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Quantum Infodynamics: Description of Dynamics of
Open Quantum Systems Based on Quantum Information
Theory

Vladimir BUZEK* **1

* Research Center for Quantum Information, Institute of Physics, Slovak
Academy of Sciences,
Dibravskd cesta 9, 845 11 Bratislava, Slovakia
* Faculty of Informatics, Masaryk University, Botanickd 68a, 602 00 Brno,
Czech Republic

Abstract

In my lecture I will analyze how information encoded in a quantum system is “diluted”
in reservoirs. I will present a simple model that would allow us to understand various
aspects of dynamics of open systems interacting with an environment.

Keywords: dynamics of open quantum systems, quantum information processing, master
equations

I will analyze how information encoded in a quantum system is “diluted” in reservoirs. In
particular, I will describe a universal quantum homogenizer (1, 2, 3], which is a quantum ma-
chine that takes as an input a system qubit initially in the state p and a set of N reservoir
qubits initially prepared in the same state £. In the homogenizer the system qubit sequentially
interacts with the reservoir qubits via the partial swap transformation. The homogenizer real-
izes, in the limit sense, the transformation such that at the output each qubit is in an arbitrarily
small neighborhood of the state £ irrespective of the initial states of the system and the reser-
voir qubits. This means that the system qubit undergoes an evolution that has a fixed point,
which is the reservoir state £. The model of the homogenizer allows us to understand various
aspects of the dynamics of open systems interacting with non-equilibrium environments. In
particular, the reversibility vs or irreversibility of the dynamics of the open system is directly
linked to specific (classical) information about the order in which the reservoir qubits interacted
with the system qubit. I will analyze possible physical realization of quantum homogenization
[4]. In addition I will discuss how entanglement is established between particles involved in
homogenization process [5]. Finally I will show how a master equation governing dynamics of
the system qubit during the homogenization process can be derived.

1E-mail: buzek@savba.sk
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Abstract

In quantum system, we can obtain information only through quantum measurement.
For example, we need an quantum measurement in order to estimate the density matrix
of the system of interest. In this setting, the choice of quantum measurement is essential
because the quantum measurement causes state demolition. Of course, in order to reliable
inference, we need to prepare several numbers of the systems of interest which are equiv-
alent with each other. Thus, we formulate this problem as statistical inference, and we
call it quantum estimation when we estimate the unknown density matrix of the system
of interest. This problem can be regarded as the quantum version of the estimation of
probability distribution in the mathematical statistics. At least in principle, we can use
quantum measurement having a quantum correlation between systems of interest for this
purpose. It is an interesting problem from non-locality of quantum mechanics as well as
from statistical inference whether using such a correlational quantum measurement im-
prove the performance of the estimation. In this talk, we propose a correlational quantum
measurement improving the estimation error.

Keywords: Quantum Estimation, Quantum Correlation, Quantum Gaussian State, Number
Detection, Heterodyne Detection

1 Formulation of Quantum Estimation

First, we give a formulation of theoretically available quantum measurements. While the quan-
tum state is described by density matrix (operator) p, i.e., a positive semi-definite matrix whose
trace is 1, quantum measurement is described by a positive operator valued measure (POVM)
M = {M,,} on the Hilbert space H of the system of interest, where POVM M = {M,,} consists
of the partition of unity [ by positive semi-definite matrixes (operators) M, on H, i.e. this
partition satisfies

S M, =1 (1)

When we perform the quantum measurement corresponding to POVM M = {M,} to the
system whose density matrix is p, we obtain the data w with the probability:

M C—
PY(w) := Tr pM,.

1E-mail: masahito@qci.jst.go.jp
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When the data set {w} is continuous, an integral replaces Y in the equation (1).

In quantum estimation, we assume that the unknown density matrix is included by a pa-
rameterized density family S = {py € S(H)|6 € © C R}. In the estimation of probability
distribution in mathematical statistics, we need to assume a parameterized distribution family
for reliable estimation, because it is very difficult to treat reliable estimation from finite data
under an infinite dimensional family. The similar difficulty appears in the quantum case. In
this assumption, any estimator is described by a pair of POVM M = {M,,}..cq and a function
6 from data set Q to the parameter set ©. Usually the estimation error of (M, é) is evalu-
ated by mean square error (MSE) vg(M, ) which is given as follows in the continuous and
one-parametric case:

ve(M, ) := /(é(w) —6)2 Tr pgM ( dw).
In the multi-parametric case, the ¢-th MSE is given by
[ @) =0 T o),
We usually assume an n-independent identically density (i.i.d.) p®" := pR---®p and the

i.id. parameterized family S, = {p¥" € S(H®")|0 € © C R}. In this case, any estimator is
described by a pair of POVM M™ = {M? }..cq, on the tensor product space H®" and the

function 6, from €, to ©. In the one-parametric case, its MSE is given by
v (M™, én) = /ﬂ (9n(w) — 0)? Tr p2" M™(dw).
We often assume that the estimator M", 9n) satisfies the unbiased condition:
/Q 0, Trp@"M™(dw) =6, Voe€®©. (2)

In the asymptotic case, this condition often is replaced by the asymptotically unbiased condi-
tion:

n—od

lim [ 6, Trp®"M"(dw) =0, Y€ O

lim -51—/ 0, Tr p¥"M"(dw) =1, V8 € .
n—oo df Jo

Under the asymptotically unbiased condition, the asymptotic behavior of MSE can be charac-

terized as

5 1
Te)< —
UB(M b TL)N Jgn’

i.e., the inequality

lim nvg(M",én) < 1

n—oo - ,]9
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holds, where Jp is called the SLD Fisher information and defined by[1, 2]

dpe 1

—— I e L

7 2( 6pe + peLe)

The lower bound given in (3) is attained by adaptive measurement M" defined by

M ={M & - @M , .}
® M(J‘) — (M(j) )T >0,

Wy —1,Wj W1yee Wy — 1,5

/ wl, o dw;=1 (k=1,...,n).

Since any quantum measurement having quantum correlation does not satisfy the above con-
dition, such a correlational measurement does not improve MSE in the asymptotic setting in
the one-parametric case.

Jg - T‘rLﬂ P,

2 Quantum Gaussian States Family

Thus, we need to discuss a multi-parametric state family to research the quantum correlational
effect in state estimation. In this paper, we treat the quantum Gaussian states family as the
typical example having such an effect. Let’s consider a Hilbert space L?(R), whose normal
orthogonal system is given by Hermite functions {|n)}. In this system, the coherent vector

al?
|a)e == pep€ ‘U‘%k-lk)(a € C) is an eigen vector of annihilation operator a which defined as
aln) = \/— |n— 1) The state pq,0 := |a), o (| is called a coherent state and its Gaussian mixture

pen =5 [ e la)a o{a|da is called a quantum Gaussian state. In the physical system of

photon whose frequency is v, the quantum Gaussian state p e m(1—emet) is the final state

of the following Master equation when the initial state is the coherent state |(o)a o{Col:

d T 7+ 1
71% = —i[vala, p] — %(aafp — 2a'pa + paa’) — w
where c is coupling constant, and 7 is the average photon number.

In the quantum Gaussian states family {p~|¢ € C,N > 0}, the following POVM is very

useful: One is the number detection N, the other is the heterodyne detection H:

aatp — 2apa’ + pata),
(aa’p — 2ap

N: ke |k)(k]|
H: a—|a). (e

Concerning the subfamily {po n|¢ € C,N > 0}, it is sufficient to estimate only the parameter
N. In this n-i.i.d. case, the following estimator is the optimal[3, 4]: First, we perform the
number detection N individually and obtain n data ki, ..., k,. The final estimate is decided as
k= S % In this case, the unbiased condition (2) is satisfied, and the MSE is calculated as

N(N +1)

> (k= N)Y*Tx po k) (k| =

k=0

31~
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N(N + 1) coincides with the inverse of the SLD Fisher information of this family.

Next, we consider the subfamily {p¢ ~|¢ € C, } which depends on N, i.e., we estimate only
the complex parameter ¢. In this case, the average data by the heterodyne detection is optimal
estimator. In other word, we perform the heterodyne detection H individually, and obtain the
n data o,...a,, and decide the final estimate as the average (, == ) ;. & X It also satisfies
the unbiased condition, and its MSE is calculated as

1 1
_/ IC — a|2TrpC,N|a)a ofalda = ”‘/ Klz o{alpon|a)e da =
n Je nJc

This estimator is optimal.

However, in the estimation in the quantum Gaussian states family {p v|( € C,N > 0}, we
have to discuss the simultaneous estimation of N and (. If we perform number detection, the
obtained information about ( is very small. If we perform the heterodyne detection, the esti-

a—C|2

mation of N is boiled down to the estimation of variance of normal distribution m—a—ﬁe— N+,

In this case, Ny, := =15 5% |os — |? — 1 is suitable for the estimator of N . Its MSE is
calculated as

N(nilzlae‘CAl?—-(N+l)) =E°’N<ﬁ_}f2|ai“é|2—(l\f+l)>
N( Zla‘"él2> -(N+1)*= ”(—“‘? ON( Zla,—dz) — (N +1)?

~ wv( > leif - 1c|2) - (V17

i=1

N+1
—

2

2 n

2
- 1 2) ol e 1A ) s (N+1)?
~(n_1)2E0,N (nZlazl) 2nZ|az| <1 + ] (V+1)" = —.

i=1 i=1

The MSE Q—V;li’_ilﬁ is larger than the one by the number detection. This trade-off is solved as
follows([5): First, we perform the time evolution as:

pEN = e N ® PEN

This time evolution can be performed by using beam splitter. Next, we perform the heterodyne
detection in the first system whose state is p ¢ v, and perform the number detection other
systems whose state is po . Letting the these data be ¢ and ki ..., kn_1, we can use data ¢
as the estimate of ¢ and the average N, := Zf_ll k as the estimate of N. The former MSE
is equivalent with the optimal one, and the later MSE equals ﬂg_jlil, which is asymptotically
equivalent with the optimal one.
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Abstract

We consider statistical estimation problems using only linear maps between sample
spaces and parameter spaces. Several kinds of restrictions of the linear maps will be
introduced. As one example, this formulation includes the estimation problem of the
location parameter of complex amplitudes of multimode coherent state with the thermal
Gaussian noise.

Keywords: Covariance matrix, Lie groups, Unbiased estimation

1 Introduction

Let X = R™ and © = R™ are real vector spaces (n; > n2) and let ® : © — X be a real linear
injective map. Let 7 be a set of real linear maps. Let V; and V; are respectively a n; X n; real
matrix and a ny X ny real matrix. For ¥ € 7, let

R(T) = tr(TV, ') (1)

We consider a problem to minimize R(V¥) for ¥ € 7. In this paper, we do not distinguish
transposition and adjoint.
If Vi and V; are positive symmetric and the restriction for ¥ € 7 is

Ve T <= Vo = identity on O, (2)

then this problem is equivalent to a classical statistical estimation problem considering only
linear unbiased estimators. In that case, X is a sample space, O is a parameter space, & : © —
X determines the mean value of the data with respect to the true value 6 € © of the parameter
of a family of probability distributions on X having a constant variance V;. V; is a weight for
the risk function. We can consider V™! as a positive metric on X, and ® pull-backs it and we
obtain a positive metric F' = *®V|® on V,. If ¥y € T is optimal in the sense that ¥y minimizes
R, if and only if

YoV, g = F 3)
holds. Such ¥y is called the best linear linear estimator (BLUE). If the family of distribution

is normal (or Gaussian), then F is equal to the Fisher information matrix, and Eq. (3) says
that ¥q attains the Cram er-Rao bound.

'E-mail: tsuda@qci.jst.go.jp
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Making the condition of ¥ € T more strict, we obtain various kinds of problems minimizing
R(¥) for ¥ € T. One of these types of problems is equivalent to the estimation of the complex
amplitude of multimode Gaussian state which is one of the most fundamental problems of
quantum estimation [1, 2, 3, 4], which is closely related to asymptotic theory of quantum
estimation [5, 6, 7, 8].

Through this paper, we identify linear maps and bilinear forms with matrices by naturally
fixed basis of linear spaces.

2 Restriction

Define Y as a vector subspace of X that satisfies X = Im® ® Y. Let W and Wy be the
restrictions of V; to Im® and Y, respectively, and suppose that V; can be written as V; =
W @ Wy. This condition for V) corresponds to the case that the main system Im® and the
ancillary system Y are independent. As a restriction of ¥ € T, we require that ® € T satisfies
the condition (2). Then, it is sufficient to consider the cases ¥ € 7T is of the form

U=0""0 Ty (4)

where each element of the direct sum is just the restriction of ¥ to the corresponding subspaces
Im® and Y, so our choice is limit to the freedom of ¥y. Since R(¥) can be written as

R(T) = tr(®7 W1 71V,) + tr(Uy Wy 07 115), (5)
the problem is reduced to minimize
Ry(‘I/y) = tI‘(‘I’yWy t@—IVQ). (6)

Let 7y be a class of linear maps ¥ : Y — © satisfying some conditions. In this paper, the
restrictions for 7y is that 7y is a Lie group.

3 Non compact cases

First, we consider the case that V5 is positive symmetric and Wy is the identity. In this case,
if 7y is a compact Lie group, Ry (¥y) is constant and the problem is obvious, so Ty must be
a non compact Lie group. Since Ry (¥y) depends only on ¥y *¥y, the problem is to minimize
a function on 7y /H where H is a maximal compact subgroup of 7y.

3.1 Sp(n,R)

The most important case is that 7y is a symplectic group Sp(n, R) (n. is even and n = ny/2).
This problem is equivalent to choose the direction of homodyne detections for a complex n
dimensional mode.

The optimal solution is

Ty = \/ ViV aAVT T (7)
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where A is an antisymmetric matrix

A= ( ;) “OI ”) (I, : n dimensional identity). (8)

3.2 SO(p.q)

The previous example is related to the antisymmetric matrix A. In contrast, the case of
Ty = SO(p, q) (p + ¢ = ny) is related to a symmetric matrix

~(F )

Similarly to (7) we can see that

Uy = \/ VI A\ VRSHSVVT (10)

In proofs for the optimality of (7) and (10), we just use the Lagrange’s multiplier method.
That method itself can only guarantee a necessary condition for the local optimality. In our
cases, however, we can see that the optimal solution can be seen as a fixed point for a involution
of the Lie groups. Since such a fixed point is unique if the Lie group is non compact ([9]), we
can see that the local condition is sufficient for the global optimality.

3.3 SL(n,R)

If 7y = SL(n,R), the optimal solution ¥y is a linear transformation

‘/2 = t‘I’yV-Q\I’y = (det Vg)[n. (11)

3.4 Other non compact cases

The above examples are all irreducible real Riemannian symmetric spaces. We can consider
others like SL(n,H), SU(p,q;C), U(P, ¢;H), SO(n,H), and complex forms. Let a Lie group
G be one of them. Then, there is an extensions of the group G G C GL(x,K) = F which is
minimal among K € {C,H}. (The inclusion relation is, for example, GL(n,H) Cc GL(2n,C).)
If V, € F, then we can obtain the optimal solutions in the same way as (7), (10), (11).

4 Compact cases

Let 7y is a compact Lie group in F' = GL(n, K) (K € {R,C,H}). Suppose that V5, Wy € F and
they are not the identity. We consider H C C? C R* and any element in GL(*, K) is faithfully
represented by a real matrix by the natural way. So the adjoint is just the transposition of the
matrix. We assume that V, and Wy are both symmetric or both antisymmetric according to
the transposition for adjoint.
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A necessary condition for ¥y to be optimal is VoWy = Wy V,. Since V5, Wy € F, there is
¥’ € T such that
TWy 'V, = V,UWy 1. (12)

Let W be the set of YWy 'V satisfying (12). There is a discrete subgroup G of 7 isomorphic
to the symmetric group &,,. Since YWy *¥ and V, are both symmetric or both antisymmetric,
tr(UWy '0V;,) can be written as

b (U Wy "D V;) = Zi:ln s i V, and Wy are sy@metne | (13)
— > Aip; Vo and Wy are antisymmetric

where \; and y; are the absolute values of eigenvalues of V, and Wy, respectively, and
A< A (14)

Therefore, if V3 and Wy are symmetric, then the optimal solution is one that permutes (1, ..., tin
to i, ..., ul, being

gz >, (15)
and, if V, and Wy are symmetric, then

/

Ky

IN

- < iy (16)
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Entanglement as Interaction in Advance: Dense Coding
and Teleportation
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Abstract

Dense coding and teleportation are quantum protocols that exploit shared entangle-
ment to facilitate communication between two distant parties. The same communication
can be achieved classically, but only by introducing additional interaction between the
parties. Ishall derive these exotic quantum protocols from their straightforward classical
versions, showing that the interaction needed classically is still present in the quantum
case, hidden away as the interaction necessary to prepare the shared entanglement. What
remains remarkable in the quantum case is that this part of the interaction can take place
before the information to be transmitted has been chosen.

Keywords: Entanglement, Dense Coding, Teleportation, Quantum circuit

The circuit diagrams developed to represent the sequence of gates used in a quantum com-
putation can also provide economical and insightful derivations of certain quantum mechanical
procedures, without the need for any analytical manipulations of quantum states.

Ishall illustrate this by deriving two quantum protocols, dense coding [1,2] and teleportation
[3,4], from simple classical circuit diagrams that transparently achieve the same results as the
quantum protocols by exploiting direct dynamical interactions between the two parties. (By a
classical circuit diagram I mean one whose initial and final states are classically meaningful [i.e.
states of the “computational basis”], every gate of which takes classically meaningful states
into other classically meaningful states.)

Circuits realizing the quantum protocols are extracted from their parent classical circuits
by expanding each classical gate into products of gates, some of which are quantum gates that
do not preserve classically meaningful states. By then allowing rearrangements in the order in
which commuting gates act one arrives at circuit-theoretic versions of the quantum protocols.

This procedure makes clear the classical parentage of the quantum protocols. It shows that
the quantum protocols have just as much dynamical interaction as the classical ones. But a
crucial part of that interaction is absorbed into the preparation of the initial shared entangled
state. This part of the interaction can be executed before anybody has even specified the
two bits to be encoded in a single qubit or the unknown state to be teleported. The role of
entanglement in the protocols is to store interaction, unrealized, until the time arrives when it
is needed.

All the gates used in these constructions are simple enough for somebody unfamiliar with
quantum circuit diagrams (and unacquainted with dense coding or teleportation) to be able to
follow the derivations.

'E-mail: ndm4@cornell.edu
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Abstract

We have recently introduced a measure of the entanglement of identical particles, Ep,
based on the principle that entanglement should be accessible for use as a resource in quan-
tum information processing. We show here the strong connection between local particle
number conservation and reference phase uncertainty and we demonstrate the comple-
mentarity between local particle number conservation and the accessible entanglement.

Keywords: entanglement, identical particles, quantum information, superselection rules

Introduction. Entanglement is an essential resource for quantum information processing.
The non separability of the wavefunction of two distinct systems is the usual hallmark of
an entangled state. However, the symmetric or antisymmetric wavefunctions of collections of
identical particles is inherently non separable. A crucial question then is how to quantify the
entanglement of identical particles. The approach of Zanardi and others [1] is to calculate
the entanglement of the quantum field modes occupied by the particles, Ey. But Ey can be
non-zero even for the case of a single particle. An alternate approach [2] is to examine the non
separability of the wavefunction beyond that required by symmetrization or antisymmetrization.
The difficulty here, however, is that there is no fixed partition into distinct systems.

The approach we take (3] is to insist that the entanglement be accessible in the sense that
it could be used as a resource for quantum information processing. This requires strict partite
separation and the entanglement to be accessible using local operations only. These restrictions
are equivalent to a local particle number superselection rule. Entanglement in the presence
general superselection rules have been explored further in [4].

In this paper, we briefly review our measure of bipartite entanglement of identical particles
[3]. We then explore the relationship between local particle number conservation and reference
phase uncertainty, and discuss the complementarity between the accessible entanglement and
the conservation of local particle number.

Entanglement of identical particles. We imagine two well-separated parties, Alice and Bob,
sharing a collection of N identical particles, such as atoms or electrons etc., which are in the
pure state |¥)ap. Many particles of interest in quantum information processing are composite
(e.g. atoms) and so their number is not conserved in general. However, there are underlying
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quantities that are strictly conserved such as electric charge and lepton number. These underly-
ing conservation laws imply that the number N7 is conserved, where 7 is a conserved-quantity
number (e.g. lepton number) associated with each composite particle. For brevity, we refer in
the following to N being conserved, although the arguments apply to the strict conservation of
Nn.

The entanglement shared between two parties can not increase under the action of local
(separable) operations performed independently at Alice’s and Bob’s sites. Local operations
include unitary transformations as well as non unitary measurements. In contrast, the shared
entanglement can increase under the action of nonlocal operations, such as transporting a
quantum system from one site to the other. Entanglement measures must, therefore, exclude the
possibility of nonlocal manipulations and so particle exchange between the parties is forbidden.
Hence, the number of particles at each site is unchanged by local operations:

[Ni,z/,;] = 0 (l)

where N,- is the particle number operator and f,i is an arbitrary Hamiltonian or observable
local to site . For the shared entanglement to be accessible for use in quantum information
processing, we require that it be able to be transferred (e.g. locally teleported) to a set of
local quantum registers, such as regular (distinguishable) qubits at each site. The local transfer
involves local operations only. After the transfer the entanglement in the local quantum registers
can be measured by conventional means. The accessible entanglement in the shared particle
system is the maximum entanglement that can be transferred to the local quantum registers.
The actual number of particles at each site can be measured after the transfer operation without
disturbing the accessible entanglement. But since N; commutes with all L;, we could equally
measure the local particle number first, and then transfer the entanglement to the local quantum
registers, without altering the accessible entanglement. The measurement of local particle
number N; projects the state |¥) op into the state |¥,)ap with probability P,, where

1| W) ap
VP

and [T, is the projector onto states with n particles at Alice’s site and N — n at Bob’s. Here
|¥,.) ap represents field modes occupied by a fixed number of particles at each site; the entan-
glement of these modes can be transferred to the local registers and is therefore accessible. This
tells us that the accessible entanglement in the state |¥)sp is quantified by [3]:

Ep(|¥)aB) = ZnPnE(l‘I’n)AB) (3)

|¥,)aB , Py = as{(Y|IT,|¥)an , (2)

where F(|¥,)aB) = S(ﬁ&")), S(p) is the binary von Neumann entropy —Tr(plog, /), and ,ﬁf)
is the reduced density matrix ﬁf{l) = Trp[|¥,)aB{¥.|]. In essence, Eq. (3) results from a local
particle number superselection rule in that, due to Eq. (1), the coherences between subspaces
of differing local particle number are not observable by local means.

We now give some examples. We use the second quantized notation where |n, m)ap rep-
resents n particles in a field mode at Alice’s site and m particles in a field mode at Bob’s
site. Sharing a single particle between Alice and Bob, :172(|O, Dap + |1,0)ap), would yield
the projected states |0,1)ap or |1,0)ap with equal probability after a measurement of local
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particle number at each site, and so the accessible particle entanglement is Ep = 0. Inde-
pendently sharing 2 particles, 2(|0,1)as + [1,0)aB) ® (|0, 1)as + |1,0)8), gives the projected
states IO 1 AB® iO 1>AB: Il 0>AB®H 0>AB and T(IO 1)AB®‘1 0>AB+|1 O)AB@IO 1>AB) with
probabilities 1/4, 1/4 and 1/2, respectively. The first two states have no entanglement whereas
the last has 1 ebit and so the average entanglement is Ep = 1/2. This illustrates a striking
feature of Fp in that it is super additive: Ep(|¥) ® |®)) > Ep(|¥)) + Ep(|®)). The super
additivity is a direct consequence of the inherent indistinguishability of the particles.

Reference phase uncertainty. The absence of the entanglement in the shared single-particle
state, 7—(]0 1)ap + |1,0)aB), can be traced to uncertainty in the difference between local ref-
erence phases at the two sites. Reference phase uncertainty has recently been discussed in
relation to continuous variable teleportation (5]. It occurs here when we transfer the state of
the shared particle to a pair of regular (distinguishable) qubits, as follows.

Let Alice have a very large number M >> 1 of ancillary particles in a particular field mode.
An operation is then performed which shares the particles with another mode at Alice’s site to
produce the state Zn_o VPa|M —n,n)s where P, is approximately Poissonian P, e -
and p? is approximately the average number of particles in the second field mode. We can
rewrite this state as being proportional to

[ 10O aTtule)n g ()

where |pe®) = e~ #*/25°% u e"‘oln) /V/n \/— is a coherent state, HM M, In)(n| projects onto
the subspace of states with up to M particles and |¢(6)) = Zn=0 e ™M —n)/VM+1isa
phase state [6]. We now imagine that the particles in the second mode are shared equally with
a further m — 1 modes at Alice’s site via linear “beam splitter” interactions. Each component
IIy|pe®)a in the superposition in Eq. (4) is replaced with (ITp|p'e®)a)®™, approximately,
where p' = p/+/m. A corresponding process is performed at Bob's site with his local ancillary
system, resulting in the combined ancillary state

do

iw(H))A(HMlu’ ) —®

o [ @)a(iulien) oG 6)

The transfer of the state of the shared particle -\%(lO, 1)ap + |1,0)4p) to a pair of regular

qubits |0,0)4p can now be performed using the method of Mayers [7]. We use an underline to
distinguish the states of a regular qubit, |0), [1), (such as two orthogonal electronic states of
an atom) from the Fock states of the field modes |0), |1}, ---. Alice performs a local CNOT
operation using her local shared-particle mode as the control and her local regular qubit as the
target. She then performs a controlled operation with her regular qubit as the control and the
state |1(6))a of the first ancillary mode and her single-particle mode as the target, where the
latter particle is transferred to the first ancillary mode if her qubit is in the state |1) and no
change otherwise. Bob performs the corresponding operations at his site. Tracing over the rest
of the system gives the end result that, with probability 1 — 2/(M + 1), the qubit registers are
in the mixed state:

/ / —19]1 0>AB +e WSIO 1>AB) (EigAB(_l_l_O‘ + ewAB(_O,_lD
27r

(10, 1)aB{0, 1] + [1,0)45(1,0[) - (6)

i

[NSR I
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As predicted [3], there is no entanglement here.

Entanglement and particle number complementarity. It is interesting to see how the entan-
glement can be increased by exchanging particles and violating both the restriction to local
operations and the local particle number superselection rule. The entanglement increases if we
fix the relative phase difference between the two terms in the superposition state on the right-
hand side of Eq. (6). One way of doing this is to measure the phase difference § — ¢ between
the Alice’s and Bob’s coherent states in Eq. (5) and apply a corresponding phase shift to one
of the qubits. The measurement will require an interference experiment that will collapse the
superpositions in Eq. (5) to a specific value of # — ¢. Any resolution of the phase difference
A(O — ¢) requires a minimum uncertainty AN in the number of particles transferred from one
site to the other. The uncertainty in particle number is given by AN = V'N where N is the
mean particle number of the coherent state transferred between sites. The phase difference is
approximately Gaussian distributed with a variance of A?(f — ¢) =~ 1/(2N) for large-amplitude
coherent states [6]. After an ideal phase difference measurement and the local phase shifting
operation, the state of the qubits becomes

5 [10,045(0,1] + € (1L 0V (0,1 +10,1a5{L0]) +[L,0)xs (1,0] (7

where C = e~1/4N) is the average of €'®~#. The entanglement of formation [8] of this state is
given by Ep &~ (1 + |C?) for N > 1. Clearly Er approaches 1 ebit as N, the mean number
transferred, increases. The Heisenberg uncertainty relation for phase and number differences
gives [C* = |(e Uda=d))[2 < (AX(Na — Ng))/[1 + (A2(N4 — Np))] for physical states, where
é; and N; are the Pegg-Barnett phase operator [6] and particle number operator, respectively,
for site 4, and (AZQ) is the variance in Q. In particular, (A?(Ny — NB)) = 2N for the co-
herent states. The entanglement Er can be increased for a fixed mean number N of partlcles
transferred, by preparing particular ancillary states with a larger value of (A2(N A — NB))

Another method for i mcreasmg the accessible entanglement is to share N particles between
Alice and Bob in the state SN cq|N — n, n) aB. For example, Ep = 1 — 1/(2N 4 1) for the
combined state 7—(]0 Dag +(1,00a8) @ TN, Wv’le n,n)ap where, here, N = N/2 is the
mean number of ancillary particles at each site. Other methods are currently being explored.

Discussion. Only manipulations by local operations are permissible when quantifying the
accessible entanglement in a system. Operations that change local particle number are therefore
forbidden and this gives rise to a local particle-number superselection rule. This concept un-
derlies the definition of Ep, the entanglement of identical particles. Transferring particles from
one site to another violates the restriction to local operations and the local superselection rule,
and in doing so increases the accessible entanglement. This demonstrates the complementarity
between local particle number conservation and accessible entanglement.
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Abstract

Bell inequalities have been introduced in physics as a tool to discriminate Quantum
Physics from alternative models inspired from the classical world. But recent results show
that Bell's inequalities have a legitimacy also within Quantum Physics: a state that violate
an inequality is entangled enough to be "efficient” in quantum information protocols. In
this talk, I will focus on one of these results: Bell inequalities are linked to the degree of
distillability of N-qubit entangled states.

Keywords: Bell inequalities, multi-particle entanglement, distillability.

Quantum correlations were noticed to be astonishing by Einstein-Podolski-Rosen and by
Schrodinger back in 1935. In particular, the EPR paper stressed that the predicted correlations
could not be explained by exchange of a signal, since the entangled particles could be at an
arbitrary distance from one another. If signal exchange is excluded, in the classical world
we know only another mechanism to establish correlations: common preparation at the source.
This was ruled out by John Bell in 1964: the predicted quantum correlations violate a condition
(" Bell’s inequality”, BI) that should hold if the correlations were established at the preparation.
All the experiments performed since the Aspect experiment in 1982 confirm quantum physics.

Nowadays, although one should not forget the detection loophole until its direct experimen-
tal test, for most physicists the debate on quantum correlations is closed: entanglement does
ezist, and moreover it has been recognized as a ressource needed to perform tasks that would
classically impossible [1]. The question arises then: is it still worth investigating BI actively?
Of course, the interpretational content of the BI should shape any physicist’s view of the world,
but in the research, shouldn’t we rather concentrate on quantum information processing? The
main message of the present work is good news: there is no need for a disjunctive answer! We
should indeed pay great attention to quantum information processing, and Bell inequalities are
a powerful tool for this investigation. Specifically, it has been proved that:

1. Consider the quantum key distribution protocols with entangled states, in the presence
of Eve’s optimal individual eavesdropping: if the quantum state shared by Alice and
Bob violates a Bell inequality, then the error rate is low enough to allow one-way error
correction and privacy amplification — that is, efficient secret key extraction from the
raw key [2].
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2. If a N-qubit state violates a Mermin-Klyshko inequality, a particular inequality in the
Werner-Wolf-Zukowski-Brukner (WWZB) family (3], it can be used for multi-partite se-
cret key sharing protocols [4].

3. If a N-qubit state violates a WWZB inequality there is some distillable entanglement in
the state; moreover, the amount of the violation is associated to the degree of distillability.
A similar result holds for the Uffink inequality [5].

4. To some two qu-dits Bell inequality one can associate a communication complexity pro-
tocol that works more efficiently with quantum than with classical information [6].

In all these cases, the Bell inequality acts as a detector of efficient entanglement. It is an
interesting open problem, to determine to which extent this holds in general.

Here I focus on item 3 of the previous list. In this extended abstract I will just give the
basic ideas. The references for all the statements below can be found in the published papers

5].
[ The entanglement of a quantum state p is distillable if, out of many copies of it, one can
extract maximally entangled states (two-qubit singlets) using only local operations and classical
communication (LOCC). Operationally, this means the following: if a source S produces a state
which is weakly entangled but distillable, then one can build a new source S’, that is less efficient
but produces strongly entangled states, by simply appending local devices to the ports of S
and allowing the partners to communicate. In other words, if we have S, then we can build
S’ and run any quantum information protocol like teleportation. The notion of distillability is
not trivial because, in all quantum composed systems but C2 ® C? and C% @ C3, there exist
so-called bound-entangled states, that are entangled but not distillable.

Here we study quantum systems composed of N > 2 qubits, described by the Hilbert space
(Cz)®N. In such a case, when the system is composed of more than two sub-systems, the notion
of distillability is not even univoque. The strongest requirement is ”full distillability”: any two
partners can distill a singlet by LOCC. The weakest requirement is ”bipartite distillability”:
the N partners split into two groups of ng and ng = N — ny partners, and the state is
distillable with respect to this partition ns/ng. Specifically: within each group, the most
general transformations are allowed; but only classical communication is allowed between one
group and the other.

Obviously, if N is large, all kind of intermediate situations between ”full distillability” and
"bipartite distillability” can be found. We have demonstrated an interesting, quantitative link
between this hierarchy or degree of distillability and the amount of violation of the WWZB Bell
inequalities [3]. This family of inequalities is characterized by the following two facts: (i) They
are correlation inequalities; more specifically, they are linear functions of correlation coefficients.
In the quantum formalism, the corresponding Bell operator By is a linear combinations of
On, ®0pn, ®...0,,. (ii) Two and only two settings per site are considered: that is, the 1nequa.hty
uses only two settings 7; and 7 for each qubit j.

This family of inequalities has an interesting property. Let us set the local boundary at
Tr(pBy) = 1. Then the maximal amount of violation is Tr(pBy) = 20W-1/2 obtained only
for some inequalities in the family and for the N-qubit GHZ state. In-between, the amount
of violation defines some boundaries. For instance, if M qubits among the N are entangled,
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Tr(pBy) cannot be larger than 2(M=1/2; in other words, if the violation exceeds 2M~1/2 one
can be sure that at least M + 1 qubits are entangled.

The Uffink inequalities are a generalization of the WWZB family: they are also correlation
inequalities using two settings per qubit, but the condition is quadratic, or alternatively, is
linear but an additional parameter is free for optimization apart from the 2N settings.

We can now explain our results, that are summarized in two theorems.

Theorem 1. Any N-qubit state p that violates one of the WWZB inequalities is at least
bipartite distillable (Fig. 1).

In clear: if one can find a Bell operator By in the WWZB family such that Tr(pBy) > 1,
then there exists at least one partition of the N parties into two groups na/ng such that the
two groups can distill a singlet. Loosely speaking, Theorem 1 ensures that in any state that
violates a WWZB Bell’s inequality there is some distillable entanglement, although in order to
extract it some parties may need to join.

Theorem 2. Suppose that the N-qubit state p violates one of the WWZB inegqualities by
an amount of

Tr(pBy) > 2°7° ¢y

for a given integer p such that 2 < p < N. Then any ensemble of p qubits can be divided into
two subgroups, and a singlet can be distilled between these subgroups by means of operations
which are local with respect to the N — p + 2 parties (Fig. 2).

In particular, if Tr(pBy) > 2N_52, then the state is fully distillable. In a similar way, we
could also prove that the violation of the Uffink inequality implies full distillability.

Figure 1: Theorem 1 illustrated for N = 12 qubits. The state [¥) is a two-qubit maximally
entangled state.
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1

Figure 2: Theorem 2 illustrated for N = 7 qubits and a violation measured by p = 4. As in Fig.
1, the hollow arrows represent LOCC operations, and the thick links represent the singlet state.
Any three N —p = 3 qubits can perform a suitable measurement and communicate its result to
the others. The four remaining qubits end up with a state which is bipartite distillable. Note
that only three out of the C7 = 7!/(3!4!) = 35 possibilities are shown.
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Abstract

We consider finite macroscopic systems, i.e., systems of large but finite sizes, which
we believe are poorly understood as compared with small systems and infinite systems.
We focus on pure states that do not have the ‘cluster property,” which means that they
have long-range correlations. Such a pure state is entangled macroscopically, and is quite
anomalous in view of many-body physics because it does not approach any pure state in
the infinite-size limit. However, we often encounter such anomalous states when studying
finite macroscopic systems, such as quantum computers with many qubits and finite sys-
tems that will exhibit symmetry breaking in the infinite-size limit. We study stabilities
of such anomalous states in general systems. In contrast to the previous works, we obtain
general and universal results, by making full use of the locality of the theory. Using the
general results, we discuss the appearance of a classical world, the origin of symmetry-
breaking in finite systems, and a key to realizing quantum computers with many qubits.

Keywords: macroscopic system, cluster property, entanglement, decoherence

A quantum system composed of N qubits can handle data of size 2". In quantum informa-
tion theory, one is usually interested in the asymptotic behaviors of quantities of interest as the
size of the data is increased. To study the asymptotic behavior, one must take the data size
large but finite. Therefore, quantum information theory treats quantum systems with large but
finite degrees of freedom, 1 « N < +00. We call such a system a ‘finite macroscopic system.’

Finite macroscopic systems are poorly understood as compared with small systems and
infinite systems. In particular, there exist anomalous pure states that do not exist in infinite
systems. For example, consider two Néel states of an antiferromagnet consisting of N spins,

|AF.) = [1010---), |[AF_) = |0101---), (1)

where |1) and |0) denote the spin-up and -down states, respectively. In the antiferromagnetic
Ising model, these two states are the ground states of a finite system, having the same energy,
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each approaching a ‘vacuum state’ of an infinite system as N — oo. It is obvious that a
superposition of them,

=L L
IC)=\/§|AF+>+\/§|AF#) (2)

is also a pure state having the same energy as |AF.). However, it can be rigorously proved
that this state does not approach any pure state as N — oo, but approaches a mixed state. A
convenient way of judging this is to examine the ‘cluster property,” which is defined in infinite
systems as follows [1]: A quantum state is said to have the cluster property if (§a(z)db(y)) —
0 as |z — y| — oo for any local operators d(z) and b(y) at = and y, respectively, where da(z) =
a(z) — (a(z)) and 6b(y) = b(y) — (b(y)) [2]. Here, by a local operator at = we mean a finite-order
polynomial of field operators and their finite-order derivatives at position z [3]. For infinite
quantum systems, there is a fundamental theorem [1]: Any pure state has the cluster property.
Since (C|d5,(x)d6,(y)|C) # 0, |C) with N — oo does not have the cluster property (whereas
|AF.) do), hence |C) does not approach any pure state as N — oo. Therefore, |C) with finite
N is a quite anomalous state. Although it may be possible to judge simply by intuition that |C)
is anomalous, because it has a very simple form, we can investigate using the cluster property
whether more complicated pure states are anomalous or not.

Since we are interested in a finite macroscopic system, for which 1 < N < 400, we generalize
the concept of the cluster property to the case of finite systems. It reads roughly as follows:
(The precise definition is described in Ref. [4].) Let Q(e) be the size of the region outside
which correlations of fluctuations of any local operators become smaller than e. We consider
a sequence of systems with various values of N and associated states, where the states with
different values of N are similar to each other [5]. We say that the states (for large N) of the
sequence have the cluster property if for any € > 0 one can make Q(e) < N by taking N large
enough.

The lack of the cluster property means the existence of a long-range correlation(s). There-
fore, for a pure state, it means an entanglement. Since a small number of Bell pairs do not
destroy the cluster property, the lack of the cluster property means a macroscopic entangle-
ment. Among many definitions of entanglement for systems with large N, the entanglement
in the above sense is related most directly to many-body physics. Since many-body physics
has been developed along with many experiments, the entanglement in the above sense is also
related directly to properties of real systems. For example, the following inseparable state has
the cluster property, hence is not entangled macroscopically;

|W) = 1100+ --0) 4 [010 - - 0) + 001 - - 0) + - - - + 000 - - 1)] (3)

\/—— [
Although some other definitions of entanglement classify this state as an entangled state, it
is a quite normal state in many-body physics and experiments: It represents, e.g., a low-lying
excited state of an insulating solid, in which a single Frenkel exciton is excited on the ground
state. Such a state can be easily generated experimentally. It is therefore more reasonable to
classify |W) as a state with infinitesimal entanglement. Furthermore, some other definitions
of entanglement lead to an unphysical result that a Slater determinant of identical fermions
is entangled. In contrast, according to our definition, such a state is not entangled at all.
Moreover, it is guaranteed by the fundamental theorem mentioned above that a macroscopically
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entangled state by our definition is quite an anomalous state in the sense that it does not
approach any pure state as N — o0.
It is convenient to consider additive operators, which is defined as the sum of local operators;

A=Y a(z). (4)

T

For example, if we take a(z) = (=1)%,(x) for a one-dimensional spin systems, A becomes
the z-component of the staggered magnetization. If a quantum state satisfies ((6A4)2) < O(N)
for every additive operator, we call it a ‘normally-fluctuating state’ (NFS). If the correlation
|(6a(z)6a(y))| of any local operator a(-) decays quickly for large |z — y|, then the state has
the cluster property and is an NFS. If, on the other hand, a pure state has anomalously-large
fluctuations as ((§A)2) = O(N?) for some of additive operators, we call it an ‘anomalously-
fluctuating state’ (AFS). It is easy to show that an AFS does not have the cluster property,
hence is entangled macroscopically. Therefore, an AFS is quite an anomalous state.

When studying finite macroscopic systems, we often encounter AFSs. For example, consider
a finite system which will exhibit symmetry breaking as N — co. When the order parameter
does not commute with the Hamiltonian of the system, it is known that the ezact ground state
for finite N is not a symmetry-breaking state but the symmetric ground state that possesses
all the symmetries of the Hamiltonian [6, 7, 8]. The well-known diagram, in which symmetry-
breaking states have the lowest energy, is a result of a mean-field approximation. Anomalous
states, such as AFSs, cannot be obtained by the mean-field approximation. Another example
is states of quantum computers. We show that AFSs also appear during quantum computation
in a quantum computer performing Shor’s factoring algorithm [9]. Therefore, it is important
to explore properties of anomalous states, such as AFSs, of finite macroscopic systems.

For this purpose, we study the stability of quantum states of general macroscopic systems
of finite sizes, against weak classical noises, weak perturbations from environments, and local
measurements [4]. In contrast to the previous works, we obtain general and universal results,
by making full use of the locality of the theory.

We say that a pure state is ‘fragile’ if its decoherence rate I' is anomalously great in the
sense that

[~ KNS, (5)

where K is a function of microscopic parameters, and § is a positive constant. This is an
anomalous situation in which the decoherence rate per qubit, ['/N, grows with increasing N as
~ KN°. In contrast, § = 0 is a normal situation. We show that an NFS never becomes fragile
in weak perturbations from any noises or environments. Hence, the stability of NFSs, which
are typical normal states [10], against decoherence is shown most generally, independently of
details of models, for the first time.

Regarding fragility of AFSs, on the other hand, we find that an AFS becomes either fragile
or non-fragile depending on the spectral densities of the noises or correlation functions in the
environments. Although one might think that anomalous states such as AFSs would always
be fragile, our general result is against such naive expectations. This means that we must go
beyond the decoherence rate in order to study the stability of anomalous states.

For this purpose, we propose the new criterion of stability: We say a quantum state is
‘stable against local measurements’ if the result of a local measurement is not affected by
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another local measurement at a distant point. (The precise definition is described in Ref. [4].)
According to experiences, macroscopic states seem to have this stability, i.e., they do not change
significantly by measurement of only a tiny part of the macroscopic system. Indeed, we show
the following theorem: If a quantum state has the cluster property, then it is stable against
local measurements, and vice versa. Namely, state changes induced by any local measurements
are small for normal states that have the cluster property, whereas anomalous states that do
not have the cluster property, such as AFSs, are changed drastically by measurements of some
relevant local observables.

Therefore, we have successfully clarified what stabilities are related to what anomalies
of quantum states of general systems. Using these general results, we discuss the origin of
symmetry-breaking in finite systems, roles of anomalous states in quantum computers with
many qubits, and the emergence of a classical macroscopic world from quantum theory.
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Abstract
We study the Einstein-Podolsky-Rosen (EPR) correlation in the regime of general rela-
tivity. We show that both acceleration and gravity deteriorate the perfect anti-correlation
of an EPR pair of spins in the same direction. To maintain the perfect EPR correlation,
observers must measure the spins in the appropriately chosen different directions that
depend on the velocity of the particles, the curvature of the spacetime, and the positions
of the observers.

Keywords: Quantum communication, EPR correlation, General relativity

1 Introduction

The Einstein-Podolsky-Rosen (EPR) correlation [1] is the non-local quantum correlation that
originates in the entanglement. It is not just a strange feature of quantum theory but also offers
a vital resource in quantum communication such as in quantum teleportation [2]. Therefore,
for precise quantum communication, it is important to understand properties of the EPR
correlation in various physical situations. Recently, the entanglement have been discussed
in the regime of special relativity [3, 4, 5, 6, 7] using the Lorentz transformation of spin.

In this paper, we consider the EPR correlation in the regime of general relativity by in-
troducing the gravitational field. Our motivation is that in the context of general relativity
the spin of a particle is defined only locally with respect to the local inertial frame. Note that
the gravitational field in general relativity is described by the curved spacetime which entails
a breakdown of the global rotational symmetry. We clarify how to extract the non-local corre-
lation for quantum communication from the locally defined spins. As an example, we consider
circularly moving particles near the Schwarzschild black hole.

2 Local Inertial Frame

Consider a massive spin-1/2 particle in the curved spacetime with metric g,.(z). To discuss
the spin state of the particle, we must introduce the local inertial frame at each point. The
local inertial frame is represented by the vierbein {e,*(z)} defined by

eap(m) €b‘/(l') g;w(x) = Tlab, (1)
1E-mail: terasima@stat.phys.titech.ac.jp
2E-mail: ueda@ap.titech.ac.jp

—283—



where 7., denotes the Minkowski metric diag(—1, 1, 1, 1) and repeated indices are to be summed.
Here and henceforth, it is tacitly assumed that Greek letters run over the four general coordinate
labels and Latin letters run over the four local inertial coordinate labels 0, 1, 2,3. The vierbein
specifies the general coordinate transformation from the general coordinate system z* to the
local inertial frame z® at each point and transforms a tensor in the general coordinate system
into that in the local inertial frame. The inverse of the vierbein {e?,(z)} is defined by

eap.(m) eau(x) = 6;1.V’ eap("r) eb#(x) = 5ab' (2)

The choice of the local inertial frame is not unique since the inertial frame remains inertial
under the Lorentz transformation. Thus, the choice of the vierbein has the degree of freedom
of the local Lorentz transformation. The spin-1/2 particle in the curved spacetime is defined
as a particle whose one-particle states furnish the spin-1/2 representation of this local Lorentz
transformation rather than the general coordinate transformation.

3 Spin Precession

With the local definition of the spin, the motion of the particle gives rise to a spin precession
due to a change in the local inertial frame and due to the acceleration by an external force.
Suppose that the particle is located at a spacetime point z# and is moving with four-velocity
u#(z) normalized as v*(z)u,(z) = —c*. This motion is not geodesic in the presence of an
external force. The four-momentum of the particle with mass m becomes p*(z) = mu*(z) in
the general coordinate system, and it becomes p*(z) = €°,(z) p*(z) in the local inertial frame
at that point z*. After an infinitesimal proper time dr, the particle moves to a new point z'* =
z# + u*(z)dr. In the local inertial frame at this new point z’*, the four-momentum becomes
p*(2') = p?(z) + 6p*(z) due to a change in the local inertial frame and due to acceleration
caused by the external force. The resultant change p®(z) — p®(z) + dp*(z) is an infinitesimal
Lorentz transformation 6%, + A%,(z)d7, where

1 a a a
Ny(2) = =~ [a®(z) po(z) ~ p*(2) as(z) | + Xx%(z) (3)
with the four-acceleration a®(z) and the change in the local inertial frame x*,(xz) defined by
a*(z) = €, (z) [ (2)Vour(z)],  x%(z) = v (z) [&)(z) Vet (z) ] . (4)

Note that the Lorentz transformation rotates the spin according to the Wigner rotation [8].
When the four-momentum of the particle is p*, the Wigner rotation caused by the Lorentz
transformation A% is given by

4(A,p) = [L7H(Ap) AL(D)]",, (5)
where L% (p) is the standard Lorentz transformation defined by
Lo(p) =7 L%(p) = Li(p) =p'/me, Liy(p) = s+ (v = 1)p"p"/ 181", (6)

with 7 = +/|p]? + m?c?/mc and i,k = 1,2,3. Substituting Eq. (3) into Eq. (5), we find the
spin precession during the motion of the particle.
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Figure 3: An EPR gedankenexperiment in the Schwarzschild spacetime.

4 EPR Correlation

We now consider the EPR correlation in the gravitational field. To be specific, we consider cir-
cularly moving particles at radius r on the the equatorial plane in the Schwarzschild spacetime.
In the spherical coordinate system (t,r, 6, ¢), the metric of the Schwarzschild spacetime reads

1
f(r)

where f(r) = 1 — (ry/r) with r, being the Schwarzschild radius, and the four-velocity of the
circularly moving particles are given by

ut(z) =

gudrtdr” = —f(r)Edt® + dr? + r?(d8”* + sin® 8d¢?), )

cosh ¢ ’ ub = icsinhf
f(r) T

where £ is the rapidity in the local inertial frame. Since this motion is not geodesic, we assume
that an external force is applied to the particles in order to sustain the circular motion. Two
observers and an EPR source are assumed to be static, whose azimuthal angles ¢ are given
by £ and 0, respectively (see Fig. 3). The static local inertial frame on which the observers
measure the spins is specified by

: 8)

1

(@) = - ;m’ @) =VIT,  W@=7  ef)=—— ()

First, the EPR source emits a pair of entangled particles to opposite directions with four-
momenta p% (z) = (mecosh§, 0,0, mesinh§) in the spin-singlet state,

25125 Dlee 1 122, et ) (10)

which is defined in terms of the local inertial frame at ¢ = 0. The particles move with the
spin precession and reach the observers after the proper time r®/csinh¢. Then, in terms of
the local inertial frames at ¢ = ® and —®, the state is described as

= [cose( [P Dl 1) = 1p%, DIp?, 1) ) +sin® (163, DIp%, 1) + 9%, DI, 1) ) ] (11)
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where
rs

2rf(7“)] flr)- (12)

Since the spins are rotated in opposite directions on the equatorial plane through the angle ©,
the spin-singlet state is mixed with the spin-triplet state. Therefore, if the spins are measured
in the same direction with respect to the local inertial frames at ¢ = =&, the perfect anti-
correlation is deteriorated. To extract the perfect EPR correlation, the observers must rotate
the directions of measurement in opposite directions through the angle ©. We emphasize that
this angle © is not equal to the trivial rotation angle of the local inertial frames ®. In the
non-relativistic limit of ¢ — oo and r;, — 0, the angle © reduces to . However, in general
relativity, the angle © is different from ® due to the curvature of the spacetime and due to
the acceleration by the external force. Even if the spins are measured in the same direction
(expected in non-relativistic theory), the perfect anti-correlation is deteriorated.

If there is an uncertainty in identifying the position of the observers @, it is difficult to
extract the EPR correlation near the event horizon r ~ 1, since the ratio ©/® is very large.
This is because the spin precession is extremely rapid near the event horizon due to the strong
gravity. Actually, right on the event horizon r — 75, the ratio ©/® becomes infinite. This
divergence originates from the singularity of the static vierbein (9) and that of the circularly
moving four-velocity (8). To circumvent these singularities, the observers should use a different
local inertial frame and different particles to extract the EPR correlation near the event horizon.

© = dcoshé [1 -

5 Conclusions

In conclusion, we have shown that both acceleration and gravity deteriorate the perfect EPR
correlation if the spins are measured in the same direction. To maintain the perfect EPR
correlation, the spins must be measured in the directions that depend on the velocity of the
particles, the curvature of the spacetime, and the positions of the observers. Near the event
horizon of a black hole, these appropriate directions depend so sensitively on the positions of
the observers that even a very small uncertainty in the identification of the observer’s position
leads to a fatal error in quantum communication. The choice of the vierbein and four-velocity
is important to communicate non-locally in the curved spacetime using the EPR. pair of spins.
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Abstract

Polarization entangled multi-photon states obtained from parametric down-conversion
are used for the first four observer Bell-experiment. While the violation of a Bell-inequality
is a possible tool to analyze entanglement, the detection loophole prevents one to use such
experiments as tests of local realism. We present a scheme to circumvent the problem in
an atom optics experiment.

Keywords: Entanglement, Bell-type experiments

The process of spontaneous parametric down-conversion (SPDC) offers currently the best
way to generate entangled photon pairs. There, photons from an intense light beam are con-
verted to pairs of daughter photons in an optically nonlinear material. In this conversion process
conservation laws cause strong correlations between various properties of the generated photons.
Particularly, type-I1 SPDC offers a method to directly generate pairs of polarization-entangled
photons [1]. Recently, pulsed down-conversion enabled the simultaneous observation of more
than just two photons. This formed the basis for first experiments with 3- and 4-photon GHZ
states [2], where interferometric setups were used to generate the desired multiphoton entan-
glement out of two pairs of photons.

Four-photon entangled states can be also obtained directly from parametric down conversion
without overlapping single photons [3, 4]. Here we analyze the properties of this four-photon
state. The high stability of the source enabled the first experimental violation of the local
realistic condition of a generalized Bell-inequality for four observers. However, the detection
loophole prevents one from using such measurements as tests of local realistic theories. We
present a scheme which should allow to close this loophole by using the entanglement between
a pair of atoms, which can be detected with high efficiency.

Analyzing the process of SPDC, one observes that not only pairs of entangled photons can
be emitted. The emission of four photons becomes possible in a second order process, when two
photons of the pump light are simultaneously downconverted into two spatial modes ag and by
(Fig. 1). The remarkable feature of this four-photon state is that it is not simply the product
of two entangled pairs. Due to their bosonic nature, the emission of two photons with identical

'E-mail: harald.weinfurter@physik.uni-muenchen.de
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polarization into the same direction is twice as probable as the emission of two photons with
orthogonal polarization. This very fundamental interference causes entanglement between the
four photons emitted by type-II SPDC.

To make the four-photon entanglement accessible, we split each of the two outputs of the
type-II SPDC by non-polarising beam splitters. Furthermore, we select events such that one
photon is detected in each of the resulting four outputs (a, b, ¢, and d) of the beam splitters.
The state of the four detected photons is then given by [3]:

|xp<4)>abcd=\/;§[ \HHVV) +|VVHH)

~( [HVHV) +{HVVH)+
\VHHV) +|VHVH))abed (1)

The four entries in the kets describe the polarisation (horizontal-H and vertical-V') of the
photons in the arms a, b, ¢, and d. In order to obtain the particular form of the above state
it is necessary to compensate birefringence in the SPDC source and of the beam splitters
with compensation crystals right behind the SPDC crystal and additional quartz plates in the
reflected output arms of the beam splitters (not shown in Fig. 1) such that the two-photon
state |¥~) can be observed between arms a and c, a and d, etc.

One can write down a Bell inequality which summarizes all possible local realistic constraints
on the correlation function for the case of each local observer measuring the polarizations along
two alternative directions [3, 5]. For this purpose the observers in the four modes (z = a,b, ¢, d)
perform measurements corresponding to a polarization observable with eigenvectors |l,, ¢;) =
V1/2(|R); + l€*=|L);), and eigenvalues I, = +1,—1 and thereby obtain the value of the
correlation function defined as the expectation value of the product of the four local polarization
observables.

Let us introduce the shorthand notation E(¢¥, ¢f, ™, ¢7) for the correlation functions de-
duced from the observed count rates for the full set of 2* local directions, with k,[,m,n=1,2
denoting which of the two alternative phase settings was chosen by the local observer measuring
in arm z (z = a,b,¢,d). The generalized Bell inequality gives an upper bound for the observed
correlations in a local realistic description and reads 5]

o 1
5‘“;@‘2 (2)

Sa,8p,5¢,54=%1

k kol
Z SaSbSZnS:iLE( a7¢b: 'ic'n,qsg) <L

klmmn=12

The maximal violation of this inequality for state (2) is obtained when three observers,
(z = a,c,d) perform polarization analysis along +7/4 and the observer in mode b chooses
between ¢} = 0 or ¢? = w/2. Then the quantum prediction is as high as ngz/{ = 1.886 (3]
and results in a violation of the inequality (9), whenever the correlation function has visibility
greater 53%. For a four-photon GHZ state one obtains Sg 1)w = 2v/2 and a critical visibility of

1/v/38 = 35%.
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Figure 4: Experimental setup to observe four-photon entanglement obtained directly from type-
IT down conversion. The four photons are emitted from the BBO crystal into two spatial modes
ao and by, passed through 3 nm interference filters (F), and distributed into the four modes
a,b,¢,d by 50% — 50% beam splitters (BS). To characterise the polarisation-entangled four-
photon state |¥*)) (2), a polarisation analysis in various bases is performed in each mode using
A/4 and A/2 plates in front of polarising beam splitters (PBS) and single photon avalanche
detectors. Joint photodetection events in the four arms are recorded in a multi-coincidence
unit.

Fig. 2 shows all 256 fourfold coincidence probabilities necessary for the analysis. They
were recorded in blocks of 16 coincidence rates corresponding to the 16 phase settings, with an
average measurement time of 1.5 hours per frame. For evaluating the generalized Bell inequality
we used the raw data without any correction for background, collection or detection efficiency.
The resulting value $®) = 1.66440.028 clearly violates the boundary for local realistic theories
and thus proves the entanglement of |¥®)),

This value is also higher than the bound for bipartite entanglement (S,(y?;arme < V2) [6)
and thus confirms that the observed state has at least tripartite entanglement. Yet, in order
to unambiguously test four-particle entanglement, the Bell inequality is not suited, as there
are tripartite entangled states giving values up to St(fi)partite < 2. Although the possible tripar-
tite entangled states do not exhibit the observed correlations and are thus ruled out by our
measurements, the recently developed entanglement witness would be the proper tool [7].

In spite of this clear violation of the Bell-inequality the detection loophole rules out any con-
tradiction with local realistic theories. Even if the required detection efficiency becomes lower
in multi-party experiments, the experimental difficulties in generating entanglement between

many separated observers will prevent conclusive results from such multi-photon experiments.
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Figure 5: Fourfold coincidence probabilities for the evaluation of a four-particle Bell inequality.
For the sixteen settings of the analyzer phases @,, ¢, @, 4, the normalized count rates piimn
obtained are used to evaluate a generalized Bell inequality (9), leading to S*) = 1.664 + 0.028.
This clearly exceeds the bound of 1 given for local realistic theories and proves the entanglement
of the observed state. For this measurement the acquisition time for each individual frame was
1.5 hours, with about 670 fourfold coincidence events per hour.

We propose to use the entanglement between the internal state of a single trapped atom with
the polarization of an emitted photon as the basis for a loophole free experiment (§]. Entangle-
ment swapping of two such photons will entangle the internal, long lived states of two remote
atoms which in turn can be detected with high efficiency. We will present the scheme of this
Bell-type experiment and the first tests of a trap for single Rubidium atoms.

This work was supported by the EU-Project RamboQ (IST-2002-6.2.1) and the Deutsche
Forschungsgemeinschaft.
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Abstract

In the rapidly advancing science of quantum information our experimental contribution
has concentrated on the interface between strong pulses of light with macroscopic samples
of cesium atoms. In the talk we review the interaction between polarized light and the
atomic ground state spin, and we explain how this interaction enable us to create an
entangled state between two samples of cesium atoms. We also give an outlook for future
experimental progress.
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Abstract

New Bell inequalities will be presented, and it will be shown that their violations can
be utilized to beat some classical limits in communication complexity problems. All this
will be shown for systems involving entanglement of sub-systems which are qubits as well
as for ones of a higher dimensionality.
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Abstract

Points and walls are basically trivial objects in classical mechanics, but they are far
from trivial in quantum mechanics due to their arbitrariness admitted theoretically. We
discuss briefly how the arbitrariness arises when quantized, and mention several intrigu-
ing quantum phenomena which become available if the arbitrariness can be controlled.
These include duality, supersymmetry, Berry phase, quantum anholonomy, copy by tun-
neling/caustics, and quantum force as a statistical effect of a wall.

Keywords: Quantum singularity, Duality, Berry phase, Quantum tunneling

1. Family of singular points and walls in quantum mechanics

In classical mechanics, a point (or a wall without thickness) will have no characteristics and
is basically trivial. In contrast, quantum mechanics allows for a U(2) family of them on a line,
for instance, because the singularity caused by the point or wall can be dealt with boundary
conditions that preserve the unitarity [1] but such conditions are not unique: there exist a U(2)
family of conditions and, accordingly, the U(2) family for points and walls. Thus, quantum
points or walls are significant physically and can exhibit a variety of phenomena which have
no classical counterparts. In view of the recent progress of nanotechnology, we may soon be
able to manufacture objects that can be regarded as points and walls — possibly in the form of
quantum dots or junctions of semiconductors — so that such exotic phenomena can be observed
in laboratories. Here we mention some of these.

2. Duality, supersymmetry, Berry phase and quantum anholonomy

The U(2) family of quantum points are described by four parameters, which are character-
ized by their distinctive physical roles: two of them determine the energy spectra of the system
under the points while the other two specify the scattering (reflection and transmission) prop-
erties [2]. Roughly speaking, the parameter space U(2) is a product of the spectral space given
by a torus 7% (more precisely, it is 7%/Z, which is a Mdbius strip [3]) and the isospectral space
given by a sphere S? (Figure 6). The structure of the family then allows us to play around
with the quantum points by observing what happens if we change the parameters properly.
The simplest of them occurs when we compare two ‘antipodal’ points in their spectra and the
strengths of interactions. Here we find that their spectra are exactly the same even though
their strengths of interactions are the reciprocal of each other, which is Duality in the spectrum

YE-mail: izumi.tsutsui@kek.jp; http://research.kek.jp/people/itsutsui/index_e.html
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under the strong-weak coupling exchange [4]. One can then find a subfamily forming a circle S*
on the torus where the above phenomenon takes place on their own. At these self-dual points,
all energy levels are doubly degenerate and the system possesses a certain supersymmetry [5].

10

z

SAgecoreans

LA

/

Vg
- i
— e

O-N.. i

T T T T
-2 -1 (3\ 1 2
——SYyM X

=+« antisym self-dual line

AjseoDPOsOWNMD

.
PYXliace
134 '

/

Figure 6: (Left) U(2) parameter space as a product of a torus and a sphere. Changes along the
loop on these spaces produce the Berry phase and the quantum anholonomy. (Right) Energy
levels at ‘antipodal’ points on the torus. At the centre is the self-dual point where the system
acquires supersymmetry.

A less trivial phenomenon arises if we control the quantum points continuously along a loop
on the isospectral sphere S? while fixing the point on the spectral torus 72, After completing
the loop, one finds that the state acquires an extra phase proportional to the area encircled by
the loop. This is nothing but the Berry phase associated with the loop, where the phase is given
by the magnetic flux of a fictitious Dirac monopole at the centre of the sphere S?. Moreover,
if we instead take a nontrivial loop on the torus T2 while fixing the point on the sphere 52,
then after the loop is completed we find that the energy levels are shifted without changing the
spectrum. This is an example of phenomena called quantum anholonomy which may be of use
in pumping energy out of the system indirectly by manipulating the parameters [2].

3. Quantum tunneling and copy

In the presence of a wall represented by a potential V(z) which diverges at a point (like,
e.g., the Coulomb potential), we may pick up the singular point and treat it similarly to
the aforementioned quantum points. This means that such potential singularities can also be
characterized by the U(2) group [6], and hence the phenomena mentioned above can occur
here as well. Because of the potential, however, we have more interesting possibilities, one of
which occurs when we combine quantum tunneling with ‘caustics’ which are originally found
in geometrical

optics [7].
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Classically, caustics arise when the final position becomes insensitive to the initial velocity,
and this leads to recurrence of states in quantum mechanics. The simplest example of caustics
is found in the harmonic oscillator, but it is known that caustics remain even if the oscillator
couples with the square inverse potential as V(z) = m—;“ixQ + g;c%. When the coupling constant
g is large, the right and left half lines, z > 0 and z < 0, are separated physically and no
information can be transmitted between them. However, if g is sufficiently small and satisfies
0<g< %i"j, then quantum tunneling is allowed even though the potential at = 0 is infinitely
high. Remarkably, one finds in this case that the recurrence occurs in duplicate, that is, the
original profile of a state on the right half z > 0, say, is reproduced on the left z < 0 as well
as on the right z > 0 at later times. This implies that one may ‘copy’ a profile prepared on
one side to the other between subsystems which are completely separated classically [8]. (This
copying process in not in conflict with the no-go theorem [9] of quantum cloning, because the
process takes place in one Hilbert space rather than two as presumed in the theorem.)

4. Quantum force on a partition wall

Consider a quantum well with a partition wall at the centre of the well (Figure 7). If we
put identical particles into the well so that the same number of particles are distributed on
the right and the left of the partition wall, then the physical property of the wall will show
up in various statistical quantities. Take, for simplicity, the Dirichlet boundary conditions for
the left and right sides of the well, and suppose that the partition wall enforces the Dirichlet
boundary condition for its left and the Neumann for its right (which is specified by a particular
element of the U(2)). If we measure the net force AF(T) acting on the partition under various
temperatures 7', we may expect that it has a nonvanishing value AF(0) in the low temperature
limit 7" — 0 due to the difference in the spectrum of the subsystems on the right and left. This
can be confirmed easily by direct computations.

On the other hand, we also naively expect that AF(T) will vanish in the high temperature
limit T — oo because the difference of the spectrum due to the boundary conditions will
become irrelevant in the classical regime. This, however, is not the case: in fact, we observe
that AF(T) decreases up to a certain temperature to achieve a minimum and then increases
indefinitely, e.g., for the bosonic particles, we find asymptotically AF(T") ~ +/T for T — oo [10].
Interestingly, the force AF(T) is generated purely by the boundary effect which is available
only at the quantum level, but nonetheless it does not vanish in the high temperature limit
where the statistics becomes classical (the Bose-Einstein is replaced in effect by the Maxwell
distribution).
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Abstract

The appearance of non-locality in quantum entangled states that is clearly demon-
strated in the Bohm approach to quantum mechanics led Bell to ask whether all theories
that attributed properties to local entities would exhibit non-locality or whether this fea-
ture was only a particular property of the Bohm approach. As Bell subsequently showed
this feature is quite general and not confined to the Bohm approach. In spite of the
interest generated by entangled states over the last two decades, there has been little
interest in the Bohm approach and it is perceived as being in some way flawed. Yet all
the predictions of the standard approach are ezactly reproduced. Indeed Bohm was only
re-expressing the Schrodinger equation in terms of its real and imaginary parts and then
exploring what the resulting equations imply for the physics. We find that one of the
equations has a form very similar to the Hamilton-Jacobi equation of classical mechanics,
which makes a comparison between the two approaches straightforward. The difference
arises from an extra term that looks like a new form of potential, the quantum potential.
It is this term that can completely account for the difference in the behaviour of particles
in both cases. Furthermore this quantum potential is a mathematical expression of the
non-locality that appears in the quantum domain. The quantum potential vanishes in the
classical domain leaving our familiar local classical world.

With all this going for it why then is there a general dismissive attitude to the Bohm
interpretation? It cannot be the weird properties that have to be attributed to the quan-
tum potential because the quantum phenomena are themselves very strange and ‘counter
intuitive’. May be the basic problem is the belief that the uncertainty principle implies
that because we cannot measure simultaneously position and momentum, the motion of a
quantum particle cannot be described in an 73" x p3V phase space, the natural state space
of classical mechanics. But that is precisely what the Bohm approach does and inciden-
tally exactly what the Wigner-Moyal approach does as well. The latter also reproduces
ezactly the standard quantum results. How is this possible?

The reason why such a description is possible in both cases is because the variables
used are not eigenvalues of the usual z and p operators. In the case of the Wigner-Moyal
approach, the z and p operators are constructed from a pair of operators corresponding
to a pair of points in configuration space. In this case z and p are the mean operators z =
(z1+z2)/2 and p = (p;+p2)/2. These operators commute and therefore the corresponding
phase space is constructed from the simultaneous eigenvalues of these operators. In the
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Bohm approach the z is the eigenvalue of the = operator, while the p turns out to be a
mean momentum p already defined in Moyal's seminal 1949 paper. This variable is not
an eigenvalue of the p operator. Moyal even shows that the equation that transports p is
the real part of Schrodinger equation used by Bohm. Thus the Wigner-Moyal approach
already implicitly contains the quantum potential although Moyal does not draw attention
to it. Thus there is an intimate relation between the Wigner-Moyal approach and that of
Bohm. They are each constructing z-p phase spaces but these phase spaces are different.

How then are we to understand the appearance of different phase spaces? To un-
derstand why this is possible let us assume that primary relevance can be given to the
algebraic structure of the operator formalism and proceed in the spirit of non-commutative
geometry. To explain what I mean by this consider the traditional approach in which one
builds up a field theory by first defining a topological space, giving it a local differential
structure and then imposing a metric before building a structure of functions on that
space. Gel'fand shows that we can also proceed in the opposite direction. If we start
with the algebra of functions first then, provided this algebra is commutative, we can
abstract from the algebra all the properties of the underlying space. The points of the
space are the maximal ideals defined by the functions. However if the algebra is non-
commutative then there is no unique underlying space and we have to be content with
what are known as ‘shadow manifolds’. The phase spaces are then a direct consequence
of this fact. Thus the Bohm approach can be considered as just one of these shadow man-
ifolds. Here the position representation has been singled out. There are others depending
on other representations and indeed Bohm-type interpretations can be constructed for all
such representations thus restoring the full symplectic symmetry to the Bohm approach.
The apparent lack of this symmetry has been the source of criticisms of the approach.

The algebraic approach requires the minimal left and right ideals to play the role of
the wave function and its complex conjugate. Then for the single particle, the algebraic
equations equivalent to Schrédinger’s equation are

S 1
+ 5[/)3 Hly =0

dp _ d
?B—E + [p, H]- = Oand P

where p is the density operatorand S is a phase operator. No quantum potential appears in
either of these two equations which, it must be stressed once again, are operator equations.
However once we project these equations into a representation then the first equation
gives the conservation of probability while the second becomes the quantum Hamilton-
Jacobi equation used by Bohm which contains the quantum potential explicitly. Thus
we see that the quantum potential is essentially an apparent potential appearing because
we are projecting the quantum process into an inappropriate space for its description.
It is reminiscent of the gravitational force in general relativity where the geodesic in
curved space becomes a curve when it is projected into a flat Euclidean space. Unlike
the gravitational force the apparent quantum force is non-local and only acts between
particles involved in the entangled state.

The particular representation chosen is determined by the experimental set up and
therefore the apparent force is determined by the details of experimental arrangement.
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This is in exact accordance with Bohr’s position when he insists the ”word phenomenon
should refer exclusively to the observations obtained under specified circumstances, in-
cluding an account of the whole experimental arrangement . Our proposal is that this
can also be understood if we regarded the quantum potential as an information potential
which is active in the dynamics of the evolution of a system modifying its behaviour in
response to the significant environmental conditions in which the system finds itself. It is
in terms of this notion of active information that the evolution of quantum processes can
be given meaning. Indeed it then accounts for the non-locality in terms of the systems
responding to a common pool of information and as Maroney and Hiley have shown, it
also can account for the recently reported teleportation experiments.

[More detailed background to this work can be found at www.bbk.ac.uk/tpru]
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Abstract

Heisenberg’s reciprocal relation between position measurement noise and momentum
disturbance holds, if those noise and disturbance are statistically independent of the state
of the measured object, but otherwise can be violated. We discuss two distinct types of
possible violations of Heisenberg’s relation, and explore the role of entanglement, in the
light of the universally valid reformulation of the Heisenberg’s relation recently obtained
by the present author.

Keywords: Measurement, Uncertainty, Noise, Disturbance, Entanglement

Heisenberg’s uncertainty relation for position measurement noise and momentum distur-
bance can be formulated as follows: For every measurement of the position @@ of a mass with
root-mean-square (rms) noise €(Q), the rms disturbance n(P) of the momentum P of the mass
caused by the interaction of this measurement always satisfies the relation

(Qn(P) > 2. 1)

2
Heisenberg [1] explained the physical intuition underlying the above relation by discussing
the - ray microscope thought experiment, and claimed that this relation is a straightforward
consequence of the canonical commutation relation QP — PQ = ih. Shortly after, Heisenberg’s
argument is refined by Kennard [2], who introduced the notion of standard deviation and proved
the relation

o(Qo(P)> %, (2

where ¢(X) stands for the standard deviation of an observable X = Q, P in a given state.
Many text books have associated the formal expression of “Heisenberg’s uncertainty rela-
tion” to Eq. (2), but also associated the physical meaning of “Heisenberg’s uncertainty relation”
to Eq. (1). However, the universal validity of Eq. (1) has been criticized in many ways. In fact,
the “resolution power” of the y ray microscope cannot be identified in any interpretation with
the standard deviation of the mass position in the state to be measured. Moreover, no one has
succeeded in proving Eq. (1) for general measurements even by applying Eq. (2) not only to
the mass state but also to the apparatus state. Undoubtedly, this has caused serious confu-
sions among physicists on the status of this leading principle of quantum mechanics. Recently,
the present author [3, 4, 5] gave rigorous and general formulation for the notions of noise and
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disturbance and proved the new relations for Heisenberg’s uncertainty principle that includes
Eq. (1) and Eq. (2) as special cases.

It is well-known that every measuring instrument Z is associated with a probabiltiy operator
valued measure (POVM) IT and a trace-preserving completely positive map (TPCPM) T'. If the
input state is p, the probability of obtaining the outcome in a Borel set A is given by tr[II(A)p]
and the output state is given by T'p. Then, the first and the second moment operators of II,
denoted by O(I1) and O®)(I1), are defined by

om = [zdnfa) 3)
o@(I) = / 22 dll(z). (4)
R
We define the distance d,(I1, A) of POVM II from observable A in p by

d(II, A) = tr[0P(I) — O(IN)A — AO(IT) + A%)p]'/%. (5)

Then, the rms noise of this instrument for measuring observable A in the input state p is given
by

e(4,p) = dp(IL, 4), (6)

and the rms disturbance of an observable B caused by this instrument in the input state p is
given by

n(B,p) = dy(T"E®, B), (7)

where T*E® stands for the POVM defined by (T*EB)(A) = T*[EZ(A)] for any Borel set A.
We now introduce the mean noise operator n(A) for observable A and the mean disturbance
operator d(B) for observable B defined by

n(4) = O(l) -4, (8)
d(B) = O(T"E®)-B. (9)

Then, we obtain the model-independent universally valid noise-disturbance uncertainty relation:
Every instrument satisfies the relation

(A, oIn(B,p) + 51 tr ({n(A), Blp) + e {[4,d(B)]o} 2 5 tr(4, Blo) (10)

for any state p for which all the relevant terms are finite.

We say that an instrument 7 makes an unbiased measurement of A, if the mean output
is equal to the mean of the observable A in the input state, i.e., O(II) = A. We say that an
instrument 7 makes an unbiased disturbance of B, if T does not change the mean of B, i.e.,
O(T*EB) = B. We say that 7 has statistically independent noise for A, if the mean noise
does not depend on the input state p, or equivalently, if the mean noise operator n(A) is a
constant operator, i.e., n(A) = rI for some r € R. We say that T has statistically independent
disturbance for B, if the mean disturbance does not depend on the input state p, i.e., d(B) = I
for some r € R.
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The model-independent universally valid noise-disturbance uncertainty relation leads to
rigorous conditions on what instrument satisfies Heisenberg’s noise-disturbance uncertainty
relation: An instrument I satisfies Hetsenberg’s noise-disturbance uncertainty relation, i.e.,

(4, 0)0(B,p) 2 3] tx(4, B)o)

for any state p for which all the relevant terms are finite, if one of the following conditions
holds:

(i) The mean noise operator commutes with B and the mean disturbance operator commutes
with A, i.e.,

[n(4), B] = 0, (11)
[d(B),A] = o. (12)

(ii) The instrument I has both statistically independent noise for A and statistically inde-
pendent disturbance for B.

(1ii) The instrument I makes both unbiased measurement of A and unbiased disturbance of
B.

By applying the Schwarz inequality to all terms in the left-hand-side of Eq. (10), we now
obtain the generalized noise-disturbance uncertainty relation: For any instrument I, we have
the relation

«(4,0)1(B, p) + (A, p)o(B, p) + o(A, p)n(B, ) > 3] tr([A, Blo) (13)

for any state p for which all the relevant terms are finite.
From the above, we have the following trade-off relations for precise A measurements or
B-non-disturbing measurements: If the instrument Z does not disturb B, we have

(A, 9)o(B,p) > 5|tx((4, Blo)| (14)

If T precisely measures A, we have

o(4, p)(B,p) > 3| tx([A, Blo)| (15)

For finitely accessible input states, i.e., 0(Q),o(P) < oo, Eq. (13) excludes the possibility
of having both ¢(Q) = 0 and n(P) = 0 simultaneously. However, it is possible to have n(P) = 0
uniformly over every input state or alternatively to have ¢(Q) = 0 uniformly. In both cases,
Eq. (1) is violated uniformly with €(Q)n(P) = 0. Thus, we have two types of uniform violations
of Eq. (1); we shall refer to the former as type I and the latter as type II.

In type I violations, by substituting n(P) = 0 in Eq. (13), we have

d@dng. (16)

The above relation even allows to have (@) — 0 with o(P) — oo, and, as shown below, we
have a model realizing relations n(P) = 0 and €(Q) — 0 with o(P) — co. In this case, the
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small noise is compensated not by the large momentum disturbance but by the large initial
momentum uncertainty. From Eq. (2), this means that without disturbing the momentum the
position can be measured as precisely as our initial knowledge on the object position. This
rather natural possibility has been excluded from Eq. (1).

Similarly, in type II violations, ¢(Q) and n(P) are constrained as

o@n(P) 2 5,

(17)
so that the small momentum disturbance is compensated by the large initial position un-
certainty, and actually a model in Ref. [6] realizes relations ¢(Q) = 0 and n(P) — 0 with
0(Q) — oo. From Eq. (2), this implies the possibility of the precise position measurement with
only disturbing the momentum as much as the initial momentum uncertainty. Since Eq. (1) has
prohibited the precise position measurement without infinite momentum transfer, this opens a
new possibility of precision measurements of the mass position and similar physical quantities.

A Type I violation can be obtained by reformulating the Einstein-Podolsky-Rosen thought
experiment [7]. Let the measured system be a two-particle system comprising one-dimensional
particles 1 and 2 with positions @, @2 and momenta Pj, P, respectively, and consider the
following process of measuring (J;; our measuring apparatus is assumed to couple only to
particle 2 and to precisely measure ()2, but then to output this measured value of @, as the
outcome of the indirect ); measurement. This is generally not a good measurement of Q;
however, the interaction for this measurement does not disturb Py, so that n(P;) = 0 uniformly.
In this case, we can show that €(@Q1)* = ((Q; — @2)?) for any input state. On the other hand,
for any small o > 0, we can choose a two-particle state ¢ such that ((Q; — @2)?) < a?. Thus,
in all such states, we can measure ); with €(Q;) < a without disturbing P;.

The importance of the above example is the abundance of such state 1. Let H; be the
state space of particle ¢ for 2 = 1,2. There exist a unitary operator U on the space H; ® H,
and a state n € Hs such that for every n the state ¥ = U(n ® 7') satisfies the condition
(@1 - @) <o

A measurement is of type II violation if and only if for any A the operator II{(A) is the
spectral projection of @) corresponding to A. All the possible state changes associated with
those measurements of type II violation were described in Ref. [10]

We have shown that Heisenberg’s reciprocal relation between position-measurement noise
and momentum disturbance holds for every measurement with statisitcally independent noise
and disturbance, and also clarifies the limitation of Heisenberg's relation. We proposed a new
universally valid relation among measurement error, disturbance, and initial uncertainties. This
relation reveals possibilities of measurements beyond Heisenberg’s relation and clarifies the new
constraints for measurements beyond Heisenberg’s relation.
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Abstract

Entangled states can violate the statistical limitations imposed by a local application
of the uncertainty principle. In this presentation, we derive some local uncertainty limits
for N-level systems and discuss their application to the detection and characterization of
NxM mixed state entanglerent.
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Originally, entanglement has been defined as a situation where the correlations between
measurement results in two spatially separated systems are so strong that the uncertainty
principle appears to be violated [1]. However, the conventional uncertainty relation for position
and momentum can only be applied in continuous variable systems. A more general definition
of the uncertainty criterion for entanglement requires a formulation of N-level uncertainty limits
for arbitrary sets of properties. This generalization cannot be based on commutation relations,
since the expectation value of the commutator is always zero for an eigenstate of one of the two
properties concerned. We have therefore recently proposed a reformulation of the uncertainty
principle based on uncertainty sums. The sum uincertainties for two level systems then allow
a derivation of local uncertainty limits for all separable states, providing sufficient criteria for
experimental entanglement verification [2].

Sum uncertainty relations can be defined for any set of observables {A} of a physical
system. The uncertainty of each observable A; for a given quantum state p is then defined as
the variance of measurement results obtained in von Neumann measurements of A;,

542 = Te{pA%} - (Tr{pA)*. 1

This variance can only be zero if the system is in an eigenstate of A;. Therefore, the sum of
all uncertainties § A? can only be zero if there exists a common eigenstate of all A;. Otherwise,
there exists a non—tr1v1al uncertainty limit Ug, such that

Z SA2>U (2)

for all possible states of the system. This formulation of uncertainty defines a global limit
of the simultaneous predictability of observables in a quantum system. However, as pointed
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out in [2], maximally entangled states allow the precise prediction of measurement outcomes
for each property A; in A from the measurement of a corresponding property —B; in B. This
is possible because the maximally entangled state is a simultaneous eigenstate of the joint
properties A; + B; with an eigenvalue of zero. On the other hand, separable states are limited
by the local uncertainty limits of U,

Z 8(A; + B;)? > 2U. (3)

Any violation of such a local uncertainty limit therefore proofs that A and B are entangled.
Starting from this general observation, it is possible to construct various sum uncertainty

relations and their corresponding local uncertainty limits. The most simple example is the local

uncertainty relation for the singlett entanglement of two spin-l systems (N = 2[ + 1 levels),

> S(Li(A) + Ly(B))* > 2, (4)

i=z,y,2

where the operators L; are the three components of angular momentum. However, this selec-
tion of operators may not be optimal for some cases. For example, it has been shown that
the detection of bound 3x3 entanglement can be achieved by defining an asymmetric local un-
certainty relation based on the eight generators of the SU(3) operator algebra [3). This result
indicates that local uncertainty relations can even be violated by states that cannot be distilled
to singlett form. It may therefore be an interesting question whether every entangled state
violates some local uncertainty relation, or if there exist another type of entanglement that
does not violate any local uncertainty.

In general, local uncertainty relations provide directly observable criteria for entanglement.
They thus allow an identification of entanglement in the context of measurement outcomes,
providing deeper insights into the practical aspects of quantum non-locality.
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Abstract

We present a connection between the locality principle and the bound on the accuracy
of simultaneous measurements of spin of a S=1/2 particle, along any two different direc-
tions. The measurement bound is shown to be directly related to the uncertainty relation
for the product of the variances. The resulting uncertainty relation is tighter than the
Arthurs-Goodman form of the uncertainty relation for simultaneous measurements.

Keywords: Simultaneous measurements, Locality, Uncertainty, Non-commuting observables

It has long been appreciated that simultaneous measurements of non-commuting observables
are possible, at the expense of an increase in the variances of the measured observables [1, 2. In
such a measurement, we have to accept some additional noise over the intrinsic quantum uncer-
tainty. This noise appears as an increase in the variances of the jointly measured observables,
over and above the Heisenberg limit.

Let us suppose that we measure the spin of a S = 1/2 particle simultaneously along two
directions, a and a’. At the moment, we do not need to think about how to achieve this joint
measurement. If measured separately, the observables are given by A =a -4 and A’ = a’- 5.
We denote the values obtained in the simultaneous measurement by Ag and A. For any
quantum state, we ask that the expectation values of the simultaneously measured observables
must be proportional, with real factors @ and ', to the expectation values of the separately
measured observables. The variances of the jointly measured observables may then be written

(Ms)? = AT -Ag =1-a*(A)?
(AA5)? = AF-TG =1-a™(A), 1)

where we have also noted that the measurement result, £1, always equals +1 when squared. In
general, the joint measurement of A and A’ results in an increase in their variances as compared
to separate measurements, and this forces |a| and |@'| to be smaller than 1. The precise upper
bound on |a| and |&/| stems from the fact that a joint probability distribution must exist for Ag
and A%, and this bound will depend on the directions of a and a’. Such a bound has previously
been derived by considering all possible generalised measurement operators describing the joint
measurement [6]. In the following, we present a derivation using the locality principle and the
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existence of entangled states. This requires no further assumptions about the joint measurement
itself, other than the definitions made above.

The locality principle, as it is defined here, ensures that no operation performed on one of
a pair of entangled states can be detected by observation of its entangled partner [3]. Consider
two quantum systems prepared in the singlet state

) = \/ii (02 =)2 = |- )ul+)2) (2)

Two observers have access to one quantum system each. On quantum system 2, observer 2 will
make a measurement of spin either along b or along b’. This yields the results =1 with equal
probability. On quantum system 1, observer 1 will make a simultaneous measurement of spin
along two directions, a and a’. Because of locality, the probabilities for the results observer
1 obtains cannot depend on any action taken by observer 2. Observer 1 cannot tell whether
observer 2 measured b - &5 or b’ - 5. This will provide a bound on how accurately observer 1
can perform the simultaneous measurement.

Let us denote the measurement results by Ag, Ay, B and B’; these are all +1. Suppose
that observer 2 has measured spin along b. The probability that observer 1 obtains Ag = Aj
can then be written

p(As = As) = p(As = Ag = B) +p(As = Ag = —B). (3)

The probabilities on the right hand side exist, because joint probability distributions must v
exist for the triples Ag, A%, B (and also for Ag, Ay, B'); in each run of the experiment, three
observables are measured. Because probabilities are positive,

p(As = A5 = B) +p(As = Ag = —B) > |p(As = A5 = B) - p(As = Ag = —B)|. (4)

We can use the correlation functions E(A, B) = p(A = B) — p(A = —B) = AB to write

1
p(As = As = B) = p(As = A5 = —B) = 5 [E(As, B) + E(4s, B)], ()
finally giving us
1

plAs = 45) 2 5|B(As, B) + E(45, B)|. 0

In a similar way, if we assume that observer 2 has measured spin along b’, we can derive

! 1 /

p(As = —A5) 2 5 [B(As, B) - (45, B). ")

Since the probabilities on the left hand sides of these two inequalities are independent of whether
observer 2 measured spin along b or b’, adding the two inequalities, and noting that p(As =
AL) + p(As = —A%) = 1, we obtain

|E(As, B) + E(A%, B)| + |E(As, B') — E(A}, B)| < 2. (8)

This inequality bears great resemblance to Bell inequalities [4, 5]. This is not surprising,
since the existence of joint probability distributions, or "hidden variables”, is the assumption
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underlying both inequality (8) and Bell inequalities. The difference is, that violations of Bell
inequalities mean that either hidden variables cannot exist, or quantum mechanics has to be
nonlocal, whereas in the present case, since joint probability distributions necessarily exist for
jointly measured observables, inequality (8) must be satisfied.

Inequality (8) places restrictions on the correlations between observables of the two quantum
systems. We would like obtain a bound on the joint measurement of A and A’, involving only
observer 1 and quantum system 1. If spin is measured only along a on quantum system 1, and
along b on quantum system 2, the correlation function for the singlet state is given by

E(A,B)= (Y |a-é1b-6yftp") = —a - b. (9)

Since simultaneous measurements reduce expectation values by factors @ and o for any state,
we must have

E(As,B) = aly"|a- &b 5)~) = —aa - b, (10)
and similarly for E(Ajg, B), E(Ag, B') and E(Aj, B'). Using this in (8) gives

|(aa + d'a’) - b| + |(ea — ¢/a’) - b'| < 2. (11)

This must be valid for any choice of b and b’. The left hand side is maximised when b is
parallel to ca + ¢/a’ and b’ parallel to ca — o/a’, giving

loa + o'a’| + |aa — &a’| < 2. (12)

This condition, linking &, o/, a and a’, is the same as obtained in [6]. Geometrically this means
that the sum of the diagonals in a parallellogram, with aa + o/a’ and aa — o’a’ as its sides,
must be less than 2. Unless a and a’ are parallel, this forces both || and |o/| to be strictly less
than 1 (a and a’ are unit vectors). The smaller o] and |o/| are, the more smeared the jointly
measured observables are, since this increases their variances according to equations (1).

The derivation in [6] was made by considering the possible generalised measurement opera-
tors describing the joint measurement, whereas the present derivation is based on the locality
principle and the existence of entangled states. The locality principle is here used much in the
same way as the energy conservation principle may be used to solve physical problems. The
derivation is not tied to any particular model of joint quantum measurements.

In the following, we show how the bound (12) and the uncertainty relation for the jointly
measured observables are related. Squaring the expression (12), and noting that |ca + o'a’|? =
o? + o/? £ 200'a - @', we obtain

|oa + o/a’||aa — /'] < 2 — o? — % (13)
Squaring this expression once more, and cancelling terms on both sides, we obtain
o? +a”? - o%?(a-a)? < 1. (14)
Denoting a - a’ by cosf, we may also write this as

(1-o’)(1 —0a?

17 > sin? 4. (15)

—=311—



The uncertainty in the joint measurement arises from two sources: The intrinsic uncertainty
in the quantum observables, and the fact that they are measured jointly. The product of the
jointly measured square variances can be broken up in four terms as

(A (845 = (1-o*(A))(1-a*(A%)?)
= o’a*(1-(A)))(1 - (&)%) + (1 -a?)(1 - a¥)
+(1 = a?)o*(1 = (A)*) + (1 - o*)a?(1 - (A)?). (16)

In this expression, 1 —(A)2 and 1 — (A’)? are the "bare” variances of A and A’, when measured
separately. The quantities (1 —a?)/a? and (1 — a'®)/a’ are contributions coming from the fact
that the measurement is a joint measurement. A lower bound on their product is given by
(15), which is now seen to be an uncertainty relation giving a lower bound on the uncertainty
associated purely with the fact that A and A’ are quantum observables which are measured
jointly. This bound can be shown to be tight, meaning that there is always a measurement
such that equality can be reached, and it does not depend on the measured state at all, only
on the measured quantum observables.

An upper bound on the bare variances is obtained from the Heisenberg uncertainty relation,

(ARP(AAY = (1~ (AY)(1 - (A)) 2 A ADP =siw?bl(as - ), (1)

where a is perpendicular to both a and a’. Using (15) and (17), we obtain

(AAs)*(AA5)

a2 o2

> sin?4(1 + |(aL - 6)|)? (18)

as a bound on the total uncertainty for the simultaneous measurement. This inequality is

tighter than the uncertainty relation for simultaneous measurements given by Arthurs and
Goodman [2],

(AAs)*(AA)*

2o

The Arthurs-Goodman uncertainty relation is not restricted to measurements of spin. The

reason why relation (18), which applies only to simultaneous measurements of spin, is tighter,

is that we have used a tight bound on the external mesurement uncertainty (15) in its derivation.

As a final remark, in contrast to the relation (15), the Heisenberg uncertainty relation (17)

will not always be tight. Schrodinger showed early on that a tighter uncertainty relation can
be obtained [7],

> ([A, A'])|? = 4sin?6|(a, - 3)|2. (19)

(A (AAY = (1-(A)) (1~ (A")%) 2 Z[([A, A+ %((AA' +AA") - 2(A)(A"))?, (20)

L

where the second term is the correlation between 4 and A'. If, in the derivation of the bound for
jointly measured observables, this relation is used instead of the ordinary Heisenberg uncertainty
relation, the result will be a tighter bound on the joint measurements as well.
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Abstract

It is well-known that local hidden variable theories always lead to parity contradic-
tions in predicting some specific outcomes of Greenberger-Horne-Zeilinger (GHZ) state.
On the other hand, the local realism hypothesis and quantum theory can make the same
predictions in the other outcomes, which containing no knowledge in distinguishing local
realism hypothesis and quantum theory. In our study, we focus on the ability of the
local realism hypothesis in predicting the GHZ-state outcomes. We consider the predic-
tion ability quantitatively and how to optimize the prediction ability. Moreover, we can
represent the prediction ability via the recursive relation.

Keywords: Quantum entanglement, Local hidden variable,

In the celebrated EPR paper, Einstein, Podolsky, and Rosen argued that quantum theory is
incomplete [1]. Their premises are quite plausible propositions about locality, reality, and com-
pleteness. According to the local realism hypothesis, measurement outcomes are intrinsically
deterministic, but appear to be probabilistic because some degrees of freedom are not accu-
rately known. Early and ongoing experiments showed the violation of Bell inequality [2]. These
experiments not only lend support to quantum mechanics, but also demonstrate the presence of
the entanglement. Recently, Mermin demonstrated the parity contradiction between the local
hypothesis and quantum theory in predicting the measurement outcomes of a three-particle
Greenberger-Horne-Zeilinger (GHZ) state [3]. Several studies focused on the GHZ-like parity
contradictions in the multiparticle multilevel cases, in which, as Mermin pointed out, the local
realism hypothesis and quantum theory predict different outcomes of at least one experiment
[4i5].

Our study explores GHZ-like parity contradictions quantitatively. We do not answer the
following question. How many experiments do the local realism hypothesis and quantum theory
predict different outcome parities. Instead, we consider how many experiments the local realism
hypothesis and quantum theory predict the same outcome parities. Logically, if the local realism
hypothesis and quantum theory predict the same experiment outcomes, such outcomes provides
no knowledge of distinguishing the local realism hypothesis and quantum theory. Suppose that
he local realism hypothesis and quantum theory can predict at most S(NN) experiment outcome
parities in the N-particle two-level case. Consequently, we need at most S(N) + 1 experiment
outcome parities to judge that the particles are of quantum-mechanics or of local realism.

We consider Mermin’s gedanken demonstration in the N-particle case. At first, N outcome
parities are previously known. From quantum-mechanical view, information of these known
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outcome parities is sufficient to infer the maximally-entangled state vector. On the other hand,
from local realism viewpoint, information of these known outcome parities are sufficient for
finding out all possible instruction sets. It is barely possible to find S(N) by enumerating all
combinations of N outcome parities. Hence, we consider the lower bound of S(N), denoted
by Sp(N). To find out Sp(N), we can assume that these N known outcomes have the same
parities. In this way, it is easily verified that

k
S(N) = max{ZC‘f;H, i=0,1,2,3} - N
=0

k
max{» C{,;, i=0,20ri=13}—N. (1)

j=0

Furthermore, we can express Sy (N) via the recursive relation. The basic idea of deriving the
recursive relation is to consider the experimental settings of the known parities in the N-particle
case from those in (N — 1)-particle case. We can show that

Sp(N) =23 125, (N-2)+ N —4. (2)

with initial conditions Sp(4) = 2 and S;(5) = 5. It is believed that the lower bound Sy(N)
is compact.

In fact, in Mermin’s gedanken demonstration, the outcomes parities are random for half of
the experimental settings. Many studies and the above discussion only consider those experi-
ments with constant outcome parities. Now we just consider whether the outcome parity under
some experimental setting is constant or not. In this case, we can argue that both the local
realism hypothesis and quantum theory lead to exactly the same predictions. As a result, in
the N-particle case, the ratio of the same predictions is

2N-1 1 S(N)
SR N (3)

Moreover, the same conclusion can be drawn to the multiparticle multilevel case [5].
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On Thermal Spin States through Beam Splitters
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Abstract

We investigate the entanglement generated by passing a thermal spin state through
a beam splitter. In the infinite temperature case this can be seen as creating distillable
entanglement from a maximally mixed state through unitary operations. It is the trun-
cation of the state that allows for entanglement generation. The output entanglement is
investigated for different temperatures and it is found that more randomness - in the form
of higher temperature - is better for this set up.

Keywords: Thermal, Spin, Beam Splitter, Entanglement

1 Background

We know that in the infinite dimensional case of the harmonic oscillator, if a state can be
described as a statistical mixture of Glauber states, this state cannot be used to generate
entanglement using a beam splitter [1, 2].

Here we discuss the finite dimensional case and look at the transition to the infinite dimensional
case for thermal spin states. For a finite dimensional system these represent, in some sense,
our “most classical” states.

We must be careful here to define what we mean by finite space, since the beam splitter can
only be truly defined on an infinite dimensional space. Here when we refer to a state of spin
S, we mean that the maximum number state that can be occupied in the input beams is equal
to 25.

For these thermal states to be physical, such a truncation must be physically imposed - this
may be appropriate for example for a finite number of photons in a mode, or atoms in a Bose-
Einstein Condensate (BEC).

We find that for any finite dimensional thermal state entanglement is generated when passed
through a beam splitter. Even more, we devise an explicit protocol illustrating the distillability
of the entanglement (which is not necessarily implied by the state being non-seperable)

'E-mail: d.markham@imperial.ac.uk
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2 Beam Splitter

As a two mode Fock state, |m,n) enters a beam splitter, in general we ge the output state

(m-+n)
Upsim, n) = Z f(m,n, M)|M,m +n— M), (1)
M=0
where
M) niml\/M(m + n — M)
fmn, M) = Y

p=maz(0,M—n) P‘(P - M + n)'(m —_ p)!(M _ p>|
x TP (®=M+n) p(M~p) R(m“P)(_l)(M—p)) )

and where T and R are the complex transition and reflection coefficients, with normalisation
[T|?> 4 |R|?> = 1. We use this as our definition of the beam splitter on the general number state
(ie. not restricted to optics). We notice that the phases of R and T can be considered as
a local phase change on the basis states of the first mode. Thus we assume, without loss of
generality that I and T are real. For a general input state the beam splitter operation causes
entanglement between two output beams. In fact, the only pure state this is not true of is the
Glauber state.

As a measure of entanglement for mixed output states we take the logarithmic negativity
E), defined for a given state p as,[3],

Ex(p) = log,|lp™Ix
logz{ZIMI}, (3)

where y; are the eigenvalues of p™, the partial transpose of p in subspace of particle A. The
logarithmic negativity is a widely used measure of entanglement, indicating inseparability for
mixed states. We note that a positive value of this measure does not necessarily imply the
existence of useful, i.e. distillable, entanglement (however, for our cases we prove distillability
by independent means).

We can also consider optimality of entanglement generation in terms of the beam splitter
reflectivity R (since we are deling only with real values, T is set by R through |T|? = 1 — | R|?).
Numerics shows us that on the most part optimality is found when R =T = 1/ V2. Where
this isn’t the case, the difference is small and the qualitative trends remain the same. Since in
this paper we deal with mostly qualitiative results we always use R=T =1/ V2.

3 Thermal States Through a Beam Splitter

We now consider two thermal states incident on a beam splitter different temperatures,

Pin = UTl ®UT2) (4)
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where

25 ,

or. = > € KT n) (n] (5)

Ti Z—i ?

and Z; = Y27 e /KT i5 the partition function. The output state after the beam splitter
transformation is then,

Pout = UbspinU};rs
1 25 28 - 2 Vs
- S S
ZlZ2 m=0 n=0
(m+n) (m+n)

> S fmn, M)f(m,n, M)

M=0 M’'=0
x|M,m+n— M)(M',m+n— M| (6)
07 T T
—— Max, Mixed, one input
& T1=100 KThw
L ThesKime
Entanglement of various thermal osf o T i 2 |
. . + T1=10 KT/hw, T22100 KThw
states against S of the input states & 11210 KT, 72010 KT
for R = T = 1/v/2. The top four, ost TN T e
blue, data sets correspond to when one / oL T
port has a thermal state entering it g osr o
E ),
and the other only the vacuum . The 3 ;o ’
bottom four, red, data sets are when & oa} / . | .
i )
both ports have thermal states enter- N
ing them. We see the general trend o2} " . | )
of an initial peak followed by a slow ST e SR
. . . . . . A L N T e .. : -~
decline (this is more obvious for lower  os} * et e, R e ]
temperatures). "¢.,,
0 L * ML | . .
0 2 4 6 8 10 12

In general the case where the vacuum enters one port gives more entanglement - this can be
explained as resulting from the fact the two beams do not destructively interfere with one an-
other.

Starting from the maximally mixed state, which represents an infinite temperature thermal
state, the height of the peak is less for lower temps and the peak is occurs earlier. We might
expect the entanglement to be greater for lower temperatures, and that the maximally mixed
state gives the lowest entanglement. The observed trend can be explained by noticing that for
lower temperatures the higher dimensional states are not as populated, restricting the possible
entanglement. For the zero temperature we have the ground state which offers no entangle-
ment.

—318—



For all the output states mentioned here we can devise a protocol to distill a minimal amount
of entanglement. From equation (6) we can see that if local projections are made on either arm,
onto the subspace spanned by the states |[0)(0| and [45) (45| the remaining state is an entan-
gled state of the form p = F'|0,0)(0,0| + (1 — F)(]0,4S) + |45, 0))({0, 4S5} + (4S5,0]), which has
entanglement for any finite F. For finite S, F" is also finite (hence we have entanglement). This
can be considered as a two dimensional state and it can be easily shown that it has negative
partial transpose, which, for a two dimensional, bipartite state implies distillable entanglement
[4]. As S goes to infinity, F' goes to one and no entanglement can be found in this way as we
expect. All measurements where the projection falls onto the remaining space are discarded.
This scheme shows that for any finite S we indeed have distillable entanglement for all the
thermal states, though it is very inefficient and it destroys most entanglement.

4 Discussion

e The general trend of generated entanglement is similar for the pure spin coherent states
(SCS) and the thermal spin states, that is an initial rise followed by a slow decline.

e We can also discuss the transition in S as an approach to classicality [5]. With respect
to this, we see that the approach is slow and appears to be only reached in the infinite
limit. '

e We may be surprised to get distillable entanglement at all from maximally mixed states
using a unitary operation. The answer is of course that either we cannot consider the
beam splitter a unitary on the spin space, or that it is the truncation of the thermal state
that allows entanglement. This is interesting in terms of how much purity a system needs
to create entanglement and can be related to other works, e.g. [6], [7].

A natural extension of this work would be to investigate the significance of the SCS decompo-
sition of finite dimensional systems. Although they are clearly different, it can be hoped that
an SCS decomposition may tell us things as interesting as the infinite Glauber state version,
which allows us to call states classical and has meaningful constraints with respect to physical
operations, for example linear operations on gaussian states, no entanglement can be generated.
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Abstract

When photons are detected by stimulated emission, rather than by absorption, antinormally-
ordered photodetection can be realized. Since the detection responds not only to actual
photons but also to zero-point fluctuations in the concered modes via spontaneous emis-
sion, photon-counting statistics of the detection is distinct from those of the standard
normally-ordered photodetection in the certain regime, where even coherent states ex-
hibit the bunching effect and the super-Poissonian fluctuation. We will report on our
latest experimental results measuering antinormally-ordered intensity correlations of vac-
uum and coherent states of electromagnetic field by making use of stimulated parametric
down-conversion.

Keywords: Antinormally-ordered correlation, Zero-point fluctuation, Stimulated parametric
down conversion

Introduction. Since Planck’s quantization hypothesis of electromagnetic field and Eina-
tien’s photoelectric theory were appered, quantum nature of electromagnetic field has been
intensively explored [1, 2, 3]. The clear evidence of quantized electromagnetic field, that is,
photon, was finally provided via the photon antibunching effect by measuring normally-ordered
intesity correlation of resonance fluorescence from a sodium atom [4]. The normally-ordered
photodetection (NOPD) theory due to Glauber [5], which stems from the fact that electro-
magnetic field is detected by an absorption process, has been playing the central role in the
exploration of nonclasical states of electromagnetic field.

Insesitivity to zero-point fluctuations of the NOPD is, on the one hand, the very reason why
Planck’s spectrum of black-bady radiation is convergent regardless of the divergent term due to
them [3, 6], and, on the other hand, why some information is lost during the detection process
and thus the initial density matrix cannot be logically reversible, that is, cannot be calculated
from the post-detection density matrix and the readout of the detecting apparatus [7].

When photons are detected by stimulated emission, however, antinormally-ordered photode-
tection (ANPD) can be realized. The detection responds not only to actual photons but also
to zero-point fluctuations in the concerned modes via spontaneous emission. Then the photon-
counting statistics of the detection is distinct from those of the standard NOPD in the regime
where the average photon-occupation number in the modes is small [8]. In this regime, even
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Figure 8: Schematic illustration of the antinormally-ordered photodetection based on stimu-
lated parametric down-conversion.

coherent states exhibit the photon bunching effect and the super-Poissonian photon-number
fluctuation due to the zero-point fluctuations. Because of the sensitivity to zero-point fluctua-
tions of the ANPD, it is possible to coserve the system’s information during a photodetection
process [7]. Thus, the ANPD may serve, for example, an alternative way of monitering quantum
system for its feedback control [9].

We will report on our latest experimental results measuering antinormally-ordered intensity
correlations of vacuum and coherent states of electromagnetic field by making use of stimulated
parametric down-conversion (STDC).

Theory. The process of stimulated emission in a pulsed paramtric down-converter |10,
11, 12] is well suited to realize the ANPD and to observe the antinormally-ordered intensity
correlation, because of its large nonlinear response even in the single-pass configuration and its
ability to overcom the slow response time of the detectors [11, 12]. The schematic illustration of
the STDC-based ANPD is shown in Fig. 8. Since we are deeling with traveling-wave field, the
annihilation operator of our interest is the time-dependent and continuous-mode one, which can
be written as ai,(t) = J5 [, dwais(w) exp(—iwt) with the narrow-bandwidth approximation
[1]. Here, aj,(w) represents an annihilation operator for a mode of frequency w, and satisfies
the commutation relation [ai,(w), @in' (W')] = 6(w — o).

The operator ai,(w) is coupled with the operator by, (w, — w) via parametric interaction
with the pump field of frequency w,, and evolved into aq.(w) = ain(w) cosh[s(w)] — b;nf(wp —
w) exp[—i¥(w)] sinh[s(w)], while the operator by, (w, — w) becomes boy(wp, — w) = bin(wp —
w) coshs(w)] — a3, (w) expli’¥(w)] sinh[s(w)], where, several paramters in the interaction, such as
the complex second-order nonlinear susceptibility and length of the crystal, are included in the
parameters s(w) and ¥(w) [1, 13]. When the modes which are relevant to the operators b;n(wp -
w) are vacua and the parameters, s(w) and ¥(w), are assumed to be constant with respect

'~

to w, the NOPD of the field represented by bew:(t) = 75 7o, dwb gyt (w) exp(—iwt) coincides
with the ANPD of the field ai,(¢) up to the constant factor, that is, ( ftHTdt’b;ut?(t’ )b;ut(t’ )) =
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Figure 9: Experimental setup.

sinh?[s] ( fttﬂzlt’azn(t’ )ain!(t)). Here we use the commutation relation for the operators by (w)
and aj,(w), t is the initial time of the detection and T is its duration. The angle brackets
indicate quantum-mechanical expectation values.

The antinormally-ordered intensity correlation [8] of the field aj,(t) can be straightforwardly
observed as follows. By splitting the field bey(t) into by(t) and by(t), the standard Hanbury
Brown-Twiss interferometer [1] is formed as shown in Fig. 8. Here, the detector’s imperfect
quantum efficiencies and several optical losses during propagation are modeled by introducing
auxiliary vacuum fields ©1(t) and v(¢) [1]. Then the normalized normally-ordered intensity
correlation of the two fields, d;(t) and dy(t) of Fig. 8, turns out to be the antinormally-ordered
counterpart of the field aj,(t), that is,

(fitay [2a dy " d @) dy (¢ da () o [27d ain(t)ain (") ain! (¢ a5 (¢1))
(J;tl1+Tdt, d’“ll‘(t/)dl(t/))( tt:-i-Tdt/ cZQT(t’)Ciz(t’)) (ft1+Td, () a5 (1)) ( ::+Tdt' @i () Gin ((t’)))’
1
regardless of the splitting ratio at the polarizing beam splitter, the quantum efficiencies of the
detectors, or optical losses.

Comparing with the normally-ordered intensity correlation, it can be easily shown that the
antinormally-ordered intesity correlation involves excess contributions, which are due to the
stimulated emissions from the zero-point fluctuations in the concerned modes, through the
bosonic commutation relation [8]. Since the stimulated emissions from the zero-point fluctua-
tions, that is, the spontaneous emissions, are inherently thermal [14, 12}, even coherent states
exhibit the photon bunching effect and the super-Poissonian photon-number fluctuation.

Ezxperimental setup and Current status. The rough sketch of our experimental
setup is shown in Fig. 9. With a pulsed strong pump field (wave length: 400nm, average
power: 200mW, pulse duration: 100fs, and repetition rate: 82MHz) from the second harmon-
ics of the mode-locked Ti:Sapphire laser, the type-I, nondegenarate paramtric down-converter
(2mm-thick BBO crystal) is formed. A vacuum field, or a heavily attenuated coherent field
from the fundamental of the same laser is the signal field represented by the operator aj,. In
the latter case, the single photon-counting rate for the field by, should be enhanced owing to
the stimulated emissions. Figure 10 shows the enhancement as a function of optical-pass-length
difference between the pump field and the signal field.
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Figure 10: Measured enhancement of the photon-counting rate for the field bowr due to the
stimulated parametric down-conversion.

The antinormally-ordered intensity correlations will be measured via the standard Hanbury
Brown-Twiss interferometer consisted of the half-wave plate, the polarizing beam splitter, and
the detectors 1 and 2 (Si-avalanche photodiodes: Perkin Elmer SPCM-AQR14). It is known
that the ultra-broadband nature of the spontaneous parametric down-conversion (SPDC) makes
it difficult to observe the photon bunching effect, namely, the antinormally-ordered intensity
correlation of the vacuum field [12]. Currently, we are trying to improve the signal-to-noise
ratio for observing the clearer photon bunching effect (up to now, the value of the normalized
intensity correlation is 1.3 with 10nm-FWHM interference filter). We will present our latest

experimental results at the workshop.
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