the next-order terms can be included by
the first-order perturbation theory.

The above formalism is called an atomic sphere ap-
proximation, because the space is decomposed into over-
lapping spheres (atomic spheres) and wave functions are
neglected outside the atomic spheres. It is known that
this ASA gives accurate results for a calculation of met-

als but poor for semiconductors especially for their
band-gap energies.!> So when we discuss the band-gap
energy from the first principle, we have to include the
correction to ASA (the combined correction and another
third-order correction). In the most localized LMTO,
this combined correction can be easily included in a real
space by using the screened structure constant S.

III. DENSITY-FUNCTIONAL THEORY
AND SIC OF BULK SOLIDS

In this section we summarize the Kohn-Sham
density-functional theory and the band-gap problem,
next we argue the self-interaction correction and explain
our bond self-interaction correction approximation.

A. Atomic SIC and bond SIC

The ground-state property of a many-particle system
is a unique functional of its density and the basic physi-
cal quantity is a particle density n(r).! In the density-
functional theory, we map a real physical system includ-
ing many-particle effects into a virtual noninteracting
system by a variational principle with the condition that
their particle densities should be equal. This mapping is
uniquely determined under some assumptions when the
exchange-correlation energy functional E, [n] is given.
But this xc energy functional is unknown for real physi-
cal systems and so we have to use a local approximation,
which is called the local density-functional approxima-
tion or the local spin-density functional approximation
(LSD). This procedure is simply an approximation in
the practical density-functional calculation. As a result
we construct the noninteracting system by a self-
consi]stent calculation of the following one-particle equa-
tion:

[— 1A+ 0%(D Y (D=¢;9,,(r) (3.1)

/ 8E,.
u‘gﬁ(r)=v(r)+f |r;(_rr?! '+ on(0) (3.2)
n(r)=n_(r)+n_(r), (3.3)
n,(r)=73 [¢,,(r)|?, (3.4)

Jjrocc

where o is the spin index and n,(r) is the electron densi-
ty of o spin.

This LSD theory is practically very useful in compar-
ison with the HF-CI calculation and many first-principle
calculations of electronic structures are successfully per-
formed in various systems. Their results agree very well
with experimental results. In principle, however, the
LSD band energies have no rigorous meaning of the
one-particle energies, and they have only a relation to
their occupation numbers by the Janak’s theorem.!® The
validity of the theory for their one-particle energies and
the Fermi energy should be examined by a comparison
with experimental results, and usually it is excellent for
metals. But the calculated band-gap energies for semi-
conductors are always underestimated by 30-40 %.
Especially in the relativistic calculation, the band-gap



1282 YASUHIRO HATSUGAI AND TAKEO FUJIWARA 37

energies are more small and sometimes vanish. This is
the “band-gap problem in the DF theory.”

In the framework of the DF theory we can calculate a
band-gap energy E, of a semiconductor by the following
expression:

E,=I(M)— A(M), 3.5)
ey (M4 —ey(M—7) (g=+0),  (3.6)
zeM—Fl(M)——EM(M) y (3.7

where M is a number of total electrons, I(M) and
A(M), are an ionization potential and an electron
affinity of a M-electron system, and ey(M) is the Nth
lowest orbital energy of the M-electron system. The re-
sulting band-gap energies of this calculation have an er-
ror systematically, and its origin is the replacement of
Eq. (3.6) by Eq. (3.7). Then it is recognized that there is
a finite discontinuity in an effective potential between the
systems with infinitesimally different electron num-
bers.2~> The accurate expression is

Eg=€M+1(M)‘—€M(M)+C ,
C=v5(M+1n)—vgM—n).

(3.8)
(3.9

We notice that the finite constant change of the one-
particle potential does not change the resulting one-
particle wave function.

To obtain an accurate band-gap energy by the first-
principle calculation, we have to calculate the discon-
tinuity C, but it seems difficult to know the C in the
LSD framework. Practically, it is worthwhile to give a
method calculating the approximate band-gap energy
efficiently and easily in the LSD scheme. So we propose
a bond self-interaction correction and apply it to III-V
and IV class semiconductors.

The original atomic SIC was introduced by Perdew
et al.® In the LSD theory there is nonzero self-
interaction energy even if there is only one particle in
the system. The self-interaction energy for the one-
particle state ;,(r) is defined as

SjozEI;cSD[nja’O]"*_U[nja] ’ (3.10)

n(r)=|;,(r)|?, (3.11)
n;, (r')n; (r)

Ulnj,1=1 [dr [dr L—2—, (3.12)

fr—r'|

and when we interpret ¥;, as a physical state, §;, should
be zero. This is the case of the HF theory. The SIC xc
energy functional of Perdew et al. is defined as

EZPSIC=E®— 3 5, , (3.13)
Jj,o:0cc.
and the effective potential for jo state is
Vi D (0 =vFP () + AvSE, (3.14)
n;,(r')
AvSIE, = — |vye[n;0,01+ fdr'—lf":ﬁ (3.15)

By this definition of the SIC xc energy functional,
85:°1SP=0. Their calculated results for atoms show

that the ionization energy and one-particle energies are
well reproduced. But this atomic self-interaction poten-
tial depends on the orbital and the orthogonality of the
orbitals is lost. Furthermore, their procedure cannot be
applied to bulk systems in a simple form, because in the
solids the one-particle state is the Bloch state, and the
self-interaction §;, for the Bloch state extending over a
whole space vanishes in a way of

AUSIC

e =0V~1")—0

(where V is a volume of the system) .

Several SIC calculations for bulk solids are reported
by Heaton et al.” and Hamada et al.'* Heaton’s SIC is
formulated in Wannier orbitals, they used atomic orbit-
als in the LCAO scheme and got good results for the
large gaps of insulators. Their improvement is a natural
extension of the atomic SIC. Hamada et al. calculated
the band gaps of semiconductors in the SIC-LAPW
method, where an atomic SIC is included only in the
LAPW muffin-tin sphere, and the SIC effect seems to de-
pend on the choice of radii of muffin-tin spheres. We
wish to propose a more appropriate SIC procedure
which can be applicable to semiconductors.

Here we suppose a limiting case where isolated atoms
are periodically arranged with a macroscopic lattice con-
stant. Then the resulting LSD electronic band struc-
tures show zero-width bands at atomic energy levels.
The ionization energy or the band-gap energy of the sys-
tems are underestimated as in atomic calculations.
Furthermore, the atomic SIC is zero for the Bloch state,
that is an eigenstate. However, the atoms are isolated
and Perdew’s atomic SIC should effectively improve the
one-particle energies. In this case, all states at different
k points degenerate and the localized Wannier functions
are atomic orbitals and also eigenstates. Then, naturally,
we can use the SIC in this representation, and get good
results identical to atomic cases.

Next we introduce an infinitesimally small overlap be-
tween the atomic orbitals, then the resulting band struc-
ture has a corresponding small dispersion, but the Wan-
nier function is not an eigenstate. The unique one-
particle eigenstate is a Bloch state, and the resulting
original SIC is zero, so the SIC calculation does not
work. But this is unphysical. For an atomic system,
one of the reasons why the atomic SIC brings good re-
sults is the atomic SIC potential gives physically natural
xc hole and the potential has an asymptotic behavior of
—1/r in comparison with an asymptotical behavior of
the original LDF potential —0. We know that, in the
SIC-LSD calculation, we have to use physically natural
states for the one-particle density. In other words, for
the calculations of SIC, we should use Bloch states for
metals, localized Wannier states for insulators, and
atomic orbitals for atoms.

For III-V and IV class semiconductors, Harrison’s
bond orbital model'® provides a physical picture and cal-
culations show localized bond charge densities. These
facts show the bond orbital picture by Harrison is a
physical one in this class, and we use the bond orbital
densities to calculate the SIC.

For core electrons, we should use the atomic SIC.
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For conduction bands we do not correct the one-particle
LSD energies, because there is no occupancy in the con-
duction bands and the SIC should be zero. This pro-
cedure describes more or less the discontinuity of the po-
tential. Then the Hamiltonian of this system is written
as

H=H"P L AVSIC . L AVSIC, | (3.16)

where HSD, AVSIC . and AVEIC, are, respectively, the
original LSD Hamiltonian, the atomic SIC potential for
core electrons, and the bond SIC potential for valence
bands.

B. Approximated bond SIC
in tetrahedrally bonded semiconductors

Here we explain the approximation used in the bond
SIC procedure in the most localized LMTO scheme. We
introduce a bond SIC for valence bands by the first-order
perturbation theory. The basic idea is as follows.

First we calculate a bond charge distribution and
secondly we include the bond SIC potential in the LSD
Hamiltonian by the first-order perturbation theory.

The eigenvalue of the j valence band at the k point
EBS'C(kj) in the bond SIC calculation is given as

EBS'C(kj)=ELSP(kj)+ AE (kj) , (3.17)
where EULSD(kj ) is an eigenvalue of LSD calculation, and
AE(kj) is the effect of a bond SIC potential defined by
the first-order perturbation theory as

AE(kj)=(¢%| AVEC, | ¥5) . (3.18)
In the most localized LMTO, Bloch function ¢j‘ is given
as

1 ik S\ =
zﬁze kTE |X>,Lu,L;kj , (3.19)
T t,L

where N is the number of the unit cells, T is a lattice
translation vector, |X), is a localized LMTO base of
the 7 atom and @,; ; is a coefficient of the wave function
normalized to unity as

Slagl’=1. (3.20)
iL

The bond SIC potential AVSIC, is given as a sum of
contributions of each bond as

A gzﬁd_2|bﬂ )AV ”<th ‘
b

(3.21)

'

Each bond is denoted by b,  and t,t’ specify the two
atoms forming the bond. A bond orbital |b,.) is
defined as

lbyd=s,|h)+s,|hp) , (3.22)

s’2+s12, =1, (3.23)

1283
— 2
2 | Ui kj |
st 1 k'Lb d
_%= valence ban - 5 , (3‘24)
S > | Uppkj |
kL

valence band
where |h,) is one of sp3 hybridized orbitals of the ¢
kind atom approximately expressed as

1) = T U 1D ey 10Dy [ B ]

(3.25)

The bond orbital SIC potential has been given as the
sum of the contribution from each atomic sphere as

AV =2, | AP b)) 452k, | AT By
(3.26)

(1)

and Al7b"' is the bond SIC potential within the ¢ kind
atomic sphere as

=~ b, .(i)

AP ()

(r)=— fiMTdr—i—r-—l+v,c[n ',0]

bn’ ’
n “(r') .
dr'———— | (i=tort’)
+f"MT |r—r'| ’

1

(3.27)

The n b"'(r’) is a bond charge density, which is the
sum of the valence-band atomic sphere charge at ¢ and ¢’
atoms and normalized to unity in the b, bond. The in-
tegration in Eq. (3.26) is performed within each i atomic
sphere. The last term of Eq. (3.27) is an electrostatic po-
tential by the bond charge in the i’ atomic sphere, where
the i’ atom is a counterpart of the i/ atom of the bond.

Then we find that AE(kj) is given as

AE(kj)= 3 | (X by |28V Gy |2, (3.28)
Lit,b,,
=33 |Gy | P 1s2SAV™, (3.29)
Lt by

where we use the fact that | X ), is small enough to be
neglected outside the ¢ atomic sphere.

IV. RESULTS AND DISCUSSION

In this section first we show the results of the bond
SIC calculation for tetrahedrally bonded semiconductors
of class IV and III-V, Si, GaAs, and AlAs, and apply the
bond SIC to superlattices (GaAs),(AlAs), for n =1,2.
In this calculation we use the most localized LMTO
method with the combined correction terms. The SIC
calculation is not so much affected by a choice of the lo-
cal xc potential, then we use a Barth-Hedin local xc po-
tential. We include a scalar-relativistic effect but the
spin-orbit coupling is neglected.

The structures of these materials are diamond or
zinc-blende structures and these structures are so sparse
that the combined correction does not work well. Then



1284 YASUHIRO HATSUGAI AND TAKEO FUJIWARA 37

TABLE I. Lattice constants and radii of atomic spheres.

TABLE III. Energy eigenvalues of Si.

Atomic sphere Lattice constant

Material Atom radii (a.u.) (a.u.)

Si Si 2.526 5.1300
empty atom 2.526

GaAs, AlAs, Ga,Al 3.000 5.3415
(GaAs),(AlAs), As 3.000
empty atom 2.109

we have to introduce some empty atoms as usual'>!'® to
pack the whole space densely, and the resulting structure
becomes a body centered cubic lattice. The input data
for the calculation are values of lattice constants, atomic
numbers, and atomic sphere radii (Table I).

First we iteratively calculate S by Eq. (2.1) and the an-
alytic S, then we calculate the real-space combined
corrections by using S and Q. We can calculate these
matrices efficiently in a real space. Then the lattice
Fourier transformation of the tight-binding Hamiltonian
brings a band structure. In the calculation, we use a
frozen-core approximation within the core electron
configuration summarized in Table II. We use three en-
ergy panels except a case of two energy panels for Si,
and in each panel we linearize an enregy dependence of
the wave function around fixed E ;.

A. Si

Si has an indirect energy gap and a conduction-band
minimum locates at k=(27/a)(0.88,0.0,0.0). The bond
SIC lowers the valence band and the resulting band gap
energy is 1.27 eV. In a monatomic system, our bond
SIC shift of the valence band is uniform. The energy
levels of the high symmetric points are listed in Table
III, where the results of the LMTO-LDF method by
Glotzel et al.'” and the results of empirical nonlocal
pseudo-potential method by Chelikowsky et al.'® are
also listed for a comparison. In Tables III-V energy
levels are measured from the maxima of valence bands.
This shows that the accuracy of the calculation of the
LDF is much improved in the bond SIC calculation.

B. GaAs and AlAs

The band structure is shown in Fig. 1, where the
hatched area shows the bond SIC effect. In this case we
have to relax the shallow Ga d level. Without this core
relaxation, the band gap would be much wider.!® The
minimum of the conduction band is at the T point and
the band-gap energy of a simple LDF is very small,
0.097 eV. The bond SIC shift of the valence band is not
uniform due to the difference of the electron affinity.

TABLE II. Core electron configurations used in the calcula-
tions.

Si: (1s)X(2s)%(2p)®

Ga: (15)%(25)%(2p)%(35)%(3p)®

Al: (15)%(2s5)%(2p)°

As: (15)%(25)%(2p)%(3s5)%(3p)°(3d)"°

Si energy eigenvalues (eV)

Empirical
nonlocal Scalar relativistic
pseudopotential LMTO LDF + bond SIC
Level (Ref. 18) (Ref. 17) (present work)
ry —12.36 —11.87 —11.92
s 0.00 0.00 0.00
s 3.43 2.59 3.51
rs 4.10 3.11 3.95
X} —17.69 —7.75 —7.92
X —2.86 -2.72 —2.82
X9 1.17 0.62 1.37
L3 —9.55 —9.53 —9.74
LY —6.96 —6.93 —7.01
L —1.23 —1.05 —-1.11
Lf 2.23 1.57 2.16
LS 4.34 3.51 4.04

The resulting bond SIC band gap is 1.05 eV (an experi-
mental value is ~1.5 eV). The energy levels at high
symmetry points are listed in Table IV, where an empiri-
cal pseudo-potential calculation of Chelikowsky er al.'®
and a full-relativistic LMTO-LSD calculation of
Christensen'® are also listed for a comparison. Compar-
ing these results, relative valence-band levels agree well
with each other. But for the band-gap energies, results
of the bond SIC show improvement of the underestima-
tion of the LDF results and agree well with the empiri-
cal results.

For AlAs, we list the similar results in Table V. In
this case the bond SIC energy levels also agree with the
results of the empirical calculations.!® 2!

TABLE IV. Energy eigenvalues of GaAs. In Refs. 16 and
18, the calculations are done by the full-relativistic formulation
including the spin-orbit interaction. In this table the split lev-
els by the spin-orbit interaction are averaged with the weight-
ing factors of degeneracy.

GaAs energy eigenvalues (eV)

Empirical Full
nonlocal relativistic Scalar relativistic
pseudopotential LSD LDF + bond SIC
Level (Ref. 18) (Ref. 16) (present work)
ry —12.38 —12.67 —12.94
is 0.00 0.00 0.00
r§ 1.69 0.43 1.05
05 4.83 3.92 4.45
X3 —9.66 —10.31 —10.80
X} —6.71 —6.88 —6.95
X5 —3.12 —2.69 —2.84
X9 2.21 1.23 1.94
X5 2.56 1.46 2.11
Ly —10.78 —11.02 —11.47
L} —7.01 —6.76 —6.86
L} —1.15 —1.11 —1.20
L 2.00 0.85 1.48
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TABLE V. Energy eigenvalues of AlAs.

AlAs energy eigenvalues (eV)

LDF Empirical Empirical
bond SIC pseudopotential pseudopotential OoPW
Level (present work) (Ref. 19) (Ref. 20) (Ref. 21)
i —12.28 —11.57 —11.56 —11.48
Is 0.00 0.00 0.00 0.00
i 2.74 2.81 3.21 2.50
{s 5.06 4.21 4.57 4.57
i —10.69 —8.96 —9.42 —9.61
X3 —5.61 —6.45 —5.55 —5.20
5 —2.38 —2.32 —1.97 —2.01
§ 1.83 221 2.25 2.38
S 2.74 2.89 2.62 2.86
{ —11.16 —9.85 —10.07 —10.14
5 —5.85 —6.04 —5.52 —5.22
Lj —0.88 —0.98 —0.70 —0.80
i 2.76 2.48 2.76 2.57

C. Superlattice (GaAs), (AlAs),

From the above calculations, our bond SIC improves
the underestimation of the conduction-band levels of
LSD calculations. We think that this approximation is
appropriate and practically efficient. Next we apply this
method to more complicated superlattice cases. In the
most localized LMTO, its structure-dependent part is
calculated in a real space and this scheme does not de-
pend on the atomic character (except for atomic sphere
radii). This property enables us to calculate an electron-

0.0} /\
-
o
>
@ -0.5¢t
o
c
w
-1.0t
I
| |
L r X UK r
FIG. 1. Band structure of GaAs along symmetric lines.

Bond SIC effect is shown by arrows.

ic structure of superlattices very easily. We can con-
struct a structure constant and combined correction ma-
trices of the superlattices from the structure constant of
its simple substructure.

The minimum of the conduction band locates at the L
point of a fcc Brillouin zone for n =1 and the I' point
for n =2. The energy levels of fcc high-symmetric
points are listed in Table VI together with results of the
empirical Xa method. Our results show the conduction
band minimum shifts from the L point to the I" point by
the I'-X interaction, and our band-gap energies show the
same tendency as the empirical Xa calculation.?

The band-gap energies by the LDF and the bond-
SIC-LDF calculation in the present work are listed in
Table VII and this shows the usefulness of the bond SIC.

V. CONCLUSIONS

In this paper we proposed the bond SIC and applied
this to several semiconductors. We proposed an approx-
imated procedure to calculate the band-gap energies of
tetrahedrally bonded semiconductors. In the SIC calcu-
lation, we should use physically natural states for the

TABLE VI. Gap energies of superlattices (GaAs),(AlAs),
at high symmetric points (fcc).

Gap energies (eV) at high symmetric points

Method I' point L point X point

n=1 bond-SIC-LDF* 1.60(0.65) 1.51(0.56) 1.89(0.94)
Xa® 1.76 1.68 1.76

n =2 bond-SIC-LDF* 1.73(0.74) 2.01(1.02) 1.90(0.91)
Xa® 1.97 2.10 2.13

#The values within the parentheses are those without SIC.
*Reference 22.
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TABLE VII. Self-interaction correction and band-gap ener-
gy-

Band-gap energies (eV) of semiconductors

LDF Bond SIC Expt.
GaAs 0.097 1.05 1.52
AlAs 0.86 1.83 2.25
Si 0.43 1.27 1.17
(GaAs),(AlAs), 0.56 1.51
(GaAs),(AlAs), 0.74 1.73

one-particle density, i.e., the Bloch states for metals, the
Wannier states for insulators, and the atomic orbitals for
atoms. For the tetrahedrally bonded semiconductors
this state is the bond orbital. We introduced the SIC po-
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tential in this bond charge distribution and then calcu-
late the effect of the SIC potential to the Bloch states by
the first-order perturbation theory.

The bond SIC is formulated in the most localized
LMTO scheme. The most localized LMTO method is
accurate enough to discuss the band-gap energies when
the combined correction terms are included. This real-
space method is especially efficient in the calculation of
superlattices. The calculations for the class IV and III-
V semiconductors, Si, GaAs, and AlAs, show that the
bond SIC improves the underestimation of the LSD
band gap. Next we apply this method to the superlattice
(GaAs),(AlAs), and get the appropriate results for their
band-gap energies and the position of a conduction-band
minimum.
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Band structure of GaAs along symmetric lines.

Bond SIC effect is shown by arrows.



