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Maximum Likelihood Analysis of a Structural Equation Models
with Non-normal Data

The Chinese University of Hong Kong  Sik-Yuin Lee & Xin-Yuan Song

In this paper. we consider maxinmn likelihood (ML) analvsis of some non-normal data in
a framework of structural equation modeling. The non-normality under consideration is due
to the disereteness of the data, which are ordered categorical. and the non-linearity of the
latent variables. To improve the applicability for practical problems, the model framework
can acconunodate two-level data that can be missing at randown (MAR).

Suppose that there is a set of p x 1 random vectors y ;. @ = 1,---, Ny, that are nested
within groups g = 1,--- .G, A two-level model is proposed as follow: yg; = v+ vy, 1=
1,--- Ny, g = 1,--- G, where vy, and vy are random vectors such that vy and vy are

independent for g # h, and vy and vg; are independent for i # j. We define the measurement
equation of the individual-level model as: vy = Ajwigiteg, wig = (77:;:1, Efgi)T is a vector of
latent variables, and €, is a veetor of error measurements that is independent with wyg; and is
distributed as N[0, ®,]. The structural equation is defined as 0y, = ILmy  + T F (&) +014:,
where Iy and T’y are unknown regression coefficients, F(€;,;) is a veetor of differentiable
functions, &;4; is a latent random vector with distribution N[0, @4, and 814 is a vector of
error measurements that is independent of &y, and is distributed as N[0, ¥ 5], where Wy
is diagonal. We assume that |I; — II;| is a non-zero value that is independent of ;. We
consider a confirmatory factor analysis model for the group-level model. The measurement
equation is defined by vy = Agwag+ey, g = 1,--- , G. where wy, is a veetor of latent variables
with distribution N[0, @], and g, is a vector of error measurewments that is independent with
way and is distributed as N[0, ®y), where Wy is diagonal matrix.

Without lost of generality, let yg = (xg,wgi)T. where xg; are observable continnous
neasuremnents, and wg; are latent continuous measurements that correspond to the observ-
able ordered categorical measurements. Moreover, we cousider Xg = {Xgi.obsy Xgiamas } and
Zgi = {Zgiobss Zgiymis }+ WHETE Xg; o5 ALl Zgy obs Tepresent the observed data, while Xg;mes and
Zgimas vepresent the MAR missing data. Let Xops = {Xgiobsit = 1,--+, Ngyg = 1,--- ,G}
and let Zops = {Zgiobs;t = 1, -+ ,Ng, g = 1,---, G}, our main objective is to obtain the ML
estimates of the unknown parameters, and the BIC for model comparison, on the basis of
Xobs and Zobs~

Let D, be the observed data set, D, be the latent data, € be the latent variables, D,
be the complete-data set; and @ be the vector that contains the unknown parameters, and
L.(Dg, Dy, §2:6) be the complete-data log-likelihood.

The ML estimate of @ is obtained via the following EM algorithm: E-step: Evaluate
Q(6:6") = E{L.(D,,D,.£:0)|D,, 0"}, in which the expectation is taken with respect
to the conditional distribution of (D, Q) given D, at 0. M-step: Determine 870 by
maximizing Q(0;0)). The E-step is completed via a Gibbs sampler (Geman & Geman,
1984) algorithm, which iteratively draws observations from the components in p(Dy|Do, €2: 8)
and p(£2|Dg, Dy; 0). The M-step is completed by conditional maximization (Meng & Rubin,
1993).

The following Bayesian information criterion (Kass & Raftery, 1995) is proposed to serve
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as a statistic for comparing models M; and My:

p(D,; M, él)

B]Clg = -2 10g =
{ p(Dy; My, 65)

} + (dy — da) log N,

where p(Dy; My, ;) is the observed data likelihood that is evaluated at the ML estimate of
0, under My, dy is the dimension of 8, and N is the sample size.

For comparing simple SEMs M; and Ma, if p(D,; My, 6:1)/p(Dy; MQ,@Q) can be casily
calculated, the application of BICi, is straightforward. However, for some complicated
models, the computation of this ratio, and hence BICs, would be difficult. Geliman and
Meng (1998) developed a rather efficient and accurate algorithm, called path sampling, for
computing normalizing constants of probability models, and showed that it is a generalization
of importance sampling and bridge sampling. This algorithin is implemented to compute
the observed data likelihood in the BIC of our problem. )

Suppose we wish to compute the observed data likelihood p(D,; My, 81). We consider
a model My with a parameter vector 8y that is nested in M; such that 8; = (6, 07) and
6, reduces to Gy if 87 = 0. Then, we can link up M; and My by a linked model M, with
parameter vector 1@, = (6y,t0}) via a continuous path ¢ in [0,1]. Let p(D,, Dy, §2;t0;)
be a complete data density function evaluated at the ML estimate t@, for each t, such
that at ¢ = 1 and 0, p(D,, Dy, 2;6,) and p(D,, D, ; éo) are the density functions that
correspond to M; and My, respectively. Let U(D,, Dy, Q;t@l) = dlogp(D,, D,, Q; tél) /dt,
and Ay = log[p(Do;Ml,él) /p(DO;MO,éo)]. It can be shown by similar deviation as in
Gelman and Meng (1998) that

13 _ _
Ao = 5 D (e = t6) Tsrny + Ugyy)
s=0
where {t;5);5 =0,..., S} are ordered grids in [0, 1] U(s) =J! ijl U(D,, Dg), Q). t(s)él),
with {( 215 )i =1,...,J} are observations that are simulated at the E-step from the
conditional distribution of (Dy, £2) given D, at ) 6,. Hence, we have log[p(D,, My, 91)] =
Ao + log p(Do;Mo;ég). The similar procedure can be applied to find log p(DO,A’fg,ég).
Finally, BIC}, can be obtained.
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CONSTRUCTING CONFIDENCE INTERVALS FOR
COMMUNALITIES IN FACTOR ANALYSIS

Masanori Ichikawa  Tokyo University of Foreign Studies

Sadanori Konishi  Graduate School of Mathematics, Kyushu University

We consider the problem of constructing accurate confidence intervals for communalities in the normal
theory exploratory factor analysis. Under the model, the covariance matrix € (> 0) of the observed
variables ..., .2, I8 decomposed as 2 = AA" + ¥, where A is a p x m matrix of factor loadings
and ¥ is a diagonal matrix. The variance of cach z; is decomposed as the sum of communality 1)
and unigueness ;. Let S be the usual unbiased estimator of £ based on a random sample of size
N =n+1 from N,(u. ), where © = AA" + ¥, The maximum Wishart likelihood estimator of the
communality 7; is a function of 8 and is Fisher consistent. Hence, the problem of interest here is to
construct confidence intervals for a real valued function h(:) of 2.

Let K () be the distribution function of the Studentized statistic T = n'/2{h(S) — h()} /4,
where 62 is a consistent estimator of the asymptotic variance o2 of Y = n'/2{1(8) — h(€2)}. Then

the exact v endpoint of h(Q) based on the distribution of T is given by
hexact|] = WS) = n V26 K11 — ).

The usual interval is based on the limiting normal approximation to the distribution of T and its
a-level endpoint is, by replacing K11 ~ a) with the pereentile point z) . of the standard normal

distribution, given by
hnonra|a] = MS) — n MG, (1)
By using the Cornish-Fisher expansion for quantiles of T', we have
Reactle] = h(S) —n~ %6z —n~'é {Gny =t = Gy = L)zt b+ 0@™34), (2)
where my, mg, and my are defined by

n~ 2amy + O(n~?),

— B . G
n~ Y20ty + O,

E(Y)
E{Y —E(Y)}’
{h(S) = h(Q)}&* - 0?)
nE 3

a

I

i

= i+ 07,

respectively. By replacing iy, g, and my; in (2) with their estinates. we have an approximate

a-level endpoint
hepla) = h(S) — n V2620 —n'G {(m, — %m;x) - (%ﬁm - émg)zfﬁ”}. (33)

The bootstrap-t method estimates K(z) by K(z), the distribution function of the bootstrap

version of the statistic T* and its a-level endpoint is given by

hpsrla] = W(S) —n~' 26K~ (1 - a). ()
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In practice, the percentile point K ~Ha) is approximated by a simulation.
Another bootstrap approach is the BC, interval and its endpoint is defined by

hpe, o] = G} {‘I‘ <zo + —EgjL—> }, (5)

1—alzo+ z4)

where G is the cumulative distribution function of the bootstrap value h(S*) and zy and a are,
respectively, the bias-correction and acceleration parameters. The BC, interval is transformation-
respecting and range-preserving,.

The ABC endpoint is an analytical approximation to the BC, endpoint and is usually calculated
by an evaluation of a statistic. By equating h(S +n~/26E) with the expansion of the BC, endpoint

for an appropriate choice of E, we have
hascla] = h(S + 2n~ /24,67 'sH'S), (6)

where £o = (20 + 2o) /{1 — @(%0 + za)}2, - (5‘5"7 S 70), and Zy and @ are the estimators of 2y
and a, respectively. The ABC interval is transformation-respecting.
An approximate endpoint h[a] is called first-order aceurate it Prob(h(9) < hla]) = a4+ O(n~1/2),

and second-order accurate if Prob(h($2) < hle]) = @+ O(n™'). The usual endpoint (1) is first-order

accurate whereas the endpoints (3) to (6) are second-order accurate.

Let 2= & O®, where @ = T! — W 'AA®'A)'A'T!. We assume that = is positive
definite and define a diagonal matrix ©; whose diagonal elements arc the i-th row (column) of 7' =
(€9). By noting the relation s; = 1)+, it can be shown that, for the case of 7);, 02 = 2€H +2w2 — 4y?2,

It can be also shown that the quantities my, ma, and 1, are given by

omi = Pitr (I, +T71) 4+ 2tr 80, 8(BO =),
Pmy = ~8tr(80;)° + 24tr 80,80,BO; — 24 (B0, PO, B]; + 8wl — 24yP + 48y;€",
*my = —8tr (80;)° + 16tr 80, 80,BO; — 8y (80,80, B]y; + 8wl — Bwuph? — 1643 + 32,6,
where B = (f;;) = W TIAT AT,

Various types of intervals described above were compared by application to real data and a Monte
Carlo experiment. It was found that all the second-order accurate intervals achieved better balance
in the left and right than did the usual intervals. It was also found that the Cornish-Fisher expansion
based intervals were too short, whereas the bootstrap-t intervals tended to be long. The BC, and ABC

methods are recommended for constructing confidence intervals for communalities in factor analysis.
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Factor Analysis by Using Higher Order Moments
Leiden University Ab Mooijaart

In Factor Analysis (FA) mostly covariances or correlations are fitted only. These

coefficients are called second order mixed moments because they deal with cross-
products of two variables. If the variables are normally distributed, these second order
moments contain, besides the first order moments, all the necessary information.
However, if the observed variables are not normally distributed higher order moments,
like cross-products of three variables, contain additional information. For instance, the
skewnesses of the variables contain also information about the underlying structure. In
this paper we extend the common formulation of FA in terms of second order moments to
higher order moments.
Three different kinds of factor analysis are: linear FA (LFA), polynomial FA (PFA) and
Interaction FA (INFA). All these types of FA can be used for modeling nonnormally
distributed variables. A general formulation of Structural Equation Models (of which
factor analysis is a special case) with linear, quadratic and interaction effects is:

n=a+Bn+I'E+,E®E)+E,

where I', is here the main matrix of interest. See also Klein and Moosbrugger (2000). By

our formulation main effects, quadratic effects and interaction effects are possible in one
model. The measurement model is defined asx =71, +A £+8, y=7, +A n+e.

By defining z, =x—E[x], z, =y - E[y] and 2,4, = (§®&)— E[E®E] we can write
)

= _ ~ _ £ N
z,) \AB'T, ABT, |z ) (0 1, AB C

where B =1-B,. This formulation can be written in terms of super vectors and super
matrices as

z, = Az, +Ke,

where the subscripts “O” and “L” correspond to “observed” and “latent” vectors.
For the first, second and third order moments we have

Elz,]=AE[z,]
E[z,®z,]=(A®A)E[z, ®z, ]+ (K®K)E[e®e]
Elz,®2,0z,]=(AQA®A)E[z, ®z, @z, | +(KOKOK)E[e®e®e].

A generalized least squares function can be defined as:

—489—



f(0)=(s-0(6))' W(s - (),

in which W is some weight matrix. Minimizing f(8) with respect to the latent
parameters @ gives generalized least squares estimates of 8. For more discussion about
this estimation procedure see Browne (1984), Mooijaart (1985).

An example is the interacton model. See for some references Busemeyer and
Jones (1983), Kenny and Judd (1984), Ping (1996) Bollen and Paxton (1998), Jackart and
Wang (1995), Joreskog and Yang (1996).

A Monte Carlo study was carried out for the three types of factor models given above
with 500 replications and different sample sizes. The results are:

1: Fitting all the third order moments, in addition to all second order moments, gives

large biases of the estimates.

2: Fitting all the third order moments gives the smallest standard errors of the estimates
(which can be proven in general). But see remark 1.

3: The distribution of the goodness-of-fit statistic X is chi square distributed according
to the large sample theory in cases where the number of fitted moments is restricted.

General conclusion: A careful selection of moments to be fitted is necessary.
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Higher-order estimation error in factor analysis
and structural equation modeling under nonnormality

Haruhiko Ogasawara
Otaru University of Commerce

1. Abstract

A general formula of the higher-order asymptotic standard error is derived for
the estimators of the parameters in structural equation modeling. The formula
covers nonnormally distributed data as well as normally distributed ones. For this
derivation, the third- and fourth-order asymptotic central moments of sample
variances and covariances are provided for nonnormally and normally distributed
cases. The formula requires the partial derivatives of an estimator up to the third
order with respect to sample variances and covariances, which are shown for the case
of the Wishart maximum likelihood estimator. To see the accuracy of the formula,
simulations are performed using the exploratory/confirmatory factor analysis models.
It is numerically shown that some of the added contributions of the higher-order
asymptotic standard errors are substantial with small to modest sample sizes.

2. Main results
Under usual notation, we have the following results.
Lemma 1. The asymptotic third-order central moment of Su>5c4 and Ser

with the assumption of its existence is
E{(Sab - O.ub )(Scd - O—'cd )(Sef - Gef ) }

J— -2 _
=n (Gabcde’f o Gabcdo-ef o O-abc'fo_td O-cdefo-

ab

o O-ucd O-bef - O-hc‘dgaef o Gabco-def o ledeL'z(/'

-3
- O—abeacdf - O-abfo-cde + 2O-abo-cd O.ej' ) + O (n )’
(pzazb>2lip2c=2dzlijpze2 f21),

where O gpeder ,Ouwea and O, are the multivariate central moments of the
variables corresponding to the subscripts, respectively.
et K= {Kuba,} be the fourth-order cumulant matrix of observable

variables. Then, we have
Theorem 1. The bias-corrected third-order (added) asymptotic variance of

A

0, with the assumption of the existence of the associated moments of observed

~

variables and three times differentiability of 0, with respect to sample variances
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and covariances is given as
: 06,
[ 00,00, s 55 00, 0%,
06' 06 3,4y 00, 00,00,

Aavar(@,;n"*)=n"

X (o-abc'def - UﬂbGL‘tlef O-c do—abeff - Ue'f'aabt'tl

- O-acdo-bef - O_bcdo-aef - Gab('atlef - o-abdo-t'ef

cde

1 2%, 0°0, .00, 0’0,

+ZZZZ 250‘ ,00, 00

azb czd exf gzh

- O-abeo-cdf - aabf'g + 2O-abo_cdo-ef )

cd cd

oo, 0o, 00,00.,00,

X (O—abvd ~ 0 40 )(Gefgh - O_efagh) }

] 20 20 0%,
- { acKaa ZZZ@O‘ 00,00,

azb cz2d exf

X (O'abcdef - O-abo-cdef - zo_cdo-abef - 2O'acdo-bef
- Zo-abco-def - Zo-abdo-ce_[' + 2O-abo-ulo-ef - }

1 80, . 0%
+tr<—acov —5—’— acov(s)+acov 6,—(;}——51—7 acov(s)

!

S SOS

(i=1,...,9).
Corollary 1. The bias-corrected third-order (added) asymptotic variance of

A

6, with the assumption of multivariate normality in addition to that in Theorem 1 is

2
Aavar(f;;n™) =n" Z Z z do,, aaa gcr

azb cz2d exf

Xx{(0 ;,04, + 0 4,0,.)0, + (O-fao-bd + 0 40 ,,)0,

+ (O-eao-bc + O-ebo-ac)adf + (aeaabd + O-ebo-ad )Ucf}

1 8°6, 06, 8°0,
+

’ 2 Z Z Z 2 8aab60’ 0o,00,,

a2b czd exf g=h

oo,, 00,00,00,
X(O-aco-bd + O"adO-bc)(o-ego-fh + O-eho-fg) }’
(i=1,...,9).

Key words: Mean square errors, asymptotic standard errors, asymptotic biases, higher-order
analysis, structural equation modeling, nonnormal distributions, asymptotic robustness.
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Factor analysis, reliability and unidimensionality
University of Groningen, Jos M.F. ten Berge

Factor analysis and test theory go back a long way. Not only do researchers want reliable and
unidimensional tests and scales. Factor analysis and test theory also share the same mathematical
framework, revolving around a set of feusible taurologies. That is, for a fixed observed covariance matrix Z,
there exists a set of diagonal matrices D such that both Z-D and D psd. In the context of factor analysis, the
diagonal matrices are solutions for ¥, the nonnegative diagonal matrix of unique variances, entailing a so-
called reduced covariance matrix Z-¥. Each point in the feasible set is one possible factor analysis
solution. In the context of test theory, the diagonal matrices are solutions for Zy, the nonnegative diagonal
matrix of error variances, entailing a true score covariance matrix X-2: Each point in the set now refers to
one possible solution for Zy. This paper gives an overview of those points in the feasible set having direct

psychometric interpretations.

The ideal of factor analysis is to find a solution for ¥ such that we can decompose
I=C-¥)+¥Y=FF +¥

with Z-¥ of low rank, which can be factored as T-¥=FF’, with F (mxr) a matrix of loadings, for some

small number of common factors r. A key issue has been to what extent can communalities (diagonal

elements of Z~¥) reduce the rank. The answer has a long history, revolving around Ledermann’s bound

(LB). Ledermann (1937) proposed the function ¢@(m) =[2m+1 —‘/(—8m—+1) /2 as an upper bound to the
number of common factors. Counterexamples were given by Wilson and Worcester (1939) and by Guttman
(1958). Shapiro (1982) proved that LB is almost surely a lower bound to number of factors, and that the
minimum reduced rank is unstable below LB. Shapiro (1985) and Bekker and Ten Berge (1997) also settled
the identification issue generically: The unique variances are almost surely identified when the rank is
below the LB. It may be noted that the LB also plays a key role in the so-called inverse PCA problem.
From an mxr PCA loading matrix, the entire correlation matrix can be retrieved when r is at or above LB.
(Ten Berge & Kiers, 1999).

In test theory, each point of the feasible set is characterized by its implied reliability. The most
interesting points are the origin (implying that perfect reliability is a possibility), and the maximum sum of
coordinates point, entailing the greatest lower bound to reliability (Bentler, 1972; Jackson & Agunwamba,
1977; Bentler & Woodward, 1980; Ten Berge, Snijders & Zegers, 1981).

In factor analysis, each point of the feasible set is characterized by its implied reduced eigenvalues
and reduced rank. Although low reduced rank (below LB) occurs with probability zero, some points in the
set are closer to the ideal of low rank than others, in the sense that their eigenvalues beyond the first r are

small. Minimum Rank Factor Analysis (MRFA, Ten Berge & Kiers, 1991) identifies the most r-
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dimensional point, r=1,2,..., in the set, by minimizing the sum of the last m—r reduced eigenvalues. A
quadratic variant (MRFA-Q) minimizes the sum of squares of the last m—r reduced eigenvalues. That is the
same objective function as in Least Squares Factor Analysis, except that MRFA-Q is constrained to stay
within the feasible set. The most important practical difference between methods that are and those that are
not inside the feasible set is that the former allow evaluating a percentage of explained common variance,
analogous to the percentage of explained observed variance in PCA. The MRFA solution for r=1 is the
most unidimensional (congeneric) point in feasible set. A natural measure of unidimensionality of a test is
the percentage of common variance explained by that solution, see Ten Berge & Soéan (in press). The least

unidimensional point in the feasible set is the origin, which corresponds to PCA.
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An Uncompensated Factor Analysis Model

The National Center for University Entrance Examinations Kojiro Shojima’

In factor analysis, the jth variable can be described as Xj = g5 + /\j f + Ej, where
f = [Fi--- Fm] is a M-dimensional random vector, Aj = [Aj1--- Ajm]’ is a vector of
factor pattern for item j, ; is an intercept, and £j is a random crror assumed to follow
a normal distribution with mean 0 and variance 1/%;; i.c., Ej ~ N(0,1/4y;).

In the factor analysis model, the conditional distribution of Xj when f = 8, X0,
follows a normal distribution with mean p; + )\J'- 0 and variance 1/1;. That is,

3¢. /% n i O
h(X; = 2j|0) = T‘Z—fr_ exp ——5~(;1:J~ — Wj — AJ'-O)Z (1)
C\{’-"}’~ h 1@ aZi
—(2;)1J/2 xXp =3 (0 - B; - 7)) (2)
a’-7- h 1 i
=iz —50 = B =) 40 - B - ve) - ()
(27) 2

(3) becomes very similar to the multidimensional continuous response model (Samejima,
1974, Psychometrika), where &, 3; and «; arc M-dimensional vectors. Furthermore,
using the following transformations,

A= (afyy) oy, =—(afyy) T8 and = (ofv;)?,

(2) reduces into (1). Note that A; = ajaf (M x M) in (3), and the mn clement of A
is ajmajn. Then, the expected score of X conditioned on 0, E[X;|0)] is represented as
Fig. 1.

1. An Uncompensated Factor Analysis Model
Assuming that cvery nondiagonal clement in A; is sct to be 0 in (3), we can obtain

h i
(e 1
——i)-:ll]/—i exp {aJ 9 18_] YiZ }{aJ 9 :BJ ’YJILJ)}

(2
h | % i
Q; Y 1
(27r)1/2 P —3 ajzm(Om — Bjm — %m)? - (4)
m=1

9(z;10) =

The expected score of (4), E[Xj|6], becomes Fig. 6. By the way, it is obvious from
(1) and (4) that the compensated model (ordinary FA model) yiclds no difference as
compared with the uncompensated model if the simple structure is completely realized
in the factor pattern.

"The author is grateful to Dr. Kano (Osaka University) and Dr. Yanai (The National Center for
University Entrance Examination) for their useful comments and suggestions on earlier versions of this

paper.
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2. A Mixture Model of Compensated and Uncompensated Relationships
If we introduce a dummy variable djmn (= djnm) which is 1 if the relationship between
the mth and the nth is compensated, and is 0 otherwise. That is,

1 when the relationship is compensated

()

dimn = djnm = .
Jmn 0 when the relationship is uncompensated
Then preparing a symmetric matrix Dj = {djmn} = {djnm}, We can express various
situations of compensated or uncompensated relationships among factors, using D; ©
Aj = {djmnjmajn} instead of A;.

3. A Model That Continuously Considers The Degree of Compensation

To take the degree of compensation (uncompensation) into account, cach element
of Dj can be regarded as continuum with its region [0,1]. Continuously operating the
element of Dj, we can consider medium models between the compensated and the un-
compensated (see Figures 2-5). It is certain that the model with d=1.0 and d=0.0
becomes the compensated model and the uncompensated model, respectively.

Fig. 6: Uncomp. FA
(d=0.0)

Fig. 4: d=04 Fig. 5: d=0.2
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Mean Comparison: Manifest Variable versus Latent Variable

Ke-Hai Yuan (University of Notre Dame) and Peter M. Bentler (UCLA)

Let ¥, ¥2, -0 ¥u be a random sample from a p-variate normal distribution N{u, X).
Assue that y; is generated by the factor model

yi=v+A§ +e (la)

where €, and €, are independent with E(€,) = 7, Cov(§;) = @, and Cov(e;) = ¥ is a

diagonal matrix. So the mean vector and covariance matrix of y; are
p=rv+Ar and X =APA + . (1b)

In classical multivariate analysis there is a great interest in testing the mean of the manifest
variables (MV), the typical hypothesis is Hgy : g = 0. The well-known Hotelling T2 is
designed for such a purpose, which is given by T2 = ny’S™y, where ¥ is the sample mean
and S is the sample covariance matrix.

In the setup of model (1), testing g0 = 0 can also be accomplished by testing the means
of the latent vector & For example, when v = 0 in (1b), ¢ = 0 is equivalent to T = 0.
More generally, suppose the clements of g and X are further parameterized as m(@) and
C(0). When correctly specified, p = m(8y), £ = C(6y) and we call €5 the population
value of 8. Let @ = (01, 05), where 6, is a g1 x 1 vector containing all the parameters
that appear only in m(8), and @5 contains the ¢o remaining parameters. When p = 1 6q;,
which generally holds when m(0) is linear in 6y, then testing for Hp, is equivalent to testing
Hy - 01 = 0. Two commonly used test statistics for testing Hop are the Wald statistic Ty
and the likelihood ratio statistic Trr. Their distributions are described by asymptotics and
they are asymptotically equivalent under idealized conditions (Engle, 1984). An interesting
question is which statistic provides the most powerful test for g = 0. We study the different
test statistics asymptotically and empirically.

Under a sequence of local alternatives, we have

T% 5 x2(8) with & = np'S™ g (2)

and

Tw 5 X}, (52), (3)
where &, depends on the conditions discussed below. Because T g and Ty are asymptotically
equivalent (Eagle, 1984), T can also be described by (3). When the factor loadings A in
(1) are known, Kano (2001) showed that &; = 65 = . Because p > q, using Trr ~ X5, (9)
corresponds to a greater statistical power than using 72 ~ xg(é ). Without assuming A known
and without a proof, Hancock (2001) also concluded that d; = ;. Using rather rigorous
derivations, we found that &; > & and the equality sign holds only when the orthogonal

—497—



condition m}¥ "'y = 0 holds, where th; = (Om(0)/06/]6,) and m, = (9m(6)/56,|6,).
It is obvious that Kano's (2001) assumption satisfies the orthogonal condition. When the
factor loading matrix A is unknown, d; — d; > 0 in general and their difference increasecs as
7 departs from the null hypothesis Hy;. However, ds > d; does not imply that Tw or Trg
are more powerful than T2 because p can be much bigger than q;. Their specific powers
depend on p, g1 and the magnitude of 7. Similar conclusion holds in multiple-group mean
comparison, that is, the noncentrality parameter (NCP) corresponding to Ty or Trg for
testing the latent variable means can be much smaller than that corresponding to Hotelling
T? for testing the manifest means.

The chi-square distributions in (2) and (3) are justified under a sequence of local alterna-
tive hypotheses. In practice, both the alternative hypothesis and the sample size are fixed.
It is interesting to know whether (2) and (3) are still valid. Our empirical results indicate
that (2) poorly describes the distribution of 7% and (3) poorly describes the distribution of
Tw and Tpp unless the null hypothesis is trivially violated. A large sample size does not
make the approximation better. The magnitude of the alternative hypothesis plays a much
stronger role than the sample size n. We also found that Trr can be stochastically much
greater than Ty as the alternative hypothesis moves away from the null hypothesis.

Notice that the statistic Ty or Tpg are based on the assumption that the factor model
(1) is correctly specified. When model (1) is misspecified, then the NCPs in both Ty and
Trr can be smaller or greater than that corresponding to a correctly specified base model.
A misspecified covariance structure has a relatively small effect on mean comparison. A
misspecified mean structure has a quite significant effect on mean comparison.

When data do not follow a multivariate normal distribution, under a sequence of local
alternative hypotheses Ty still asymptotically follows the chi-square distribution as in (3)
when mi¥'my = 0. However, we can only show that Trg follows a central chi-square
distribution under the null hypothesis and m| ¥ m, = 0.
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Independent component analysis and its
application to causal analysis

Shohei Shimizu Aapo Hyvérinen Yutaka Kano
Osaka University University of Helsinki Osaka University

Keywords: Independent component analysis, nonnormality, independence, causal
inference, nonexperimental data
Abstract
We study thie application of independent component analysis to discovery of a causal
ordering between observed variables. Path analysis is a widely-used method for
causal analysis. It is of confirmatory nature and can provide statistical tests for
assunied causal relations based on comparison of the implied covariance matrix with
a sample covariance. Estimated path coeflicients are used to evaluate the magnitude
of cansality. However, it is hased on the assmption of normality and only uses the
covariance structure, which is why it has several problems.

A very simple illustration of the problem of finding the direction of causality is
given by two regression niodels, called Model 1T and Model 2 here:

Model 10 zy = bprs+ & (1)
Model 2: bary + &, (2)

where the explanatory variable is assuiied to be uncorrelated with the disturbance &
or &. We cannot say anything about which model is better from the two conventional
regression analyses based on the two models above in the framework of SEM. Using
the SEM terminology, the both models are saturated on the covariance matrix of
[xb xQ] :

Kano and Shimizu (2003) and Shimizu and Kano (2003) showed that use of
nounormality (higher-order moments) of observed variables makes it possible to
distinguish between Model 1 and Model 2. In this article, we extend the method
to more than two variables and develop a new statistical method for discovery of a
causal ordering using nonnormality of observed variables.

In the following, we actually assume that the data follows such a model so that
the causal ordering is possible to find. Thus, we assume the following data model:

Tig) = Y big ) Titk) T i) (3)
k<j
We also assume that the disturbance variables &) are nonnormal, and mutually
independent. This implies that &) is independent from &y for all k < j.

To investigate the causal structure of the z;, we would like to find the correct
ordering 7(j). Thus, the problem is finding the permutation of the observed variables
that reflects the causal structure of the data. In what follows, we will show how
such an ordering can be identified.
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Let us normalize the equation (3) so that the disturbauce variables & have unit

nornl. Denoting
wigay = 1/yvar(&i) (4)
Wiy = ~higram/\/var(ip) for k # 5, (5),

the equation (3) can be expressed as:

* 5
Wi 0)Ei) = D~ Tk + &), (6)
k<j
where £ are the disturbance variables standardized to have unit variance.

Let us denote by Z the vector where the observed variables are ordered according
to (7). In matrix forny, equation (3) can be expressed as

&=Bx+¢€ (7)
where the matrix B is lower triangular. Using W, this becomes
diag(W)z = —offdiag(W)x + & orequivalently Wz = €& (8)

where W is still lower triangular, for the correct permutation of the observed vari-
ables. This corresponds to the correct permutation of the columns of W. From the
theory of ICA, we know that this W can be estimated up to a permutation of its
rows, using standard ICA methods.

Thus, the model (7) can be estimated by 1) estimating an initial W by ICA; 2)
finding a corubination of permutations of the rows and the columns of W so that
W becomes as close to lower triangular as possible, using the algorithm above; (3)
estimating B by I, — diag(W)™'W. The W denotes a correctly permuted version
of W.

Now we shall show the models 1 and 2 can be expressed in this framework. In
Model 1, the causal order of observed variables is (2(1),4(2)) = (2,1). Model 1 can
be rewritten as:

Model 1: i;} = {8 bg}[i;]%—[g} (9)
2| _ |0 0|z &
e P 1 g B 3 B
Here £ and B are
- T 0 0O
T = [;}, B:{b12 0]. (11)

One can see that the B is lower triangular when the observed variables are ordered
according to #(j). Also in Model 2, one can sce the lower triangularity of B in the
same manner.
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Why would factors or components be non-normal
and square-correlated?

Aapo Hyviirinen
HIIT Basic Research Unit and Dept of Computer Science
University of Helsinki, Finland
aapo.hyvarinen@helsinki.fi
www.cs.helsinki.fi/aapo.hyvarinen/

Independent component analysis (ICA) (7, 4, 6] is a multivariate linear latent vari-
able model closely related to the classic factor analysis model. Its actual estimation
methods, on the other hand, are very similar to projection pursuit. The key difference
between ICA and ordinary factor analysis is that the latent factors are assumed to be
non-Gaussian, i.e. to have non-normal distributions. This seemingly small difference
in the model definition leads to huge differences in the estimation procedure and the
applications of the model. In fact, non-normality allows us to separate several linearly
mixed independent latent signals, and also to uniquely determine the factor rotation
without traditional factor rotation methods such as varimax.

The basic definition of ICA is quite simple. Let xy,x2,...,x; denote n observed
random variables. These are modelled as a linear transformation of n latent variables
819825009802

xXi= ) ajsj, fori=12,...n. e8]

n
j=1

The a;; are constant unknown parameters to be estimated, not unlike factor loadings.
We make the following assumptions on the latent variables or independent components

AYM
1. The s; are mutually (statistically) independent.
2. The s; are non-Gaussian, i.e. have non-normal distributions,

Then the ICA model can be estimated [4].

In addition to the basic ICA model, several researchers have recently considered
the case where the components s; are not independent. Many different variants can be
considered: the components might be divided into groups so that components inside
a group are dependent but components in different groups are independent [3, 6], the
dependencies might follow a fixed topographic organization [6], the structure of trees
[2, 8], or some general parametric forms |5, 9]. There is an infinite number of different
dependencies possible, so any parametric model has to be restricted to modelling some
limited family of dependencies. Most authors have considered one particular type of
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dependencies: correlation of squares because this kind of dependency seems to be
quite dominant in many kinds of real data found in signal processing.

Both non-normality and correlation of squares may seem to be quite odd assump-
tions in the context of classical factor analysis. Non-normality may even seem to be
in contradiction with the classical Central Limit Theorem. In this paper, 1 discuss a
simple framework that might explain why many kinds of real data are non-normal.
Interestingly, the same framework leads to correlation of squares as the natural form
of dependency between the components. I shall also briefly discuss the case of time
series, where this framework leads to an interesting kind of temporal correlations simi-
lar to what is seen in models based on by autoregressive conditional heteroscedasticity
(ARCH). The framework is based on scale mixtures of normal distributions (1, 10].
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Improvements of LVM Techiniques by Bayesian Hierarchical
Modeling

Kazuo Shigemasu,Takahiro Hoshino
The University of Tokyo, Tustitute of Statistical Mathematics

LIntroduction

We proposed the Bayesian Analysis of Structural Equation Model using Gibbs Sampler (Shigemasu,
Hoshino & Ohmori, 2002). In this analysis, latent variables are included as a step of Gibbs Sampler
rather they are integrated out. One advantage of this approach is to make the analysis Hexible enough
to handle the various kinds of data (c.g., dichotomous, polytomous. multiple selection, ordering). In this

study, we extend the analysis to apply the Bayesian method to analyze paired comparison data.

2.Model Distribution

The model distribution for the SEM, is given as follows. Notations and distributional assumtions used

in this equation is the same as Shigemasu, Ohmori and Hoshino paper.
p(X,F,A,B.T,® ¥ 0N)
2 2 n 1
o« |QTE| | E|®]7F exp {—itr[Fg(I)"lFﬁ +(X - FAY® (X - FAY

+(F\B'— F,T)Q (F, B - F-J“)‘]}

3.Modification of the Model

The model explained above is changed to include a typical situation where paired comparison method

wag used. One specification is as follows:

z*=Af+e, 1 =v+Tf, +e

g = A1y, Zg. = A (T'OT + Q)A] + 8.

The z*, which was assumed to be observed so far, now is latent, and the actual data of paired comparison
is given by the relationships among the latent variables x*.

For each paired comparion, the actual data is obtained only for a particular pair of the variables,
and the other combinations are supposed to be missing. If we treat the all paired comparison data
simultaneously, the inconsistent data cannot be analyzed so that some authors had to introduce additional
error terms to analyze inconsistent data.

4. Algorithm for pair comparison data

Note that x* is the vector of latent random variables. Now the algorithm is changed as follows.
Prepare starting values of parameters.
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Step 0 : generate F, Fém

Step 1 : generate B® and T based on other parameters and latent variables.
Step 2 : generate AW
Step 3 : generate v*)
Step 4 : generate F(lk), F.gk)

Step 5 : generate X *®) until the generated variables meet the constraints given by the observed paired

comparison data.

Step 6 : Goto Step 1 with [=1[+1.

5.Simulation Data

1 M(0.6) As(0.3) 0 0 0 0
Ao | 0 2(03) M(06) As(08) 0 0 0
“lo 0 0 0 1 Xs(0.6) Ar(08) | °
0 0 0 0 0 0 0

T = (11(0.4), 12(0.3), 13(0.5))%, Q = diag(w:(0.2), wa(0.3), ws(0.4)), v = (0,1(0.5), va(1))".

The values in parentheses are true values of parameters. With seven variables, there are 7Cy = 21 pairs.
Each pair was observed with probability 0.5, so the expected number of pairs cach unit made judgement
on was 0.5 x 21 = 10.5. We dcleted units that make no judgement.

In this simulation, the number of units (subjects) generated was 200 or 400.

6.Results of simulation data

The ten replicated data sets were generated from the true model and were analyzed by the proposed
method. The means of estimates given by the proposed method are shown in Table 1.

Table 1: Resulting estimates

N=200 | True value | Estimate MSE | N=400 | True value | Estimate MSE
Al 0.6 0.6323  .008127 A1 0.6 0.6208 .005314
Ay 0.3 0.2882 .005364 A 0.3 0.3078  .003222
Az 0.3 0.2925 .004801 A3 0.3 0.2980 .004038
A 0.6 0.5862 .006230 A4 0.6 0.6142 .004105
As 0.8 0.8169 .007218 A5 0.8 0.7912  .005G70
Ao 0.6 0.5893 .006294 A 0.6 0.5925  .003601
A7 0.8 0.7904 .005787 A7 0.8 0.7962 .004244
T 0.4 0.3875 .004648 T 0.4 0.4051  .003098
¥ 0.3 0.3116  .005204 Yy 0.3 0.3055 .003142
¥3 0.5 0.4908  .005433 3 0.5 0.5062 .003019
wi 0.2 0.1890 .003770 w1 0.2 0.2079 .003232
wy 0.3 0.3101  .004019 wy 0.3 0.2978 .002651
w3 0.4 0.3878  .004938 wy 0.4 0.3951  .0035h75
1y 0.5 0.5843 .029473 vy 0.5 0.5407  .013085
V3 1.0 1.1355  .040560 vy 1.0 1.1031  .023741
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FIBDOREZBETNIGELUTHIRF/ING E2/HIHD
#MRTOH AT AEEE
FE B
(BERAY KERRE BB PN

BfE 7079 A7AEEE, ASMrORTARNHECEI>THLNZ pXr(p>r) DR
TEFITHA Z, REMIZEZONZEEKRZSDY 7y MIFIBICE/N 2 REDERT
FERIEE 2 & REEITHT 2RO 2 —EOHEHTH D, BE, KOBEEOR/MMEES
N,

J(T|A.B)=|B-AT|] (1)
o EFEEE S FRE, MM EBEREARE N, fHEFENTT=1=TT OHBENEHE
THD, P, ISICEIROBRESNDITAICEBENNH D, EEROFHRELTES
NDHEAFTHN/AY > (HBEO THT) "OEERRGEREZEHRLTLH75) THLHHEIC
ddiag (T'T) ' =1, ¥l (FEHE THF) EOMBETH) OBEICiddiagTT=1Ts%.
HE (1) OB/MLDEHOTIVITY) ZAL0E, )8 > OEERIZE L TIIREEMHTH S (Browne,
1972) A%, L OERT, ARHTHIOIE r Ny —7y MTAIOFIER ¢ % LE 55518 a6

IR HIEERET 5,
TUWIUXADOBE K (DERATLIC, KOXDIZEL,
f(t/( IA9bk) #lhk _Atk ”2 @)
TH6EDELFERWEFHET , &T5L, dag(T'D) ' =125 HTOHEICLD,
t,"A-T,(T,'T)'T, "), =1 (3)

AN, ChAt, ICBT RSN E SRS, JIT M, =1-T (T ,'T,)" T '&&
HETHE, ORI 7 r—g+ 1 OBHFTHT, r—g+1HOHE | OEEES g - 1EO
OEEEZFD, LizAt-T, U,,U,, #TNEN, rx(r—g+1),rx(g-1)DEREZTH
T, Uy'Uy =0, ) EMETHDETDE,

I O|U,;’
Mk:‘[Ulk Uz&{o O}LJM'}
2k

EARTED, TIT, P, =AU, P, =AU, v, =U,'t,, v, =U,,'t, EEHT B &,
B/MEESE () 13,

SV [Py Py b ) = b, =Py —Pyvy, I (@
L0, ®IREMEE, v, 'v, =1&R5. LLEOD reparametrization IZ2&D, NI A-FF
B DED Y, LHIFIRLO v, 3T oNns ZEiTho Tz,

FIT, kZ&izv,, EM5LLT, @) EENMETS v, % Kiers & Ten Berge (1992)

@ majorization method IZ& > TRDBE 1 AF v 7L, v, &5 E L TREOER/N 2 Rk
CE-oT v, ROBE2AT v 7%, TRTO k THELTEFTL, TNENKRTHET
RET 5,
WA PHAL (2000) 12&B 10S (interpersonal orientation scale, Hill, 1986) &7 —
FIZHEATS5, COREF, PEAS @420 (FD) REBEEZEAHI EITE>TWDAN,
HAERICBITD 707y 7 AEEOHERIE, BERXOLDERRLZ->TWz, TOI L,
Table | EICRULZBEHOMNLZTO Y I AT ABEOERIZBNTHED LRV, LML,
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F=6D%ETIE, Table 1 HEOLIIT, BEAEFERIE—BLEBENE SN, ERITH
MBI DN THEMBLBLDONTLSNT NS,

Table 1 Principal component pattern of I0S in two conditions

r=4 r==6
Item I 1l il IV [Expld.Var| I 1 il IV [Expld.Var.
3] 051 0.42 006 -0.21 0.49 0.43 0.33 0.01 -0.06 0.44
6] 0.51 0.41 -023 -017 0.45 0.49 0.16 009 -0.10 0.38
10 0.75 001 -0.16 0.05 0.64 0.71 000 -007 0.01 0.49
11 0.62 038 -027 -004 0.61 0.59 024 -007 -003 0.52
P 13 051 -008 0.29 0.13 0.38 050 -0.04 0.11 0.14 0.29
20| 040 0.06 045 -0.06 0.38 052 -017 0.20 0.22 0.34
24| 0.63 0.08 026 -0.14 0.44 0.60 006 -001 0.04 0.40
25| 0.52 0.02 042 -022 0.43 0.60 -0.14 0.05 0.13 0.33
26f 0.66 -026 -0.02 0.13 0.56 0.69 -027 0.00 0.10 0.37
1 0.24 069 -009 -0.01 055 0.16 0.61 -0.05 0.02 0.48
4{ 027 0.58 0.13 0.03 0.51 0.15 0.58 0.06 0.03 048
E 91 0.16 054 -0.18 0.27 0.43 0.03 0.57 0.07 0.03 0.38
15 0.08 0.59 0.24 0.28 053] —-0.06 0.70 0.09 0.17 0.57
17 0.08 0.62 0.05 0.33 051 -0.10 0.73 017 0.07 0.57
23 0.21 0.59 0.18 0.12 05311 -0.01 0.76 0.11 —-0.01 0.60
5 0.16 0.20 0.33 0.00 0.22 017 -0.02 047 0.05 0.29
8| -022 0.25 0.17 0.65 036 -0.09 0.14 0.21 0.47 0.34
A 16 0.25 0.04 0.65 0.26 0.54 0.09 0.17 057 0.08 0.48
19 036 -0.16 0.66 0.14 0.53 017 -0083 0.69 -0.06 0.55
21 0.36 0.08 0.62 0.09 0.55 0.14 0.25 0.51 -0.04 0.46
221 -0.11 -0.09 0.44 0.37 02211 -019 -006 0.68 0.07 043
2| -0.06 0.43 0.09 0.31 0.25 0.23 007 -008 0.53 0.36
7] -0.24 0.25 0.28 0.75 048 -0.02 0.08 0.17 0.65 0.52
S 12|l -0.09 0.14 024 0.70 043 0.10 008 0.01 0.61 0.43
14 0.00 0.19 0.42 0.56 0.43 0.08 0.19 0.14 0.49 0.40
18] -0.14 0.01 0.47 0.67 0.46 005 -0.12 0.32 0.58 0.48
Correlations between 'factor scores’
I I 1 v I i} il v

1 1.00 0.14 -0.03 0.45 1.00 0.51 0.29 0.03

I 0.14 1.00 027 -0.10 0.51 1.00 0.2t 0.21

m -0.03 0.27 100 -0.24 0.29 0.21 1.00 0.17

v 045 -0.10 -0.24 1.00 0.03 0.21 0.17 1.00
X B

Browne, M.W. (1972). Oblique rotation to a partially specified target.  British Journal of
Mathematical and Statistical Psychology, 25, 207-212.

Hill, C.A. (1986). Affiliation motivation: People who need people ... but in different ways.
Journal of Personality and Social Psychology, 22, 1008-1018.

Kiers, H.A.L. & Ten Berge, J.M.F. (1992). Minimization of a class of matrix trace functions
by means of refined majorization. Psychometrika, 57, 371-382.
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Testing Homogeneity of Covariances with Infrequent Missing Data Patterns

Peter M. Bentler (UCLA) Ke-Hai Yuan (Notre Dame) Kevin Kim (Pittsburgh)

When the data for factor analysis or structural equation modeling consists of many
subsamples with possibly different characteristics, one may question whether all samples are
from a single population with a common mean vector @ and common covariance matrix
. It may not make sense to entertain a single structural model in heterogeneous samples,
although if only the means are not homogeneous, a single covariance structure would still be
appropriate. This problem of homogeneity of means and covariances arises in the context
of missing data, where different sets of subjects exhibit different patterns of the presence or
absence of scores. When there are few patterns, the multiple group methodology of Allison
(1987) and Muthén, Kaplan, and Hollis (1987) can be used to evaluate homogeneity of means
and covariances. This methodology becomes impractical to implement when the number of
patterns is large.  Building on the work of Little (1988) and Tang and Bentler (1998),
Kim and Bentler (2002) developed a generalized least squares (GLS) test of homogeneity of
means (a minor variant of Little’s test), evaluating whether various sample means X; could be
considered as samples from a common population with a common mean vector p; a GLS test
of homogeneity of covariance matrices, testing whether various sample covariance matrices
S; could be considered as samples from a common population with a common covariance
matrix ¥, and a combined GLS test of homogeneity of means and covariance matrices, that
tests both hypotheses simultaneously. In limited sampling studies, they found these tests to
perform reasonably well.

With multivariate normal data, these tests are tests of missing completely at random
(MCAR). We study the test of homogeneity of covariance matrices under an extreme MCAR
condition. The covariance matrices test is based on the null hypothesis that the population
covariance matrices 3,(0) for the various patterns of incomplete data with sample size n; are
subsets of a single population covariance matrix () (2;(0) C £(60) for alti = 1,...,m). It
is computed as

) mo . . . N2
Go(f) = Y- o ([Si - (@] 57(0) (1)
=1

This test is based on the pj available sample covariances and the gz = p(p + 1)/2 common
covariances estimated, and has dfs = (p — g2) degrees of freedom. Asymptotically, under the
null hypothesis, N Gz(é) ~ ngz' However, a technical analysis verifies that the homogeneity
test statistic requires that n; go to infinity, and that the relative sample size proportion n; /N
has to converge to a nonzero limit k; — ;. Neither of these conditions could be reasonably
assumed to hold for any sample missing data pattern that exhibits n;=1, which we find in
practice when a huge number of missing data patterns is allowed in a sample. Even with
very small n; the asymptotic assumptions underlying the tests are not met. As a result, the
performance of this test can be disrupted when there are a large number of data patterns
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that are exhibited by only one or very few subjects.

Theoretical analysis is supported by simulation under some extreme conditions where up
to 90% of cases have some missing data. We find that sample covariance matrices for patterns
with n;=1 arc not defined and with small n; may be very badly estimated. As a result, the
GLS test hardly ever rejects the null hypothesis of homogeneity. A minimal correction to
the covariance test was proposed and evaluated. This involves removing all patterns that
exhibit only one observed case from the computations. As a consequence, the number of
observed data covariances is reduced, and the degrees of freedom of the test is substantially
reduced as well. This simple revision yielded substantially improved performance. This test
variant is now included in the EQS 6 program (Bentler, 2004).

Kim and Bentler (2002) had found their test to perform well, whereas our uncorrected
test did badly. A key difference between the current and prior simulations is that in their
original study they held the number of missing data patterns to a maxiinum of 32 patterns.
As a result, as sample size increases, more and more information becomes available about
all missing data patterns. In the current study, the number of missing data patterns was
hugely increased compared to the earlier study, and also, the number of missing data pat-
terns increased with sample size. As compared to 32 patterns, we obtained 257 patterns (on
average) at N=1000, an 8-fold increase, and with N=5000, there were almost twice as many,
with 493 patterns of missing data (on average). Although performance of the revised test
based on deleting cases with n;=1 is substantially improved, the null hypothesis of homo-
geneity is now rejected at a slightly higher rate than is desirable. Thus we studied the effect
of removing from two up to ten cases per missing data pattern. Overrejection was somewhat
reduced, but still remained at a higher level than ideal.
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On the identification problem of the factor analysis model:
a review and an application for an estimation of

air pollution source profiles and amounts

SATO, Manabu!

Abstract

The identification problem of the factor analysis model is reviewed. We try to clarify the
relation between Anderson-Rubin'’s and Williams™ theorem. Morcover, an application of the
identification problem for estimating air pollution source profiles and amounts is introduced.

1 Introduction

The identification problems (P1) and (P2) may be stated as follows:
(P1) Existence of a decomposition
For any p-order positive definite symmetric matrix 2, can it be decomposed as

S = AeAj + Ty, (1)

where Ay is a loading matrix of rank & and ¥y is a diagonal matrix with positive diagonal
elements, for assumed & (< p) ?
(P2) Uniqueness of the decompositions
If the decomposition exists, is it unique?

Reviews of identifiability of the FA model are given by Shapiro([Sh5]) and Sato([S92]). In
particular, for the confirmatory factor analysis model, Joreskog([J69], [J79]) and Bullen and
Joreskog([B.J85]) discussed the identifiability condition.

2 TUniqueness of the decompositions

Throughout this section, we assume that 5 has a decomposition (1). The uniqueness problem
for the number m of factors is as follows: Does there exist Gy, # ¥y such that

Y= EnF/

m

+ Gm *

where F;, is a p X m real matrix of rank m and G,, is a diagonal matrix with positive di-
agonal elements, for given m (< p)? For m = k, first, we will discuss sufficient conditions
for uniqueness. The most famous theorem (Theorem 5.1 of Anderson and Rubin[ARS6]) is as
follows:

*The author expresses my thanks for Professor KANO Yutaka of the organizer for FA100 Symposium.
tHiroshima Prefectural College of Health Sciences
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Theorem 1 (Anderson and Rubin’s condition) A sufficient condition for uniqueness is
that if any one row of Ay is deleted then there remain two disjoint submatrices of rank k. i
Thara and Kano([IK86]) gave another proof for this theorem and constructed a new estimator.
Theorem 2 (Williams’ condition) A sufficient condition for uniqueness is that there exists
a symmetric ordering and partitioning of the rows and columns of 3, such as & = (5;),
i, =1, 2, 3 where
{W1} $y5 is k x k and of rank k and
{W2} no row of £51'Las contains all zeros. ]

Now, each condition is abbreviated to {AR} and {W} respectively. The following Lemma
holds.
Lemma 1 {W} is equivalent to the following condition { W*}:
A can be partitioned into two submatrices A(k x k) and B((p — k) x k) such that
det |Al #0 and
if any row of B is deleted, the remaining rows of B form a matriz of rank k. B
Using the above proposition, we see that {AR} closely resembles {W}. We try to clarify the
relation between two conditions.

Proposition 1 { W} yiclds {AR}. |

Proposition 2 For k=1 and 2, {AR} yields { W}. |

Conjecture 1 For k =3, {AR} yields { W}. ]

Remark 1 When k > 4, {AR} does NOT yield { W}. ]

In fact, for k > 4, the following 3(k — 1) x k matrix satisties {AR}, however, never satisfies

{W*}:

/

10 010 01 0
01 0 01 0 01 0
00 ...100 ...1 R |
00 600 ...011 ...1

In this sense, {AR} is better than {W} for k£ > 4.

3 An application of estimating air pollution source pro-
files and amounts

Multivariate receptor models aim to identify the pollution sources based on multivariate air
pollution data. Park et al. ([PSH02]) concern with estimation of the source profiles (pollution
recipes) and their contributions (amounts of pollution). They used the Proposition given by
Anderson(pp.576-577 in [A84] or p.593 of [A03]).

Even if a condition for unknown parameters is presented, we cannot examine whether the
condition is satisfied or not. The condition proposed in [PSHO02] is not for a source composition
matrix P but for a source contribution matrix A. Both P and A are unknown parameters,
however, the authors point out that existence of missing values can be utilized for A.
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Matrix Methods and its Relationships with Factor
Analysis

National Center for University Entrance Examinations Haruo Yanai

1 Introduction

Since the introduction of the Spearman’s two factor model in 1904, a number of
books and articles on factor analysis theorics have been published over the last
100 years. In accordance with the development of theories, a number of matrix
mcthods have been developed as well. In this paper, we attempt to relate the ma-
trix methods to some important topics of factor analysis such as an identifiability
condition(Anderson & Rubin(1956), Thara & Kano(1976)), communality problem
with special references to squared multiple correlation (SMC)(Roff(1936), Yanai
& Ichikawa(1990)), analyses of image and anti-image variables (Yanai & Mukher-
jee(1987), factor rotation, and cstimation of factor scores, and thus we attempt to
cxtend some of the carlicr theories of these methods.

2 Main Result

Let A, B and (A, B) be matrices of orders n x p, n x ¢ and n x (p + ¢). Let S(A),
S(B) and S(A, B) be subspaces spanned by column vectors of A, B and (A, B),
respectively. Further let P(A) and P(B) be orthogonal projector onto subspaces
S(A) and S(B) ,respectively. Then we have

Property 1. (Rao & Yanai, 1979) Let P(A, B) be the orthogonal projectors onto
S(A, B). Then

P(A,B) = P(A) + P(Q(A)B) = P(B) + P(Q(B)A).

Using this property, we can establish
Property 2. Let X(;) = (21,22, -+,%j-1,%41,- -+, %p) be an n by (p-1) column
centered matrix. Then

h? > SMC(z;) for j=1,---,p (1)

and the equality holds when (z;)'Q(X(;))F = 0 wherc h? is the communality of
variable z; and SMC(z;) is the squared multiple correlation of z; on X;.
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Proof: The proof follows from Property 1, since we have
P(F,X(;)) = P(F) + P(Q(F)Xp) = P(X(») + P(Q(X»)F). (2)
Further, we have
hi = SMC(j) + (2;) P(Q(X(j)) F)z, (3)

which implics (1), since (z;)' P(Q(X;))F)z; is nonnegative. (Q.E.D.)
Observe that the equality of (1) holds in the following two cases.
Casel: SMC(j)=1, Casc2: SMC(j) # 1 and ¢; = 0 for any ¢ cxcept for j.

Example. Given four variables zq, 2o, 23, 24, assume that the number of common
factors is two and the factor loading matrix of these variables is given by the cle-
ments of the first and sccond column vectors of A given below. We computed the
communalitics and SMC’s of these variables in the third and fourth columns of the
matrix A. Then the communalities of z3 and x4 arc exactly the same as the SMC’s
of these variables.

(z1 zo com smc)

10 1 22 1 0 a a
2 _
A= 0 1 212 gaz and R = 0 1 clz Oa
a a a a a a
a —a 2ad*> 2a° a —a 0 1

This result covers the case which was given as the third Theorem of Roff(1936),in
which he mentions that the SMC(j) equals the communality of test j if the group of
tests contains r (r < p) statistically independent tests with a communality of unity.
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Mixed Factors Analysis for Finding Groups in Gene
Expression Pattern

Ryo Yoshida ' Tomoyuki Higuchi ' Seiya Imoto *
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rokanedai, Minato-ku, Tokyo, 108-8639, Japan

®

1 Introduction

In microarray experiments, cach array contains the expression levels of several thousands of genes
on a tissue sample. Our objective is to find groups in expression patterns of tissue samples on the
basis of genes. Major difficulty in this problem is that the nwnber of tissues to be grouped is much
smaller than the dimension of data which corresponds to the number of genes. In such a case, the
use of conventional model-based clustering using finite wixture models, c.g. Gaussian mixture, leads
to overfitting during the density estimation process. To overcome such difficulty, we consider an
parametric model so referred to as the mixed factors model. As a result of this modeling, we can avoid
the occurrence of overfitting during the density estimation process even when the dimension of data
is more than several thousands and the number of sainple is lesser than one hundred.

2 Modeling

Let  be an observed variable distributed over R%. In microarray studies, the dimension of data d is
determined by the number of genes used in the analysis, and thus, typically ranging from 10? to 104.
The basic idea underlying the mixed factor analysis [1] is to relate @ to the factor variable f € RY as

=Ef +e. (1)

Here ¢ < d, and the € is an obscrvational noise to be Gaussian, € ~ N(0, AI). The matrix of order
d x ¢, 2, contains the factor loadings and is referred to as the factor loading matrix. Our intention is
to describe the group structure of & € R¢ by using the factor variable being of the lower-dimensional
random variable. Consider now that the total population of 2 and f consists of G subpopulations,
Pr,o, Pa. Let 1T = (l1,---,le;) be a vector of unknown class labels to indicate the subpopulations
such that I, takes value onc if (z, f) € P,, otherwise zero. Moreover, the ! is assumed to be multinomial
distribution, I ~ M¢;(a) in which the probabilitics of entity are defined by a” = («ay, - - -, a). Beside,
given [, = 1, the factor f is assumed to be Gaussian f|l, =1 ~ N(p,, X)) for g € {1,---,G}. Then
the unconditional distribution of f results in the G-comnponents Gaussian mixture with density taken
in the form,

d
PUF) =D ayd(fi pys By)- (2)

g=1

Here ¢(f: p,, X,) denotes the Gaussian deusity with mean p, and covariance matrix %,. We refer to
the observed system consisting of (1) and (2), the mixed factors model.

—513—



3 Mixed Factors Analysis

Given a set of observations, the mixed factors model can be fitted based on the maximum likelihood.
This can be achicved by the EM algorithm. Ouce the model has been fitted to data, our method
offers the applications to clustering, dimension reduction. These can be addressed by evaluating the
empirical Bayes estimnators of the hidden variables, f, [, respectively. The analysis also covers the
method of extracting some sets of genes to be relevant to explain the presence of groups on a dataset.
Let p(z, f) be the canonical correlations between zy,- -, x4 and fi,---, f,. By investigating all values
in the correlation matrix, each of ¢-coordinates can be understood. For instance, if the Ath gene, i.c.
the hth clement of @, is highly correlated with fi,---, f,, then it is judged to be relevant to explain
the grouping. In practice, it will be useful to list some genes to give the highest positive correlation
with fi at Q& and to give the highest negative correlation with fi at QF for cach k € {1,--+,¢}.
As is demonstrated in Figure 3, for gene expression profiles, these 2¢ sets can be helpful to find the
biologically meaningtul groups of genes to be co-expressed and also to explain the presence of groups
on a given data.

The leukemia data are available at

http://www.broad.mit.edu/cancer/. Origi-

ually it was reported that this leukemia data g oty genes o give the ighest 5 setof 2 genes o givethe highest
contains three types of acute leukemias: acute posmve correlation with ft o 5 negative correlation with f1 to fs
myeloid leukemia (AML, 47 cases) and acute - S S e -
lymphoblastic leukemia (B-cell ALL, 38 cases, o
T-cell ALL, 9 cases). The 10 sets of genes
in Figure 3 are selected by the mixed factors
model with G = 3, ¢ = 5. The left panel
shows the expression patterns of 5 sets of genes,
Qf for k = 1,---,5. The right pancl shows
the expression patterns of 5 sets of genes, OF
for K = 1,--+,5. The first 25 columns refer
to the AML cases, and the last columus, the
ALL 26-72 cases (B-cell ALL, 26-63 and T-cell
ALL, 64-72). From this plot, it can be seen
that the grouping corresponds to the molecular
subtypes, AML, B-cell ALL and T-cell ALL,
is related to the genes in QF, QF for k = 1,2.
All genes in a set are co-expressed. In addition,
notice that each pairs of Q% and Q¥ shows the Figure 1: Expression pattern of genes judged
opposite expression pattern for k € {1,---,5}. to be relevant to the grouping.

This implies that all genes in Slﬁ are expressed

in corbination with ones in QF
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MULTI-TRAIT MULTI-METHOD MODELS WITH DATA INCOMPLETE BY
DESIGN

Albert Satorra (Universitat Pompeu Fabra. Barcelona)
Willem E. Saris (University of Amsterdam)

In 1959 Campbell and Fiske suggested the multitrait-multimethod (MTMM)
design for evaluating the validity of measurcment instruiments. Since then,
several factor analysis models have been proposed for MTMM desigus. A
severe drawback of the MTMM design for assessing reliability and valid-
ity, is that respondents need to answer repeated questions of the same
trait. In recent work, Saris, Satorra and Coenders (2004)(SSC) propose
a multiple-group design for MTMM wiodels (the split-ballot MTMM design,
SB-MTMM) which reduces the burden of respoudents (reducing the manber
of repeated questions to be answered). Here we extend the SSC work to a
general model where the parameters ave directly interpretable as reliability
and validity coctficients.

We consider the following 9-indicators (3-traits and 3-methods) model:
2 = /\z'jFij, Fij = ﬁz'jGi]‘ + €5 and Gi]' = TijTl' + ’y,;)']Wj, where 4,7 =1 -3,
the F's, G’s, Ty's and the M’s are latent variables, 4 indicates the trait, and
j the method. The traits are freely correlated among them with covariances
$12, 13 and @az. The error terms €;'s are allowed to have unconstrained
variances ;5. For the parameters 8% and 77°s to have direct interpretation
as the square root of reliability and validity, the latent variables Ms, F’s and
T’s are constrained to have variance 1: so, we impose the following non-linear
constrajuts: ¥y = 1 — 85 and 7‘.5' =1- 712]-, for all 4,7. Clearly, this model
implies a specific covariance structure ¥ = 3(6) for the covariance natrix
of the 9 variables 2’s. Here 8 is the parameter vector collecting the scaling
parameters (the A's), the @’s and 7's, as well as the three correlations among
the traits. We consider two- and three-group SB-MTMM desigu as discussed
in SSC; for example, in the three group design: we observe variables 1 -6
in group 1, variables 1 —3 and 6 — 9 in group 2, aud variables 4 — 9 in group
3.

Parameter estimates will be obtained minimizing the ML fitting function
Fup = Farp(6), where Fyp o= $5, 2 [mg | S |+t {SgT5 1} —log | S | -—pg] ,
G is the nunber of groups, Sy and L, (= £4(0)) are the sample and pop-
ulation matrices for group gth, and p, the number of observed variables
in group gth. Since the same model applies for all the groups, we have
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L, = L2 L, where the Ly's ave (known) fix selection matrices,

3] 7]
= —04(0) = Uy vec T(0) = U A
o0 o) 906 () g

where o4 := vecXy(f). A = a%vec £(0) and Uy := Ly ® Ly. Thus, J :=
S5 BAW A, = AN (TE BUWU,) A, with W, = $ 5710 T, So,
the normal theory standard errors (se) will be given by the square root of
the diagonal of J7!/n. The asymptotic robust se (rse) will be obtained
from JT1A! (Z;’;l 2 U_(’]WgI‘gWgUg) AJ71/n. Here, Ty is substituted by
its consistent estimate I's, := ﬁ;l:l- Sid 1 (dgi — $q)(dgi — s¢)', Where dy; =
vec(zgizgs'), and sy is the sample mean of the dg;’s.

The scaled and adjusted test statistics of Satorra and Bentler (1994) do
also apply. For the case of the scaled statistic, let T denote the regular
chi-square test statistic, then the scaled chi-square test is sT := T'/o where
o is given by

Ay

e} G
_ n
o= ;tx W,y —trJ A g; —ni UW L WoUg | A /7

with r being the degrees of freedom of the test. Clearly, in all the above
formulae, sample values (consistent estimates) should replace population
quantities.

For the sake of comparison, single group analysis of the sample covariance
matrix S obtained using the pair-wise deletion option for missing data is also
reported and discussed in this talk.
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Noniterative estimation and its properties in
exploratory factor analysis

Osaka University  Yutaka Kano

A factor analysis model for an observed p-vector z is characterized as
Cov(z) = AAT + T (=X, say),

where A is a factor loading matrix of p x k£ and ¥ is a diagonal matrix of order p for
unique variances. Here the k£ is the number of factors. In factor analysis, communality
(= l—unique-variance) estimation has been an issuc since factor analysis was invented
and generalized by Spearman(1904) and Thurston(1934). The conventional way of esti-
mating communality is now the method of maximum likelihood assuming the Wishart
distribution for a sample covariance matrix, by which all paramcters including commu-
nality are jointly estimated. The method of maximum likelihood requires an iterative
process for optimization. Historically there is a noniterative estimation called principal

factor analysis. Nowadays, it has not been used anymorec.
Thara and Kano (1986) has proposed an alternative nonitcrative estimation in factor
analysis. Let m be a positive integer that denotes the number of factors to be extracted.

Let S be a sample covariance matrix based on the sample @4, ... ,x,. Partition
[ ¥ H
_ M _ 123 tm

A= Az’ V= W3 m ’
Ay Wy }p - (2m + 1)
(o1 o012 o113 o1 s11 812 813 su4] J

s |on Y2 X Za| o (s Sz Sz Sa| m
o3 Y32 X33 Xm|’ s31 S32 Sz Su| }m
on X2 T4z Ia 841 Sap S43 Smal }p—(2m+1)

When m = k, i.e., the number of extracted factors is correctly specified, [hara and Kano
(1986) derived

P =0on — 01255 3, (1)

provided that X3, is nonsingular.
Thara and Kano (1986) used the formula in (1) to suggest a closed form estimator for

uniquness as

M = 514 — 81255 sm, (2)
One can obtain noniterative estimators for the other uniquenesses by exchanging observed
variables suitably. Let ¥(™ = diag( 1(m), e ,'z,bém)) be an estimator for ¥, constructed
as described above. A factor loading estimator is obtained by a spectrum decomposition
of S — UM Kano (1990a) and Cudeck(1991) have given an efficient tabular method for
calculating z,@i(m). A program of MS-Excel with Visual Basic for the noniterative estimator
is distributed by Hori. The non-iterative estimator has some important properties.
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Proposition 1. (lhara and Kano (1986), Kano (1990b)) Assume that the factor analysis
model holds with X3, nonsingular and normal assumption for @1, ... , @, is met. Assume
further that m = k, i.e., the number of factors is corrcctly spccified. The noniterative
estimator 1,51“() is then scale invariant, consistent, and asymptotically normal with the
asymptotic covariance matrix as

Y2+ (1 + 01255 U355 021) (1 + 013555 o83, 031).

Proposition 2. (Kano (1990a, 1991)) Assume that the factor analysis model holds
with Y3, nonsingular and normal assumption for @,,..., @, is satisfied. Assume that
k<m (< (p-1)/2), ie., the number of factors is overcstimated. The nonitcrative
estimator 1/)1(m) is then still scale invariant and consistent. The asymptotic distribution is

not normal but instead we have

VR =) =5 92y + (3 Jon)(Za + 2] 22/ Z3),

where Z,, Z, and Z3 are univariatec normal variates, zq and z; have Ny« (0, Im_«) and
these variates are independent, and where ¢ is a constant.

An unexpected result is that the consistency still holds for the case where the num-
ber of factors is overestimated, because the factor analysis model is not identified for the
overestimated case. The MLE does not have this property. The property gives a theoret-
ical background for the fact that the non-iterative estimator scldom causes an improper
spoluton (Heywood case).

The property will be able to be used to develop an alterntive statistic for choosing an
appropriate number of factors. For this, however, we need to make a further rescarch to
derive the joint distributions of ¥ and § — U™ Distribution theory for non-normal
populations also need to be developed.
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