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Free Analogues of Cramer-Rao Inequality
and Powers Factors

Fumio Hial
Graduate School of Information Sciences, Tohoku University

1. FREE ANALOGUE OF CRAMER-RAO INEQUALITY

Most simply, assume that X is a real random variable having a smooth density
function p. The (classical) Fisher information /(X) is defined by

- |~ (et - [ 2

The (classical) Cramer-Rao inequality is given (in this sitplest case) as
1
I(X) 2 w75
(X)
where V(X)) := [*_z?p(z) dz is the variance of X. Equality occurs in the inequality
only when p is a normal (or Gaussian) law:

p(z) = \/51770 exp (—%ﬁ)

Based on random matrix heuristics, in 1993 Voiculescu found that the free analogue
of the Fisher information is

7r'2 ) 2 (&) oo )
o) = ol = [ plef =4 [ (Hp)@Ppe)ds

3 ~00 —00

where Hp is the Hilbert transform of p:
(Hp)(z) :=lim/ p—(t)—dt.
|

N0 z—t|>e L t

The free analogue of the Cramer-Rao inequality holds as follows:

1
<I>(X)2‘-/(7)

and equality holds if and only if p is a semicircle (or Wigner) law:

p(z) = —o A/ = (@ = 702 Xt ().

2
Voiculescu further introduced the free Fisher information ®*(X,, . .., X,,) for n-tuples
of noncommutative random variables (X;,..., X,,) in a tracial noncommutative prob-

ability space (M, 7). The free Cramer-Rao inequality for noncommutative multivari-

ables is given as
1

(XF++X3)
and equality holds if and only if X, ..., X,, are freely independent semicirculars with

(X, X)) >
q)(lw ’X)_T
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In my talk I explain these free Cramer-Rao inequalities and also a recent progress on
free Logarithmic Sobolev inequalities; the latter is concerned with inequalities between
free entropy and free Fisher information.

2. FREE ANALOGUE OF POWERS FACTORS

For 0 < A < 1let 9, be a state on My(C) (the 2 x 2 matrix algebra) with the density
A1+ A) 0

0 /(14 A
infinite tensor product C*-algebra A := @[ M>(C) (the so-called CAR algebra) and
construct the von Neumann algebra

My = mp(A)" = R{Ma(C), n}

matrix )} Consider the tensor product state ¢ := )" ¢, on the

via the GNS representation 7, associated with ¢. This M) becomes a factor. For
extreme cases A = 0 and A = 1, the factors constructed arc the I, factor B(H) and
the hyperfinite type II; factor, respectively. When 0 < A < 1, the factor M, is the
Powers factor that is a unique hyperfinite (or AFD) type III, factor.
The above factors My (0 < A < 1) are among more general Araki-Woods factors

[oe]

R (M, (€), b}

n=1
Araki-Woods factors (in particular, the Powers factors) can be also constructed by
use of Fermion (or CAR) Fock space models. In 1977 Shlyakhtenko constructed free
analogues of Araki-woods factors

'(Hg, Uy)"
associated with a separable real Hilbert space Hr and a strongly continuous one-
parameter group of orthogonal transformations U, on Hg; here the tensor product is
replaced by the free product and the Fermion Fock space is replaced by the full Fock
space. He proved that Ty := I'(R?, U,)"” with U, := Z?jgﬁggf\\g ccs)lsr(lzglitl)zg)\))\) (the
rotation with period 27/ log A) is a unique type III, free Araki-Woods factor, regarded
as the free analogue of the type III, Powers factor.
In my talk I explain the Powers factors, their free analogues and moreover g-deformed

algebras due to Bozejko and Speicher constructed in the g-Fock space (—1 < ¢ < 1)
interpolating Fermion (g = —1), free (¢ = 0) and Boson (¢ = 1).
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Estimation of SU(d) action using entanglement

Manuel A. Ballester™
Department of Mathematics, University of Utrecht, Box 80010, 3508 TA Utrecht, The Netherlands

In recent papers (Refs [1, 2, 3, 4]) it is shown that if N copies of an SU(2) gate are available, one can estimate it
with a square error that goes to 0 as 1/N? (instead of 1/N as one normally expects in statistics). This is achieved
by using an Nfold entangled state as input to U®Y. In my talk I will try to show that this is also possible for SU(d)
with d > 2.

Consider we have N copies of a d x d unknown unitary U at the same time. We’ll prepare an N-partite input state
[ho).

Let V = U®N  the output density matrix is

p=(1p ®V)|vo)(so|(1p ® V),

where [1h) € CP @ C4*V.

The Quantum Cramer-Rao bound (QCRB) tells us that for a class of “reasonable” estimmators, the mean square
error (MSE) is bounded from below by the quantum Fisher information (QFI), furthemorc from Ref. [5] we have
conditions for achievability of the QCRB. The strategy therefore is to find an input state that satisfies the conditions
for achievability of the QCRB and so that its QFI scales like N2

Let

min(D,d")

Wo) = > VoK [ui) & [vE),
K=1

where [8) ([¥2)) is a system of orthonormal vectors in CP (respectively (C‘i®N),let

pe =Y prlVR)WEl
K

be the reduced density matrix on ce®N,
Let us define p; as the average one-copy reduced density matrix of p, i.e.,

1 N
L=y e (1)

where try means partial trace with respect to all copies except the s* one. In the same way, let us define P, as the
average symmetrized two-copy reduced density matrix of p, i.e.,

o

N
2
By = m Z(trs—r-p + W trss pW), (2)
s#T

where trs= means partial trace with respect to all copies except the 7** and the s**, and W is the exchange operator
W =" [ki)(lk|
kl

d?—1 (3)
121
=== ta ® to.
; +:L;1 «®

With these definitions, we get that the condition for achievability of the QCRB becomes p5, = 1/d. Then 75,
must be of the form

— I1®1
PB2 = 2z +anﬁtcx ® tg,
af

*Electronic address: ballester@math.uu.nl; URL: http://www.math.uu.nl/people/balleste/
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here co5 = cgo. With these choices, the QFI becomes
N
Hag = 4[—d~5a[j + N(N — I)CQ[;].

If we want to ewstimate all parameters with the same accuracy, the best we can hope for is a state of the form

1@l 1
oolel 1
PB2= " +d(d+1)§t®°‘

1 b

The QFT corresponding to this state is

N(N +d)

Hog =071

5013)

which has the desired N? behaviour.
Let

[1)®™" @ ... ® |d)®"< + non-equivalent permutations
NI
Tlllng! can nd!

Niy..o,Ng) =

1

where Z,’Ll ng = N.
Let N=dn+m,npy=n+m,n=mn, | #kand [dnmk) =|n,...,nx =n+m,...,n), we get that an input state

of the form
. (d+ 1)m? — N2 | N2
[Yo(m)) = 7 ; k) ® ( At mr |on1k) + @xnm? l(anLk)) ,

will do the required job. Linear combinations of these states would work as well.

[1] M. Hayashi, (2004), quant-ph/0407053.

[2] E. Bagan, M. Baig, and R. Munoz-Tapia, Phys. Rev. A 69, 050303 (2004), quant-ph/0303019.
(3] E. Bagan, M. Baig, and R. Munoz-Tapia, Phys. Rev. A 70, 030301 (2004), quant-ph/0405082.
[4] G. Chiribella, G. D’Ariano, P. Perinotti, and M. Sacchi, (2004), quant-ph/0405095.

[5] K. Matsumoto, J. Phys. A 35, 3111 (2002), quant-ph/9711008.
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Query Complexity and Quantum Estimation

Keiji Matsumoto*?

keiji@nii.ac.jp

February 23, 2005

I review the results in quantum query complexity, a fainous tool in computational complexity
theory, and show these are in fact statistical estimation theoretic problems. I also cominent on
the defference of the formulation of the problem between these communities.

Phase estimation problem had been also studied in quantum measurement theory, in relation
with phase-number uncertainty. After the appearance of quantum computation, this problem
was related to Abelian hidden subgroup problems, with Shor’s algorithim and Simon’s period
finding problein being special examples. FEarlier than that, researchers in state estimation theory
considered parallel query version of this problem. There are several proof of the optimality of
square root, speed up, and here I add yet one more, which seems to me easier and thus might
be applicable to derive unknown results.

1 Optimality of Grover’s Algorithm

Grover’s problem is to find a z such that f(z) = 1, under the assumption |f~*(1)| = 1. Grover
suggested an algorithm which solves this problem at most (v/dt), with logd being the length
of the input of the function f. This algorithm realizes square root speed up, and known to be
optimal algorithm. There are several proofs already, here I add yet one more, which I think is
simpler than any other existing proofs.

Following preceding authors, we describe all the processes other than last measurement by
unitary operation. Let Uy be a unitary operator which computes the function f, and V be a
unitary operator which describes information processing between queries. For simplicity, we
write Ay (p) = UpUt. After n steps, will be tr,v(p), where p is the inital states. For the final
nesurement can extract the information about f, |Af;, v (p) - ?/,,v( p)|l should be large enough

!Quantum Computation Group, National Institute of Informatics, Japan.
2Quantum Computation and Information Project, ERATO, JST, 5-28-3 Hongo, Bunkyo-ku, Tokyo 113-0033,
Japan.
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for all f # f'. we have,

d(d ;L;, 148, v () = Aty v (Pl < d(d—1) ;';”AUW Auyv = AUf’V)(AUf}(p))”
i < EHTL—I—)maX Z (Au,v = Au,,v) (el

f#f

(1)

Without loss of generality, the initial state can be assumed to be pure state. Hence, this is
furthuer evaluated as,

d(d_lmaxZ\/1~|¢IUUf'I¢>|23nm5x\/l T & v 2

P#f ) 77

Let {|i)} be an orthonormal basis in the space of input of the function f, and {|¢;)} be a set of
states satisfying |¢) = Y, a;}t)|¢;). Then, we can evaluate the quantity (2) is equal to

1=y $ 3 3 e

3" gid#s iiFtng’

=nrr13x\/1—%%2¥1—;2ﬁ~n 2/d. (3)

For E‘I—_—ﬁ 2oy MG (p) = A%,,v(p)lt should close to 1, we have n should be at least in the
order of V/d.

2 Query complexity of estimation of unitary matrices

Note that in previous proof, we didn’t use the property of Uy up to (2). Hence, this inequality
can be for any other estimation problem. Especially, here we assume that Uy = e'flst, with ¢
being very small and [Hy, Hp/] = 0. Then, (2) is,

nmax ———— > (¢|(Hy — Hy1)|o)| + O(t2). (4)
¢ ( Dy

Further more, assume that the eigenvalues of Hy is of the form E§; ;(j = 0,--- ,d). Then, this
simplifies to,

nmfxd( Z||af|2 o |*| + O(t?) = O(nEt/d) + O(t?). (5)
f#f’

Hence, to solve this query complexity problem, at least O(d/nEt) times queries are necessary.

This seemingly artificial problem is derived from estimation of d-level unitary matrices which
commutes with each other. If we can estimate a unitary matrix with the accuracy of ¢, we can
easily solve the problem analyzed above. Hence, to estimate unitary matrix with given accuracy
t, we need O(d/nFEt) times queries at least.
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[1] S. Massar and S. Popescu, Optimal Extraction of Information from Finite Quantum Ensembles,
Phys. Rev. Lett., 74, 1259 (1995)

[2] Masahito Hayashi, Asymptotic estimation theory for a finite dimensional pure state model,
J. Phys. A31, 4633 (1998)

(3] Dagmar Brufi and Chiara Macchiavello, Optimal state estimation for d-dimensional quantum systems,
Phys. Lett., A253, 249 (1999)

[4] A. Hayashi, T. Hashimoto, and M. Horibe, Optimal quantum state estimation of pure states revisited,
quant-ph/0410207
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INTRODUCTION

In their classic paper in 1934, Einstein, Podolsky and
Rosen did not question the validity of quantum mechan-
ics. However, they claimed that quantum mechanics is
an incomplete description of physical reality. Essentially,
they showed that the wave function alone cannot describe
physical recality, another variable, which is not measur-
able nor calculable, is required. This hidden variable,
often denoted by X is needed to supplement guantum
mechanics. Over the years, many hidden variable mod-
els have been formulated. In 1964, John Bell showed
that any local hidden variable theory is incompatible with
quantum mechanics.

To describe Bell’s argument, we can consider, for sim-
plicity, two particles emilted from a common source and
flying towards two people, typically labeled as Alice and
Bob. Alice and Bob then measured some observables
associated with the particles, for example, its spin or po-
larization. For simplicity, let us assume that they record
their measurements as £1 corresponding to up and down
spin (or vertical and horizontal polarization). Suppose
also that the corresponding observables are 7i - & where
i is some direction corresponding to the measurement
and & is the vector of Pauli matrices. By looking at the
correlation of the results, E;; of their measurements, it
can be shown that

E; = E(@
= p(+13+1)+p(_1!_1)_p(+11‘—1)—p(_1:+1)
= (Y|ii-d @m - Fl) (1)

where the i-th and j-th measurements are aligned with
the vectors # and m

For a hidden variable model, we suppose that the
“complete” state of system is characterized by some hid-
den variable A which may be chosen by Bob (or Alice) just
before Alice’s (or Bob’s) measurement. In other words,
there exist some functions A(@, ) and B(b, ) such that

-,

E@b) = / p(AA(E, \)B(b, A)dA, (2)
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where rho(A) is the probability density for the hidden
variable. Without any loss in generality, one may as-
sume that the detectors are perfectly aligned so that
A(a@,)) = —B(d,A) and that A(d,A) = £1 although the
latter assumption may be stronger than needed. In this
way, Eq. (3) may be written as

-,

E(d,b) = — / p(\)A(@, A A(b, \)dA. (3)

Thus, we have

-

|E(d.b) — E(a,0)
= / p(MA(E, N) (A(E, A - A A)) d,\l

- / PNA@NAE. ) (1 - AG ) AEN) d)\’

< | [0 (1- @ NAEY) 0
< 1+ EB(,3) (4)
As given in Eq. 1, quantum mechanically, E(a, E) = —ab.
So it is possible to choose the vectors @, b and & appro-
D 1 1
priately so that @-b=b-¢= = while & - = —5 These

values do not satisfy the inequality 4.

A refinement of Bell inequality 4 was subsequently pro-
posed by Clauser, Holt, Shimony and Horne (CHSH) in
the late sixties in the form

|E(@,b) + E(@, V)| + |E(,B) - E(@,F)| <2.  (5)

This inequality was subsequently generalized by Clauser
and Horne (CH) by replacing the correlations by proba-
bilities



P12(&" E)

EXTENSION TO THREE
THREE-DIMENSIONAL SYSTEMS

In a recent paper[l], we generalize CH inequality to
three three-dimensional systems. To be specific we con-
sider a Bell-type gedanken experiment with three ob-
servers each measuring two observables on some quantum
state p. We denote the observables by A;, Az for the first
observer (Akira), él, B, for the second observer (Bento)
and (1, C’g for the third one (Chiko). The measurement
of each observable yields three distinct outcomes (num-
bers) which we denote by al, az, as for Akira’s measure-
ment of the observable A,, b, bJZ, b} for Bento’s measure-
ment of the observable B and cf, cg, ck for Chiko’s mea-
surement of the observable Cj (¢,4,k = 1,2). Specifi-
cally, the observable A; has the spectral decomposition
A; = ai Pl + a4 P + ai P§, where P, Pi, P} are mutually
orthogonal projectors. Slmlla,rly, the observable B has
the spectral decomposition B; = b0 W05 +b] QJ and
the observable Cj, = ck RE+c} R§+c§ I%g“ where Q% as well

PLR(afi, bjm

)

are equal to the quantum probabilities, ie.,
P LR(af,’b’m,-aCﬁk) = PQM(aIi,mej,Cﬁk) where the
addition on the indices is computed using modulo 2

—T'221 — 111 + 2190 + Ty

where

D

l+m+n=1 mod 3

’
Filjlklz E

I4+m+n=0 mod 3
riujukr: = Z PLR(aqi 76';{ ’C2 » (10)
l+m+n=2 mod 3

and (i,5,k) = (221,111,122),

Cijp = Ppr(af, b, ck)

) ’
PLR(a"i ’b‘?L 1c,2c )

(@5 k) = (121,212),

— Piy(&, ) + Pia(d),B) + Pia(a, ) - pi(a?) — p2(b) < 0. (6)

as R’g (¢ = 1,2,3) are mutually orthogonal projectors.
The probability of obtaining the set of three num-
bers (a}i,bfmj,c,’ik) in a simultaneous measurement of

observables A;, Bj, Cr on the state p is denoted by
PQM(a;i,b’mj,cﬁk), where l;,m;,ny assumes the values
1,2,3, and is given by the standard formula

PQA‘I(G‘Z ?rm; nk) TT(pPl ® QJ ®R1}’ik) (7)
According to quantum theory, everything that can be
measured in this gedanken experiment is given by the
set of these 8 x 27 = 216 probabilities.

Local realistic (classical) description of the above ex-
periment is equivalent to the existence of a joint proba-
bility distribution from which the quantum probabilities
Pom(aj,, b, cﬁk) can be derived as the marginals. Let
us denote this hypothetical joint probability distribution
by Wrr(af,,a8,; by s b2, Chy» €3,)- Thus, a local realis-
tic description of the experiment exists if and only if the
following marginals

3 3
§ : 1 2 . 1 2
Z PLR a‘ll >a'lzl bm11 bmgv nlacng) (8)

Lig1=1mjp1=1 ngq

1=

|

arithmetics.
Owing to (8), Prr(al,bl,,ck) must obey the following
inequality
=12+ Targ +Top0 +T1y5 £33, 9)

(",3",k") = (211,222,112). This is the Clauser-Horne-
Bell inequality for three qutrits. It must be obeyed by
any local realistic theory that claims to reproduce the
correlations generated by three qutrits.

To prove the inequality in (10), we first replace the
marginals in the left hand side of the inequality in (10) by
the appropriate sums of joint probabilities given in (8).
Naturally, we get an extremely long expression in which
the joint probabilities Prr(a},af;bk, ,b%,ich  c2,)

Ty? ng
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appear only with coefficients -3, 0 or 3 and nothing else.
Since the sum of all joint probabilities adds to one, i.e.,
231 2 A _ Prr(al ,a? bl 62 el e )

all‘ulz‘b'l"l’b’z"z' }Ll,c;{l_] Lo % Ympr Ymar g g
= 1, it follows immediately that the entire expression is
less than or equal to 3.

We should stress at this point that the above inequality
is a member of the set of inequalities that can obtained
from (10) by permutations of indices enumerating the
outcomes of the measurements as well as the permuta-
tions of indices enumerating the observables.

Suppose Akira, Bento and Chiko measure observables
defined by unbiased symmetric six-port beamsplitters [§]
on the maximally entangled state of three qutrits |¢) =
7‘—§(|111) + [222) + |333)).

The matrix elements of an unbiased symmet-
ric six-port. beamsplitler are given by UM(J;) =
—\/l?ga(k"”“’l) exp(i¢y), where ¢ = (¢1, P2, ¢3) and ¢y
(k,1 = 1,2,3) are the settings of the appropriate phase
shifters (for convenience we denote thewn as a three di-
mensional vector q‘?) and o = exp(%—’i).

The observables measured by Akira, Bento and Chiko
are now defined as follows. The set of projectors for Al-
ice’s i-th experiment is given by P} = UL(&)|J)(1|UA(@)
(I = 1,2,3), where U4(d;) is the matrix of Akira’s unbi-
ased symmetric six-port bearsplitter defined by the set
of phases ¢; = (¢%, ¢S, 4%), Bento’s set of projectors j-
th experiment is given by QJ = UTB(I,Ej)|nL) (m|U B(zﬁj),
where 1/-)} = (?ﬁ{, 2, wg) is a set of Bento’s phases defining
his unbiased symmetric six-port beamsplitter, whereas
Chiko’s projectors in the k-th experiment is given by
RE = UL(6k)Iny(n|Uc(8x), where & = (8%, 6%, 6%) is a
set of Chiko’s phases defining her unbiased symmetric
six-port beamsplitter.

1 . o
Qujx = (exp(¢] — 3 + W] — @)+ 6% ~

+exp(dh — &) + ¥ — @] + 85 — oF)).

The splitting of the probabilities into the three groups
implies that this correlation function conveys as much
information about the experiment as the probabilities
themselves. In fact, there is a one-to-one mapping be-
tween the correlation function and the probabilities so
that the following equations hold

.. 1

Pouijk) = 9—7(1 ~ RQijx + V3IQyjx)
.. 1 -

P ligh) = 2—7(1 - RQusx ~ V33Qijx)

P (ijk) = 5~ Pha(igk) — Paa(igk).  (13)

To each result of the measurement of the projectors
7, RE for any i,j, k we ascribe the complex num-
have been

Py,
ber a" (n = 1,2,3), namely a,}l.af_‘,bi,ll,...
assigned the values o', a!2 o, ... respectively. This
special assignment was first used in Ref. [3] to generalize
the Bell experiment for higher dimensions.

In this way, the probability of getting the set of
three numbers (aj , b,"nu,cf‘;k) can now be computed us-
ing the formula (7). However, note that we need to
use the following property regarding these probabilities.
All the probabilities Wonr(af ,b), ¢k ) can be sorted
into three groups consisting of nine equal probabilities.
The first group consists of the probabilities for which
li +mj; + np = 1 mod 3, the second one consists of
the probabilities for which I; + m; + nx = 2 mod 3
and the third one consists of the probabilities for which
l; + mj +n; = 0 mod 3. Let us denote each proba-
bility (they are equal, so it suffices to take an arbitrary
one as a representative of the whole group) from the first
group by PéM(ijk), from the second one by P(%M (ijk)
and from the third one by Pg,\,(ijk). It is obvious that
we have Py (i7k) + Pgp (igk) + Py, (i5k) = 5 for any
triple ¢, j, k.

Let us now define the following correlation function
(for details see [8]) for each triple of experiments that we
denote by Qi

3

Qijr = Z

lLoymy =1

T Poy (af, b, e (1)

Using the explicit form of the probabilities, it can be
shown easily that such correlation function acquires the
following symmetric form

65) + exp(oh — ¢4 + ¥) — ¢, + 0% — &%)
(12)

Putting the probabilities expressed by the equations (13)
into the Clauser-Horne-Bell inequality (10), we obtain
the following inequality (which is totally equivalent to
(10) in the case considered here)
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R[Q121 — Q12 + @ (Qu12 + Q211 + Q222) + &2 (2Q122 — Q111 — Q221)] < 3 (14)

_For an appropriate choice of phase shifts:
051 = (07 Oa 232)) ¢2 = (07 0; 0)7¢1 = (07 O,W)a ’lpb?l =
(0,0,%2),8, = (0,%,0),82 = (0, ,0), the values of the
correlation function computed using the above phase
shifts read Qi1 = 3(1 + @?),Qu2 = 202, Qa1 =
2012 = —2(14+0a%),Qu1 = %0%, Qa2 = —§,Q221 =
—%a, Qa2 = :3—0:2. Putting them into the left hand side
of the inequality in (14) we arrive at a violation of the
inequality in which the left hand side is equal to 5.

In Ref. [2], a proposal was made to measure the
strength of violation of local realism by the minimal
amount of noise that must be added to the system in
order to hide the non-classical character of the observed
correlations. This is equivalent to a replacement of the
pure state |1) (1| by the mixed state p(F) of the form
p(F)=(1-F)) (9| + £1 ® I ® I, where I is an iden-
tity matrix and where F' (0 < F' < 1) is the amount of
noise present in the system.

It can be checked immediately that such addition of the
noise in the gedenken experiment considered here changes
the correlation function Qi to Qf;k = (1 - F)Qyj.
Therefore, the minimal amount of noise Fy,;, that must
be added to the system to conceal the non-classicality of
quantum correlations is Fin = %, which is consistent
with the numerical results presented in Ref. [6].

THREE TWO-DIMENSIONAL SYSTEM THAT
GENERALIZES GISIN’S THEOREM

In 1991 Gisin presented a theorem, which states that
any pure entangled state of two particles violates a Bell
inequality for two-particle correlation functions [9][10].
Bell’s inequalities for systems of more than two qubits are
the object of renewed interest, motivated by the fact that
entanglement between more than two quantum systems is
becoming experimentally feasible. Recent investigations
show a surprising result that there exists a family of pure
entangled N > 2 qubit states that do not violate any
Bell inequality for N-particle correlations for the case
of a standard Bell experiment on N qubits [11]. By a
standard Bell experiment we mean the one in which each
local observer is given a choice between two dichotomic
observables [12][13]. This family is the generalized GHZ
states given by

[W)grz = cos€|0---0) +singll---1) (15)

with 0 < £ < /4. The GHZ states [? ] are for { = n/4.
In 2001, Scarani and Gisin noticed that for sin2¢ <
1/v/2N-1 the states (15) do not violate the Mermin-

Ardehali-Belinskii-Klyshko (MABK) inequalities. Based
on which, Scarani and Gisin wrote that “this analysis
suggests that MK [in Ref. [12], MABK] inequalities, and
more generally the family of Bell’s inequalities with two
observables per qubit, may not be the ‘natural’ general-
izations of the CHSH inequality to more than two qubits”
[11). In Ref. [13] Zukowski and Brukner (and Werner
and Wolf) )have derived a general Bell inequality, also
known as ZB inequality, for correlation functions for N
qubits. The ZB inequalities include MABK inequalities
as special cases. Ref. [12] shows that (a) For N = even,
although the generalized GHZ state (15) does not violate
MABK inequalities, it violates the ZB inequality and (b)
For sin2¢ < 1/v2N-1 and N = odd, the correlations
between measurements on qubits in the generalized GHZ
state (15) satisfy all Bell inequalities for correlation func-
tions, which involve two dichotomic observables per local
measurement station.

We next study a three-qubit system, whose cor-
responding generalized GHZ state reads |Y)gnz =
cos£]000) + sin&|111). Up to now, there is no Bell in-
equality violated by this pure entangled state for the
region £ € (0,7/12] based on the standard Bell exper-
iment. Can Gisin’s theorem be generalized to 3-qubit
pure entangled states? Can one find a Bell inequality
that violates [¢)grz for the whole region?

To see this we need to consider the classification of
N-qubit entanglement via quadratic Bell inequality con-
sisting of MABK polynomials has been presented in Ref.
[? ]. For N = 3, there are three types of 3-qubit states:
i) totally separable states denoted as (13)={ mixtures
of states of form pa ® pp ® pc}; i) 2-entangled states
which are denoted as (2, 1)={mixtures of states of form
PARPBC, pAC ®PB, PABR® pc}; iil) fully entangled states
which are denoted as (3) = {paBc} including the GHZ
state. Ref. [? ] has drawn an ancient Chinese coin
(ACC) diagram for the classification of 3-qubit entangle-
ment. However, for the four points located on the four
corners of the square, some of the above three types of
3-qubit states coexist. For instance, the totally separable
states and the generalized GHZ states for & € (0,7/12]
coexist at these four corners, it looks somehow that these
four points are “degenerate”.

There are two different entanglement classes for 3-
qubit states, namely, 2-entangled states and fully en-
tangled states. Why MABK inequalities as well as ZB
inequalities fail for the region £ € (0,7/12] maybe due
to the reason that their inequalities contain only fully 3-
particle correlations. If one expands P(a; = m)® P(b; =
n)Q P(ci = 1) and substitutes them into the Bell quan-
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tity B, one will find that B contains not only the terms of
fully 3-particle correlations, such as fig, - @7y, -G @7, - 7,
but also the terms of 2-particle correlations, such as
fla, -G ® 71y, - @ ® 1. The above theorem implies that

|

2-particle correlations may make a contribution to the
quantum violation of Bell inequality.
We introduce a Bell inequality with all possible prob-

abilities:

Play+ by +c1 = 1)+ 2P(ug + by + o =

1)
+P(ay + b2+ 2 =2)+ Plag + b1 + ca = 2)+ Plaz + b2 + ¢4
—Play+b1+c2=0)—Plar+b2+c1=0)—Plaa+ b1 + 4

—-P(al—l-b]+(fg=3)‘-P(a1+b2+(.'1:3)~P((J,2+bl+('1:3)S3.

35
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FIG. 1: Numerical results for the generalized GHZ states
[¥)erz = cos£|000) + sin £]111), which violate Bell inequal-
ity for probabilities (16) except £ = 0 and 7 /2. For the GHZ
state with £ = /4, the Bell quantity reaches its maximum
value £(4 + 3v/3).

This inequality is symmetric under the permutations
of three observers Alice, Bob and Charlie. Pure states
of three qubits constitute a five-parameter family, with

equivalence up to local unitary transformations. This
family has the representation [1]
W) = /EBl000) + /Ere™|100) + izl 101)
+/Ba|110) + /mg]111) (17)

with g; > 0, 3,0 = 1 and 0 < ¢ < 7. Numerical
results show that this Bell inequality for probabilities is
violated by all pure entangled states of three-qubit sys-
tem. However, it is difficult to provide an analytic proof.

In Fig.1, we show the numerical results for the gen-
eralized GHZ states |Y)guz = cos&|000) + sin£|111),
which violate the above symmetric Bell inequality for

(16)
I
3654 T T T T T ™
ALn . “
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v vV vy
355 vV Yy ]
hE .
] v N v,
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FIG. 2: Numerical results for the family of generalized W
states |¢)w = sin Bcos€|100) + sin Fsin £]010) + cos B]001)
with the cases 8 = w/12,7/6, % /4,7/3,57/12 and /2.

probabilities except £ = 0 and w/2. For the measur-
ing angles 8,, = 64, = 6y, = Op, = 0, = O, =
)2, ¢a, = —51)12,¢00, = T/4,0p, = —5T/12,¢p, =
w/4, ¢, = —7/3,¢s = 7/3, all the probability terms
with positive signs in Bell inequality (16) are equal to
-13—6 (2++/3), while the terms with negative signs are equal
to %, so the quantum violation of Bell quantity for the
GHZ state (where £ = m/4) is obtained as 6 x &(2 +
V3)-6x 5 =304+ 3v/3) > 3. In Fig.2, we show the
numerical results for the family of generalized W states
[1)w = sin B cos £]100) +sin Bsin £]010) + cos 4]001) with
the cases 8 = 7/12,w/6,7/4,m/3,57/12 and /2, which
show the quantum violation of |1)w except the product
cases with § = 7/2,€£ = 0 and n/2. For the standard
W state |¢)w = (|100) + |010) + |001))/+/3, the quan-
tum violation is 3.55153. We now proceed to present the
second theorem.

For pure 2-entangled states of three-qubit system, we
need to consider the following: [ 45)®|Ye), |Yac)®lvr)
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and |¢¥pe) ® |a). It is however sufficient to consider
only one of them, say | ap) ® |¥c), since Bell inequal-
ity (16) is symmetric under the permutations of A, B
and C. Moreover, one can always have |[Yag) ® o) =
(cos€]00)ap + sing|11)ap) ® [0)¢ due to local unitary
transformations. For the measuring angles 8,, = 6,, =
67¢a1 = 2’”—/3>¢a2 = -71-/37951 = 901 =0,¢p = ¢Cl =
0,0, = /2,0, =7, dp, = /3, e, = 0, we obtain from
the left-hand side of Bell inequality (16) that

B = g(l — cos 8 + sin(2£) sin §)

> g(l + 4/1 + sin?(2¢)), (18)

the equal sign occurs at 6 = — tan™![sin(2¢)]. Obviously
the Bell inequality is violated for any £ # 0 or n/2. This
ends the proof. Indeed, the quantum violation of the
state |14 5)®[1bc) corresponds to the curve with § = /2
as shown in Fig.2, because [Y45) @ [¥¢) is equivalent to

[Whw for B =m/2 up to a local unitary transformation.

There is a simpler and more intuitive way to show that
2-entangled states violate the three-qubit Bell inequal-
ity: the symmetric Bell inequality (16) can be reduced
to a CHSH-like inequality for two qubits and then from
Gisin’s theorem for two qubits one easily deduce the re-
sult. Indeed, by taking ¢; = 0,¢z = 1, we have from Eq.
(16) that,

Play + b1 = 1)+ 2P(az + ba = 0)

+P(ay + b2 =1)+ Plaz + by = 1) + Plag + ba = 2)
~Pla; +b = -1)— P(a; + b2 = 0) = Plaz + b, = 0)
~P(ay + by =2) — P(ay + ba = 3) — Plaz + by = 3) 9

Since aq,a2,b,b2 = 0,1, the probabilities P(a; + b =
—1), P(a1 + bz = 3) andP(az + by = 3) will be equal to
zero, by using Plaz +b2 = 0) + Plag + by =2) =1~
P(az + by = 1), we arrive at the following Bell inequality
for two-qubit:

Play + by =1)+ Play +ba=1) + Plaz + by = 1) + Plag + bz = 0)
—P(0.1+b1 =2)-—P(a1+62=0)—P(a2+b1=0)—P(a2+b2=1)§2. (20)

This Bell inequality is symmetric under the permu-
tations of Alice and Bob, it is an alternative form for
CHSH inequality of two qubits. For the two-qubit state
[1) = cos€]00) + sin&]11) and the projector as shown in
Eq.(?7), one can have the quantum probability

PQM(ai =m, bj = TL)

= Lllcos2 E[1 4+ (=1)™cosb,,][1 + (—=1)" cosby,]
-I& sin? €[1 — (—1)™ cosba,][1 — (—1)" cos by,]
+% sin(2€)(—1)™*" sin 0, sin 6, cos(da, + Ps,21)

For the measuring angles ,, = 6o, = 0,¢g, = 7™ —
¢ 0o, = —0,0, = 0,0p, = 0,05, = 7/2,0p, = ¢,
the left-hand side of Bell inequality (20) becomes B =
5+ 2(—cosf + sin(2€) sin @) > 1(1 + 34/1 + sin(2¢)),
the equal sign occurs at § = —tan™}[sin(2€)]. Obvi-
ously the Bell inequality (20) is violated for any £ # 0
or 3, just the same as CHSH inequality violated by
the 2-qubit state {¢) = cos&|00) + siné|11). For the
Werner state pw = VI[¥){®| + (1 — V)pnoise, Where
[4) = (|00) + |11))/+/2 is the maximally entangled state.
The maximal value of V that a local realism is still pos-
sible by this Bell inequality is Viner = 1/v/2, just the
same as the case for CHSH inequality. Actually, if one
denotes the left-hand side of Bell inequality (20) by B

[

and redefines a new Bell quantity B’ = %(B — %), he still

has the Bell inequality B’ < 2. For quantum mechanics,

Bl.e = 21/1 + sin?(2€), which reaches 2v/2 and then B’

max
recovers the usual CHSH inequality.

In summary, (i) since all pure entangled states (includ-
ing pure 2-entangled states) of three-qubit system violate
Bell inequality (16), thus we have Gisin’s theorem for 3-
qubit system; (ii) the Bell inequality (16) can be reduced
to an alternative form of the CHSH inequality (in terms
of probabilities), thus it can be viewed as a good can-
didate for a“natural” generalization of the usual CHSH
inequality. (ili) MABK inequalities and ZB inequalities
are binary correlation Bell inequalities. However, one
may notice that Bell inequalities (4) and (16) are both
ternary Bell inequalities, i.e., where the inequalities are
“modulo 3”. Note that the three-qutrit inequality [1] can
be connected to Bell inequality (16), which is for three
qubits, if one restricts the initial three possible outcomes
of each measurement to only two possible outcomes.

FINAL REMARKS

In this talk, we have summarized some of the recent
work done on extending Bell inequalities to three parti-
cles.
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BRIV AVTIVAY MREBRHICOWTO—FENHEERICDOWT

First order asymptotic theory of testing for maximally entangled state

RIEERARFESERE ERATO SHEFREEE O/ b
REURZERZER (R T2RPIZER] 21 thid COE TEHM AHNEmg I 7 |
A IEA !

HARL ZETHERLEPERINTVSN, ZoRiciE, VW—RELTRRIZVEZVT IV
AV NREERBETBEEDNE . LMo T, EBEICER KT VXTIV A NRRERER
THIENEEND T EMNBL. L L, EBRMICERENZREPRSICMEDR KTV XY
FIWAY NRETHZHhENHRTT Ik, METHNFENRAXRTHS.

IRTE, entanglement witness WA FENHNLNBE T ENBVD, ThEDHEIIHTL
E, HEEEAPBRTHT LAREAEFELRIEZA RN, —F, BHEETYTREZoNHR
HBETHZ0EDHINT 2 FBEIIHETIHRFRE L TN, RRAICIED ZE T 3. *
hwz, 52A0NEEFRENFTEORRI A TIVAY MRETH S L 2HET SHEI
DT HMEHIMRRREDORHHA TIRO RS T EHLEENS. FHETHREHRE TEEBFIC2 DD
ki (R, SRED) ZIREL, P EBEoMNETH S ERETS. TDLET, 1%
ENfeT—ah5, EE5DRGEMDELOMEMITE LIcAD. TNET, BFREKCDNT
DRFMRE TR EFR ATV ET VU DEE, BF Stein DEBHITDONTDHONIZOATH->
7z, TNSOFRETIIRERS, WREND DI DOBTIREN S5 356 (BMREE) O
BEH STV .

CZTH/-OTVBHETIE, WADREGE 1 DOBTFRELFET ST LRTFERTHS. L
Tehio T, BFRAIVET YV VDEEPET Stein OFHEEZODEFOETHWVWA T LIZTE
T, D L FADRBNEROE FIREEN 572515 (composite hypothesis) & 5 SHEH
HB. FARFIC, ROES BTIRENBRKI S XV TIVA L NIRETHBT0, BREDDICITA
BHIER LOCC IC[IB2 0 EL B 5.

AR TR, SHIREEOBUAHICLUTOIEO DRELEZS. 1) RERFHDFTLED
BRIV EVTIVAY FIREETH D, SRS FNUNDIREN S 5. 2) IREREDFTED
BRLY RV TIVAY FREEE D fidelity 2 e LITDIRRETH D, RFMZ D fidelity H e %
HB225RETHB. 3) BRERHDSPFEDERI VXTIV FIREEL D fidelity AV e ZHZ 5
RETH D, HILRHHNZD fidelity ' e LITORETHS. RE 1) BPRALHERET, ftu
D2 DICHRB EEAATEY. LML, IDPRLEBTHD, ZLDFE, TORETOMR
MZAWT, MOBE TORMMNEREL 5.

EHIC, ARETRY VI IVWVERS 256 TEMIEICiA T, YU IIVOR—MHED a) H 55
Eb) EBNFEONADRESRET Lz, Txbb, KBTI 6@ DRHOW D FEko1. &
51T, MEDHIITS BIEICHT BERICONTE, BHERSL, o7z, FLT, ThbHo
REDTT, MIEHOLTOERICE > T RICRELTREAR (—BREEIRE) OBEL
AN, RELHEE TOREDHEEIC DV TN,

BAHRMICEREDTDICHVARIFEICE EHZR I RWVEERZERS. T TR ERIE, %
DEIDFERDT=DOEF L X DDOTEETHA. T LT, MirhDAE—ICETIRE (L) A

'E-mail: masahito@qci.jst.go.jp
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lcNeRERE R Tz, BT, BRICHAZH (Alice,Bob) MICEZBFREOAZRILINT
BO, WILICERENREROBIERF N TV AR ERIHLROREA TR T2, 1272, #
FEEE 0o TELE LB 2HEDDRENDS. | DIAREEEREFIFNAEDOTHY, XHiZ
RAFDI ZINTIHER E N A REBE n ITRIFR SIS, BIEEREZZEDTHS. TORE, 1D
HERIIERNCEYT . —7F, IMEEERTE, KB ICEKELT, W THHE TR
B2RBRE THEIRRKL Y A TIWAY MREBIGED NS, BOMROMERZEZZE0
ThHb. INED2DORED T TL EICHHEMIC—REBIRENEET B LERLIZ.
WIMEABIER T, 526N TIVEN 2n THBEE, A —RESRHEEX, £
P TIWEZ2DODY TIN5 n BOFICHT, B4 OENS 2 KFRICDWNT Alice, Bob
TR—ONVRIERTS L WS BE%R n JOIC DOV TIRDET T TERTERCEER LI
TR, o7 b VA EZRIE local operation DA TEIHTE 5.

RIS TIVEI 1 1213 2 DIFEICTOWTHE- T, ThEDIBETIE, Alice, Bob [Hic DWW
T LOCC DififR%#T &, —BRREHEREEELZWL. LA L, LOCC OFIRIcinA, x4
REDEEONFRIEICER U, MYREAETREICT ZEOERICEREL, TNBOBEO/ERICET %
TEMZREICLET C Lic Uiz, ZOER, 27U 1 D05BEICE, —RRICEEHTRED
GHETBLHARES. COMEmEIAEMC Virmani&Plenio D E B U THB. —H, TV
TIVH 2 DDBETE, P L 4 DDOMEREREZ DT EAHE#RS. | DIIRFMEICEET
BMTHO, Y U THII DR ERE UTHEE TONFEI DN T ORERERREIC
UGS I TR—EE TR UIZEES TONBEIC DOV TOREYEREICER TS
BO2BEOTEHICEATIRENDZ. TDFE, BRICFELIBRBY, §igEH SU() x SU(d)
HOERAZEZ BT LICED, BEN SUW) B#OEREEZEZ ST LIcks. (BB, dI3ZEEORX
TTTHB.) EHIZ, Alice, Bob MICDWT LOCC DHIEREZ TWAD, chicmix T, 22
DY TNV DNTD LOCC OFIRERBEITNENT 2B DREREZIDENTES. Lk
o T, T2 7IVEO LOCC DFIEDEE L, SRS 3{REEL LT, A—HEDREDE
BT, 4 BVDREZEZADENTES.

ZORER, SU(d) x SU(d) BOTREMRBUIES, Y 7IVEO LOCC DHIFROE 3155,
FENFEDONADBEICDONT, “ﬁ%ﬁﬁﬁ%ﬂffﬁégt%xbt —7, SU(d) BEDR
EEZBRUERETE—RITTORFIRETHADOT, ABTIE d=2 DFEEDIHEFR > T-.
ZORR, VT IVEOD LOCC DFREMNMEVIFE T, —BREBEBRIRENEET S LERLT.
—7, Y TIVEO LOCC DOFHIFRNE 3IHE TIImO THRIMDE LV DT, XvimREZEL
TET, “BRERRIRENEET ST LERLE.

T, FRITERESE, WABEHKEORERAZ —HET.
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Hypothesis Testing for Entanglement

Yoshiyuki Tsuda*, Bao-Sen Shi, Akihisa Tomita¥,
Masahito Hayashi!, Keiji Matsumoto*!, and Yun Kun Jiang'
*COE, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
tImai Quantum Computation and Information Project, ERATO,
Japan Science and Technology Agency (JST), Tokyo 113-0033, Japan
* National Institute of Informatics, Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
(Dated: January 6, 2005)

We propose a practical procedure to test performance of a device which produces
entangled photon pairs by SPDC. Our new test is demonstrated in an optical exper-

iment.

B, B T/ E 2 ER UTERUEROEHMBREZITHL & 5 L 922750
ROWENEHINTVS. BFERICBOTEFRIREDIERFTE (entanglement) (FE
EZEHH> Tha. ARG EFHERUHEZEET IR L TROAEEXEHD
—DTH D, SPDC IFEEIC entangle LIz T REAK T 2EENTFETHB. ARTIHE,
SPDC TR L7 IREED entanglement IC B3 A RFMRELZE X, B E CEANGBRERR
ZREL, MEERCL D ZOEMERENDB.

SPDC TARE N 2 IRAEIE

had )™
& eXP(—/\f)%a)—p@"
n=0

TR END. J2720, NZEREN D PR O BN Y72 0 DTG T, t 1ZEDE R
M, pld 2 FRICIREDEREIERETH 5. N\ IEEEA, ¢ ILBIRTTEE, p i3k ET 3. RO
entanglement Z& 4R E L T,

0 = (®|p|®")

BRVG. 122U, |0F) = 27 V2(|H) H) + |V)|V)) (BEK entangled IRRENZ B L) Tk 5. 8
Y EBKE I LT, a1

HO:OSHO versus H; 39>9o
ERETS. 12720, ROFEZLITOEEICEIT 5 coincidence JIEICIE 5:

|HV),|VH),|DX),|XD), |RR),|LL).
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_ D +V) o H) = V)
|D> - \/—2- y ifx} - \/—2— 3
_H) +vV-1V) _H) = v=1V)
|R)* \/§ ’ |L> - \/§

LB, T5EHALOREIL, 6 DO Poisson T DETF IV
Xay ~ Poi(teypizy)
(z,y € {H,V,D,X,R,L}) ICB\T, B{IRRTY72 0 OTIEE 1y O
H= gy + pyve + ipx t UXD t RRR T+ HLL
ICBEd B AlnEk
Ho @ > po versus Hy @ pu < 1

ZRUET BHMREICIRS. T2, uyy = (z|(ylolz)|y)nr TH D, n i ZEFRHBOEFHERIC
KT A RTHS. LT3, 0 & p ORI

1-46

W‘TZﬂ

THEz2bN%. FAERERZAHT 2RHEOBEDHEXNIE, TELLRED Pitman 35 %
BRRICT LWV ERTEANICEE THS. TORBNIZERKICT BEHEE T Neyman
o THZGNS. ULH L, 2O Neyman Bl 3 KD plcfk(Frd 5. £ T, 2Lz M
W, BEANC Neyman BEEICE D SHIERITWD, BET 5. 97405, FIFAREA 2R ¢
DI L, FIHD logt % FAVT Neyman Bl ZHEL, 5O Dt — logt BHEE S NZEDICE
SCPEIEH T3,
EERTIE, t=2408 8 LTz
F9, Neyman B2 % FHVZVIRE, B, 13 0B TEONERTHS. TOBE, &L
HEIC KB p D B%HREERRE p < 72.6 xoTz.
—7, FEEZ 1T ORET S &, 72D DK 240 — 6 = 234 D Neyman 77 OHEE[EIX
#v|vE|DX|XD|RR|LL
25 | 19 | 48 | 45 | 40 | 48
Lol THICEDWERIEIC XS p D 5% AMEERME p < 71.7 &7z,
0o =075 T B & pp =725 TH5. TDHFH, Neyman BiiMic X SHWRIETIE Hy #2
BHITZ 2V, Neyman BL7C K BHRE L Hy ZEAT 5.
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Quantum state discrimination and estimation via linear optics

Peter van Loock
Quantum Information Science Group,
National Institute of Informatics (NII),
2-1-2 Hitotsubashi, Chiyodaku, Tokyo, Japan
email: vanloock@nii.ac.jp
faz: +81 (3) 4212 2568

‘We propose a set of sufficient conditions for implementing unambiguous discrimination of two
nonorthogonal states. The implementation is assumed to be based upon a static array of linear optics
without feedforward. These conditions are then sufficient for the linear-optics implementation of a
POVM that contains at least one conclusive element corresponding to the error-free identification
of either of the two states. Such a POVM may be either that for the optimal unambiguous state
discrimination or one that approximates the optimal scheme. Only in the case of orthogonal states,
the conditions become necessary and sufficient for optimality. In general, these criteria are necessary
and sufficient for any implementation based upon an inconclusive (failure) POVM element that
is represented by at most one photon number pattern. A scheme with only one failure pattern
corresponds to the simplest extension of the exact discrimination of orthiogonal states, requiring
zero failure pattern, to the unambiguous discrimination of states with some finite overlap. We
further investigate the linear-optics implementation of POVMs for quantum state estimation.

PACS numbers: 03.67.Hk, 42.25. Hz, 42.50.Dv

keywords: linear-optics quantum information pro-
cessing, quantum state discrimination

As for the implementation of a given task in quan-
tum information processing, for instance, the application
of a unitary gate in a quantum computation or the gen-
eralized measurement (POVM) of a set of signal states
in quantum communication, there are two different types
of approaches. On the one hand, one may ask what the
minimal requirements in terms of physical resources are
when the goal is unit efficiency, i.e., perfect performance.
On the other hand, a very important scenario concerning
implementation is when the set of physical resources
is fixed and limited, and the question is how well and
to what extent one may fulfil the quantum information
task in an approximative scheme.

In an optical implementation, as for the former case, in
order to perform a given quantum information task per-
fectly, for example a general entangling gate or a general
POVM, normally a nonlinear interaction (described by a
Hamiltonian at least cubic in the optical mode operators
[1]) is needed. At present, however, these nonlinear pro-
cesses are hard to realize on the level of single photons.
Alternatively, as a resource, one may build more or less
expensive entangled single-photon states off-line, and for
performing the task on-line, one can exclusively use linear
optics including photon counting and conditional dynam-
ics (feedforward) [2-4]. In the case of the implementation
of particular POVMSs, namely projection measurements,
there are general criteria to decide whether, in principle,

unit efficiency is possible using only linear optics [5].

In the second scenario, the set of physical resources is
assumed to be fixed and limited, and one accepts that
only a finite efficiency is possible. For example, one may
be restricted to solely using linear optical elements, rea-
sonably cheap auxiliary states, and postselection without
Sfeedforward. In some linear-optics proposals, this is ex-
actly the setting for generating the off-line resources via
non-deterministic quantum gates. However, it appears to
be hard to express such approximative schemes in terms
of simple criteria like those of Ref.[5]. More generally,
so far, there is no solution to the problem of deciding
whether a given POVM, including non-projective ones,
can be implemented with linear optics. Here, we will con-
sider a particular example f{or a non-projective POVM,
namely the unambiguous state discrimination (USD) of
two nonorthogonal states. It is well-known that two
nonorthogonal states cannot be discriminated in a de-
terministic fashion. However, there is an optimal POVM
for the nondeterministic discrimination. In this optimal
scheme, the successful measurement outcomes unambigu-
ously refer to either of the signal states, whereas the fail-
ure POVM element leads to an inconclusive result. Op-
timality here means that the probability for obtaining
an inconclusive result is as small as allowed by quantum
theory. This minimum failure probability is just given by
the overlap of the two signal states.

Here we are interested in the question whether USD
can be performed with a static array of linear optics. For
this purpose, we propose a set of sufficient conditions for
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implementing USD of two nonorthogonal states. These
conditions are then sufficient for the linear-optics imple-
mentation of a POVM that contains at least one conclu-
sive element corresponding to the error-free identification
of either of the two states. Such a POVM may be either
that for the optimal USD or one that approximates the
optimal scheme. Only in the case of orthogonal states,
the conditions become necessary and sufficient for opti-
mality. In general, these criteria are necessary and sufti-

cient for any implementation based upon an inconclusive
(failure) POVAI element that is represented by at most
one photon number pattern. A scheme with only one
failure pattern corresponds to the simplest extension of
the exact discrimination of orthogonal states, requiring
zero failure pattern, to the unambiguous discrimination
of states with some finite overlap. We further investigate
the linear-optics implementation of POVMs for quantum
state estimation.
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46 (2001).

[3] M. A. Nielsen, LANL arXive quant-ph/0402005 (2004).
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Estimating Quantum Optical States and Processes
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One of the distinguishing features of quantum mechan-
ics, not found in classical physics, is the possibility of
entanglement between subsystems. It lies at the core
of many applications in the emerging field of quantum
information science, such as quantum teleportation[l]
and quantum error correction[2]. Quantum entangle-
ment refers to correlations between the results of mea-
surements made on component subsystems of a larger
physical system which cannot be explained in terms of
correlations between local classical properties inherent
in those same subsystems. Alternatively, an entangled
state cannot be prepared by local operations and local
measurements on each subsystem. Thus one often says
that an entangled composite system is nonseparable.

The nonclassical nature of quantum entanglement has
been recognized for many years[3, 4] but only recently
has considerable attention been focused on trying to un-
derstand and characterize its properties precisely. We
now have a good understanding of entanglement for a
pair of qubits[5], however, how does one determine the
extent to which a real physical few qubit system is entan-
gled? What measurements are actually required? There
are a number of possible techniques but arguably the
simplest (if not the most efficient) is to perform appro-
priate measurements to reconstruct the density matrix
and then use the theoretical measures currently known.
Tomographic techniques, in which the density matrix of
a quantum state have been applied to experiments such
as the homodyne measurement of the Wigner function
of a single mode of light [6] and of the density matrix of
the polarization degrees of freedom of a pair of entangled
photons(7, 8].

For the characterization of a few qubit quantum com-
puter, quantum state and process tomography provides
invaluable information on the system. For guantum
states the degree of entanglement and the degree of mix-
ture can be calculated. If one were to consider quan-
tum process tomography (tomography associated with
the evolution of the state) then the entangling power of
a gate could be determined as well as effects such as deco-
herence. Two caveats must be made: firstly, there must
be a large enough number of copies of an identically pre-
pared quantum system to allow to a reasonable approxi-
mation the reconstruction of the state (this may be time
consuming in many architectures where the system must
be re-initialized after each measurement); secondly, more

measurements are preformed in the reconstruction that
what is likely to be needed to get the degree of entangle-
ment. However we believe these disadvantages are out-
weighed by the other information one can obtain from
the reconstructed states.

Let us consider an arbitrary n qubit state (shown
schematically in Figure (1)).

FIG. 1: Schematic representation of an n qubit state.

This n qubit state can be mathematically described by a
density matrix of the form,

1 1 2 n
P=% D G WAV Y gAY, (1)
i1y yin =0
. . 10
where the \; matrices[9] are given by Ay = 01 )
01 0 —¢ 10
AL = (1 0),>\2-— (z 0 ),/\3~<0 ~1),andthe
J superscript in )\z(j ) labels the qubit. The ¢;, .. ;, arethe

coefficients that specify the state. There are 4™ of these
that need to be determined however the normalization
criterion (T'r(p) = 1) ensures that ¢p_ o = 1 leaving
4™ — 1 parameters to be determined or specified . Noting
that,

2 3 1
AA-AD = 57 o (2)

we now observe the procedure to reconstruct the state.
By measuring all the expectation values (A Asy---Ai,),
for 11,12, ...,7, = 0,1, 2,3 one determines the coefficients
Ciy,....in and hence the state. How we actually mea-
sure these expectation values(A;, i, ...\, ) depends heav-
ily on the physical architecture. However one can al-
ways measure the probability of the system being in
the ground state |0). From such measurements we can
then calculate expectation values like (Xj, Ag,...2,) (for
i; = 0 or 3). With appropriate single qubit rotations:
UF(¢) = exp [—ikE (]1);{0le™*® + |0);(1]€**)] , on the
individual qubits (where j label the particular qubit, km
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is the length of the pulse and ¢ the polarization) followed
by the ground state measurement, all the expectation
‘values (i, Ay .. Aq,) (for é; = 0,1,2,3) can be determined
and hence the state reconstructed. It is easy also to write
the reconstructed state directly in terms of these single
qubit rotations and ground measurements.

In any real situations, the information used to recon-
struct the state will contain uncertainties due to small
experimental errors. This errors make it possible that
this reconstruction procedure for the state will not pro-
duce a physically acceptable state. While the resulting
density matrix will be trace preserving and Hermitian, it
may process small negative eigenvalues. Using a maxi-
mum likelihood technique[10] physically acceptable den-
sity matrices can be obtained. Let us now illustrate this
procedure with two examples.

A single qubit density matrix can be written as p =
3 <12 + Zle ci/\i), where I is the 2 x 2 identity ma-
trix, and the coefficients c¢; are given by the measured

expectation values ¢; = 2(\;). In matrix form this is
written as,

p_1<<1+<>\3)

(A1) — i{A2)
~ 2\ ) +i0a) ) : (3)

1 - (As)

Let us consider the simplest states that may contain
entanglement, namely two qubit states. Such states can
be expressed in the form,

Ll : 1 2
p=T0 4 Y i A @D (4)
SR

So by measuring the moments </\£11))‘1(Z§)>7 the coeffi-
cients c;, ;, are determined and hence the density ma-
trix specified. As an example consider the result of the

measurement of ()\gf)/\g:)) where the only nonzero zero
measurements are given by (/\gl)/\?)) = —(/\gl))\gz)) =
()\gl))\gz)) = v/4 and (/\gl)Agz)) = 1/4. The state is then

the Werner state[11] given by,

1
5003
| 0 5 0 0
P=1 0 0 32 0
1
i 0 0 57

With this reconstructed state properties like the degree

of entanglement and entropy can now be calculated. For
systems with several more qubits the tomography proce-
dure can be easily implemented however the number of
measurements increases as 4™.

To summarize, we have shown a simple method by
which the state of a few qubit quantum architecture can
be reconstructed and hence the degree of entanglement
determined. This characterization will be essential for
early proof of principle quantum computation experi-
ments.

FIG. 2: Graphical representation of the two qubit state re-
construction for the Werner state. For v = 1/3 the state is
separable, while for v = 1/2,1 the state is entangled with
7 = 1 corresponding to the maximally entangled Bell state.
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