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Generalization Error and Training Error
in Some Simple Singular Statistical Models

Shun-ichi Amari, Hyeyoung Park, Tomoko Ozeki
RIKEN Brain Science Institute

1 Introduction

When a statistical model has a hierarchical structure such as multilayer perceptrons in neu-
ral networks or Gaussian mixture density representation, the model includes distributions with
unidentifiable parameters when the structure becomes redundant. From the geometrical point of
view, distributions specified by unidentifiable parameters become singular points in the parame-
ter space. The problem has been remarked in many statistical models, and strange behaviors of
the likelihood ratio statistics, when the null hypothesis is at a singular point, have been analyzed
so far[l, 2, 3, 4, 5]. .

In the present report, we first demonstrate a method of analyzing the generalization and
training errors for mle and Bayes predictive distribution in terms of Gaussian random fields,
by using a simple cone models. The obtained results are completely different from regular
statistical models where Carmér-Rao paradigm holds, and the method can be applied to the
multilayer perceptron. We then show another approach of analyzing the asymptotic performance
at singularities by using a simple Gaussian mixture model.

2 Singular Statistical Models

In the present report, we use simple toy models to analyze the singularities. Let us first introduce
a simple cone model: Let x be Gaussian random variable z € R4*2 with mean p and identity
covariance matrix I, and let S = {u|pu € R**?} be the parameter space. The cone model M is
a subset of S, embedded as

=109
M : = e =falw 1
where ¢ is a constant, ||a?]] = 1, w € S and S¢ is a d-dimensional unit sphere. The M is a

cone, having (£,w) as coordinates, where the apex £ = 0 is the singular point.
A simple multilayer perceptron has also the same singular structure. The input-output rela-
tion of a simple multilayer perceptron is given by

y=vp(w-z)+n (2)

When v = 0, the behavior is the same whatever w is, which makes singularity.
We also discuss about a simple Gaussian Mixture model of the form,

p(ziv,wi,we) = (1—-v)¢(z~wi)+vd(x—ws), (3)

where ¢(z) is the standard Gaussian density function. The singularities occur at v(1 — v)(w; —
wz) = 0.

3 Analysis of Cone Model and MLP

For the cone model, we define the Gaussian random field, Y(w) = a(w) - @, where ¢ =
ﬁ ZzT=1 x;. Then Following Hartigan [5] (see also [3] for details), we can obtain following
results for the case of mle.
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Theorem 1. the generalization and training error of mle is given by

_ Po() | _ 1 20| ~ 4
Egen = Epkg {IOEP(:BIE’&)] = ZTED [SB)DY (w)] ~ 2T(1+C2)’ (4)

1 & Po(T;) 1 [ 2 ] c2d
Eyein = Ep|-— log ————~—| = ——FEp |[sup YV (w)| = ——r—-. 5
train D[ﬂgogp(zilé,cb) oT D wp (w) 2T(1 + ) (8)
For the Bayes prediction, we can also use the Gaussian random filed Y(w), and get the
following results.
Theorem 2. Under the Jeffreys prior for £, the generalization error and the training error
of the predictive distribution are given by

1 - 1 o\
Egen = 2—,1—1ED [”VIOg -Pd (33)”2] y Etrain = Egen - 'j—.'ED {v log Pd((B) : CC], (6)

Ia(u) = # / |z + uldexp {—%zz} dz, Py(Z) = /Id(Y(w)) exp {%Yz(w)} dw.  (7)

Under the uniform prior, the above results hold by replacing I3(Y") by 1. In addition, we obtained
Egen = (d 4 1)/2T for the Jeffreys prior, and Egen = 1/2T for the uniform prior.

For the simple MLP model defined in (2), we can also apply the same Gaussian random field
approach, and get similar results. (See [6] for details.)

4 Analysis of Gaussian Mixture

For the Gaussian mixture model defined in (3), we consider the case were wy > w;, and u =
wq — wy > 0 is small. We treat the case where v or 1 — v is not very small. We introduce the
new coordinates, u = we —w;, w = (1 — v)w; + vwsy, where u indicating the difference of the
two peaks and w their center of mass.

For fixed w, let us introduce an exponential family Sy, = {p(z; @, 8)} of the form,

.2
e ) = exp { -5 + Sl — 1)+ Lele =30 (e B) ®

under a suitable measure, where we put z = z — w.
When = is small, by neglecting higher order terms, our model is embedded in the regular
model S,, by

'U(l - 'U) 2 1 3
= ———"u, = ——=v(l - v)(2v - 1)u’, 9
7 B 7 (1 =v)( ) (9)
which is singular. This shows the cusp type algebraic singularity. Then we can obtain that, when
u is small and the number of observations T is large,

Au~———1~—— Av ~ !

VTu?’ VTud 1)
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Componentwise shrinkage in orthogonal regression

SERYE LFE REwE

1 Introduction

In harmonic analysis, we often encounter the problem of determining mainly contributed frequency
components. The problem is formulated as model selection of an orthogonal regression. From a stand
point of the harmonic analysis, it is natural to estimate the frequency components whose contributions
are large. Then, we should consider the orthogonal regression model, in which we estimate not only
the coefficients but also the components in the parameter estimation. Therefore, the orthogonal
regression model is not linear one and becomes nonlinear. Indeed, the model is found to be without
identifiabilitv. [3] and [4] have proposed a model selection criterion for the problem independently
and [3] has shown that the criterion has a consistency of model selection.

On the other hand, the minimization of the cost function which consists of the empirical error plus
a penalty term is known to yield the shrinkage estimator and it is possible to improve prediction
performance compared with the least squares estimator. In this paper, we consider the introduction
of the componentwise shrinkage into the orthogonal regression mentioned in the above. Then, we
extend the Quinn-Sakai’s criterion to handle the componentwise shrinkage estimator.

2 Formulation of the problem

Let us denote N pairs of input-output data by {(mn, Yn) izn e RY Yy, eR, 1< < N}. Here, out-
put data y, is generated according to yn = h{xy,) + £n, where A is a true function and &, is additive
noise. Throughout this paper, we assume that &;,...,&, are independent samples according to a
Gaussian distribution N(0,02). Here, we consider the regression with fu p(x,) = Ele ak gy, (Tn),
where @ = (a1,...,ax),ar € R is the coefficient vector and b = (b1,....bg),bx € {1,... ,N} is
the index parameters which determine the components. Unlike the linear orthogonal regression, this
function has a parameter b. To estimate b corresponds to the choice of components from the family
G ={g1,-..,9n} in the estimation procedure. Here, we assume that the orthogonality condition for
the elements in G as 227:1 gk(Tr)gi(xn) is equal to s if k =1 and 0 if k # . Now, the cost function is
defined by C(a, b, A) = remp(@, b) + S}, Aea2, where remp(a,b) = S0, (yn — fab(%n))* /N is the
empirical squared error for f, 5. Let us define Zp, = (A, +Sbk)_d§k and @s, = D, Yngb,. (Tn)/(Ap, +5b, ).
Let l1,... ,In be the indexes which satisfy Z;, > Z;, > -+ > Z;,,. Then, we have Ek =l and ax = @y,
as the minimizing parameters of the cost. Let us define py, = sp, /(Ap, + 85, ). Then. the least squares
estimator of ap, is given by Gy, = D, Yngb, (€n)/ sy, and we have @y, = pp, ap,. Because 0 < pp, <1,
@p, is a shrinkage estimator, which is assigned to each component independently.

3 Overfitting property for noise

In the following, to see the overfitting property of fg 4 for noise, we assume that y, = §,, n =

1,...,N; i.e. the data is a Gaussian noise sequence. Let zj,...,zny be Li.d. samples from the
distribution of y; and ¥1,...,Yyw~, z1,.--,2n be independent. Let us define the prediction error by
r(@,b) = ZTILIEZ (zn - fag(mn)) /N, where z = (z1,...,2n) and E, denotes the expectation

with respect to the joint distribution of z. Then we have the following theorems.

Theorem 1 Let us define Cy = 2log N +(—1+¢)loglog N, where € is an arbitrary positive constant.
Then, for any fired K, we have limy_, P {r(&,g) < remp(&'l;) + 7%—, Z,{;l o, Cn + 5} =1 for any
§ >0.

Theorem 2 Let us define Cy = 2log N + (=1 — ¢)loglog N and assume that pp > v > 0 for any .
Then, for any fired K, limpy o P {r(&, 5) > remp(&,B) + g7’5—"’_6_‘,\, - 5} =1 for any § > 0.
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4 Model selection criterion

Theorem 1 tells us that the correction on the overfitting to noise is not more than ‘72,{‘ lplkaN
and this is tight because of Theorem 2 for large N. Then we proposed the model selection criterion
whose form is given by MSC(K) = renplax, bK) + 2 N Zk 1P, Cy. Here,if yy=1forl=1,...,N
then the criterion reduces to Hayasaka’s criterion[2], which is given by MSCo(K) = remp(ax, bK)
2—"1,\2,—}{6'1\;, where remp(?iK,EK) = ming p Temp(a, b). Note that MSCy(K) is equivalent with Quinn-
Sakai’s criterion[4](3]. It has been shown that MSCq has the consistency of model selection. Also
we can show the consistency of MSC if we assume that 0 < gy < 1 and s; = O(N) for all [. This
is because MSC(K) = Op(1) for K < K* and MSC(K*) = 0,(1), where K* is the true number
of components, and MSC(K) > MSC(K*) for K > K* due to Theorem 1. On the other hand, in
practical situations, we should estimate p;. The minimizing p; of the expected prediction error is given
by pf = a}si/(0* + a}s;), where of is the true coefficient of the ith component. Then, we consider
the estimate Py = sgap/(32 + skdy), where o2
employed in [1] as an empirical estimate of the shrinkage parameter in designing the digital Wiener
filter.

is an appropriate estimator of 2. Py has also been

5 Numerical simulation

In the simulation to evaluate the performance of MSC, G is set to be an orthogonal family whose
components consist of sinusoidal functions with different frequency components. Here, we set h{z) =
Zk —1 gx(z) and o2 = 1. In the simulation, we estimate the parameter for each of 500 sets of data
with size V. For each estimation, the prediction error is estimated by the average squared error on
1000 sets of new data with size V. The averaged prediction error is calculated as the average of the
estimated prediction errors for 500 trials. As the number of data, we take N = 50, 100, 200, 400. Table
1 shows the averaged prediction error at the selected number of components by MSCy and MSC. As
we can see, MSC outperform MSCy at any N.

6 Conclusions and Future works

In this paper, we consider a model selection criterion for an orthogonal regression with componentwise
shrinkage estimators. By a numerical simulation, we showed that the proposed criterion with the
empirical estimate of the amount of the shrinkage exhibits better performance compared with the
criterion under the least squares estimation. As seen in this paper, the proposed criterion, also the
criterion proposed in [3][4][2], are constructed based only on the overfitting property for noise. Indeed,
for our regression model, it may be shown that the variance of the estimated coeflicient of the true
component is O(1) but that of the other component is O(log N) for large N. Therefore, the penalty
terms of the criteria may be overestimation. This problem emerges in considering model selection of
any regression models without identifiability. One possible way to overcome this problem is to suppress
the variance only for the overfitting to noise by using the componentwise shrinkage and construct a
criterion under this setting. This is left as a future work.

N 50 100 200 400
MSC, 1.41947 1.29090 1.21088 1.14102
MSC 1.40364 1.28068 1.20411 1.13537

Table 1: The averaged prediction errors of the models, which is selected by MSCy and MSC.
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Gaussian volumes of tubes and Euler characteristic densities

Stanford Univ. Jonathan Taylor

In this work we describe some new results in approximating the distribution of the
maximum of a smooth stochastic process on a manifold M, specifically Gaussian and
closely related processes. We use the expected Euler characteristic method to
approximate this distribution and describe a new formula, a Gaussian version of the
classical Kinematic Fundamental Formulae of integral geometry. This result relates
the Euler characteristic densities of a certain class of processes to coefficients in

certain power series expansions of the standard Gaussian measure of certain tubes.

We give some simple applications of the result, including a simple derivation of the
EC densities of Gaussian and x * processes. Although these two results are not new,
the Gaussian KFF sheds some light on them gives a geometric interpretation of them.
As a corollary to the result for x ? processes, the Gaussian KFF yields the EC

densities of non-central x ? processes, which have not been published previously.

This Gaussian KFF also shows how to use the EC approach for certain fields with
piecewise smooth level sets. As an application, we derive the EC densities of the
process given by taking the pointwise minimum of two i.i.d. Gaussian processes,
known as a correlated conjunction. To validate these approximations, we conclude

with the results of a small simultation study.
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Tail probability via tube formula when
critical radius is zero

144 ®il (A Takemura) I KF KEFIFHRE TE AR
FEA I (S.Kuriki) HEHEIENIFERT

Let M be a closed subset of the unit sphere S*~! in R™. We consider upper tail probability
of the maximum of a random field Z(u), v = (uy,...,un) € M, defined by

n
Zu)y=u'z= Zuizi,
i=1

where z = (z1,...,2,) is distributed according to n-dimensional standard multivariate nor-
mal distribution N,(0,1,). This is the canonical form of Gaussian random field with finite
Karhunen-Loéve expansion and constant variance as discussed in Takemura and Kuriki (2002).
Let y = (y1,...,yn)" = 2/| 2| be distributed according to the uniform distribution Unif(S™~1)
on the unit sphere S™~!. We also study upper tail probability of the maximum of

Y(u) =u'y.

In Takemura and Kuriki (1997) we treated convex M for studying the properties of %2
distribution in the framework of testing against multivariate ordered alternatives. In Kuriki
and Takemura (2001) we treated smooth M without boundary for studying multilinear forms
in normal variates. Unifying these cases in Takemura and Kuriki (2002) we considered index
set M which is locally approximated by a convex cone. We established that in this case M
has positive critical radius and the tube method by Sun (1993) and the Euler characteristic
method by Adler (1981) and Worsley (1995a,b) lead to identical valid asymptotic expansion
of the upper tail probabilities. In a different setting, Adler (2000) showed that the Euler
characteristic method for isotropic Gaussian random fields on piecewise smooth domain gives
valid asymptotic expansion using the results by Piterbarg (1996).

These results might give an impression that the formal asymptotic expansion based on the
tube formula is valid and identical to the Euler characteristic method for practically all regular
cases. However this is not the case if the critical radius of M is zero. The main purpose of this
paper is to show that if the critical radius of M is zero, the asymptotic expansion based on the
tube formula is generally incorrect except for the main term of the expansion. Furthermore the
equivalence of the formal tube formula and the Euler characteristic method no longer holds.
We also give some simple examples of index sets with zero critical radius, for which the formal
tube formula and the Euler characteristic method give different asymptotic expansions and
both are incorrect. More substantial application of the results of the present paper is given
in Takemura and Kuriki (2001), where a natural multivariate test statistics has an associated
index set with zero critical radius.
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Tube method and Euler characteristic method for Gaussian

random fields with inhomogeneous variance

Satoshi Kuriki (Inst. Statist. Math.)
Akimichi Takemura (Univ. Tokyo)

1. Tube with nonconstant radius.
Define a Gaussian field with finite Karhunen-Logve expansion and its standardized version:
X(t) =o(t)z, Y(t)=¢@t)z/|z, telcRY,

where z ~ Np(0,I,) is a standard p-dimensional Gaussian random vector, and ¢ : I — ¢(I) C R?
is a one-to-one C2-mapping. We assume that the image ¢(J) is a compact C*-submanifold of R?
without boundary not containing the origin. Let o(t) = ||¢(t)]| and ¢(t) = ¢(t)/o(t). We also
assume that ¢(t) : I — SP~! a one-to-one C2-mapping, where SP~! denotes the unit sphere in RP.
X () is a continuous Gaussian filed with mean zero, variance 3(t), and the correlation function
corr(ty, ta) = @(t1) @(t2), t1, t2 € L.
Consider the maxima over the index set I,

= = 'z = N = "z/|z|.
T =maxX(t) = maxg(t)'z,  U=max¥(t)=maxo(t)z/|z]

They exist because of the assumption of the compactness of ¢(I). In this paper we will discuss
upper tail probabilities of the distributions of 7" and U.
Put
M ={g(t) |t eI} (1)

Since ||¢(t)|| = 1, M is a C?-submanifold of the unit sphere SP~! C RP. The function ¢ can be
regarded as a function on M by o(u) := o(p~'(u)), u € M. The distributions of T and U depend
only on the manifold M and the function o : M — R.

Noting that the independence of ||z]| and z/||z||, we have

P(T>z)=E [P (U> ”_:ﬁ | HzH)}. (2)

Here

PU>a) = P(maxo(e(t)z/Iz]>a) =Pt ¢t)z/l]l > o/o(t))
= P (3t cos™ () z/|2l)) < cos™M(a/a (1)) -

Since z/||z] is distributed uniformly on SP~!, P(U > a) is 1/Vol(SP~!) times the volume of tube
around M with generally nonconstant radius:

{ue 87713, cos™ (p(t)u) < cos™ (a/a(t))}-
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2. Main Results.

Here we use conventions 8/8t* = 8;, ¢; = 0i¢, iy = 0;0jp, etc. The manifold M in (1) is a
Riemannian manifold with the metric g;; = j¢;, and the affine connection I'y; = L,:,’U-gck. The
covariant derivative is denoted by V. Let ¢;; = =V, V ;£ + V¢V ¢, ¥ = log o, be a (0,2) symmetric
tensor. Let R;;x be the curvature tensor, and let Rijkl = Rijr — (9ix G5t — 9ag;jx ). Denote (i,7)-th
element of the inverse matrix of d;; = gi; + ¢;; by d"J. Then we have the following:

Theorem 1 (volume of tube).

:ul.-‘

PU>z) = /clet(gij + ¢;5) det(g;;) 7% Adt?

d d e+1
ZO %M(Huwn 2)=4ld=etl)

+3

- 14+ 1VY)?
XBi(d—et1),k(p—dre—1) <——£2—n$2) X Ce(t) (3)

for x > maxyen o(u) cosf., where 8, is a positive constant. B, y(-) is upper probability of the beta
distribution with parameters {(a,b). (.(t) = 0 for e odd, and for e even

Ce(t) = Z Z .7’ J1]2k1]\z '”Rj,-1j,k‘,'_1k, djlkl “'dj':k",

1< << <p  [5,k]

where the summation Z[j’k] is taken over all possible pairings {(j1,j2),- .-, (Je—1,Je)} and
{(kl,kg),...,(k'e_l,k'e)} from {il,...,’ie} such that 1< J2y eoey Je=1 < Je, ki <ks, .o, ke1 < ke,
and j1 < jz < -+ < Je—1- €ld, k] = sen(f1,...,Je; ki, ke) is the sign of permutation. In

particular, {y(t) =1 and ((t) = %f%ijkldikdﬂ.

Once the distribution of U is obtained, the distribution of T' can be derived via (2), that is, by
substituting z? := z%/||z||? in (3), and taking expectation with respect to | z||> ~ x?(p). As in Sun
(1993) and Kuriki and Takemura (2001), we can prove the following theorem.

Theorem 2 (tube method). P(T > ) = P(T > ) + O(Gp(z(1 + tan?6.))),  — oo, where
P(I'>z) = /det(gij + cij)cle:t(gij)—é Adt?
I K

d
F(d §+l)
1

9l+5 pr3(d+1)
e=0
- 1+ || Ve)?
XGa-et1 (-{‘I—Q‘iﬂz) x Ce(t),

and G, () is upper probability of the x> distribution with v degrees of freedom.

(1+[ve)?

Theorem 3 (Laplace approrimation). Assume that o(t) takes the unique mazimum at t = O.

Without loss of generality assume o(0) = 1. Then
P(T > z) ~ ®(z) x det(gs;(0) — £;;(0))% det(—£;;(0))"%, = — oo,

(&0

where ®(u) is upper probability of the standard normal distribution N(0, 1).

Theorem 4 (Equivalence of the tube method and the EC method). Omitted.
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The Multivariate Analog of the One-Sided Test Revisited

Akio KUDO (Hyogo University)
and Yoshiro YAMAMOTO (Tama University)
1 1iNTRODUCTION

It is already nearly four decades since the paper of Kudo({2]) was published 1963. The
problem was as follows. Given a p-variate normal distribution: N,(8,c2A), we consider the
testing problem: Hp: 8 = 0 versus H;: 8 > 0, where A is assumed to be known, but the scale
parameter o2 is unknown. 6' = (6, ,6,) > 0 means Max 6, > 0, Min §; > 0. In Kudo’s
original paper [2], the unknown scale parameter was absent, but it was immediately added in
the formulation in the book by Barlow, Bartholomew, Bremner and Brunk [1].

In this book, published in 1972, it is stated that the algorithm for computating the test
statistic is not available, and mreover the null distribution "may be expressed in terms of
orthant probabilities of certain multivariate normal distribution, and no general solution in
closed form exists for # > 3. Thus the range of the solutions in which of test can be used is
rather severely restricted.” (see on page 177-8 in [1] In short they pointed our two difficulties:
one lies in computation of the statistic and other is how to compute the null distribution.

After about 15 years later another book [6] was published. This book refers to the paper (2]
more frequently but the authors of this book were not seem to pay attention to the difficulties
stated in [1].

The purpose of this presentation is to describe the developments in the area re ated to the
above dificulties.

They assumed there exists an independent estimator 72 of o2 based on x? distribution. The
main purpose of this paper is to present a not widely recognized fact that the existence of T2
is not necessary needed.

2 THE LIKELTHOOD RATIO EST
he maximum likelihood estimate (MLE) can be obtained by the method reviewed in [9], and

let the MLE be X°. We have the partition of the quadratic form; X A1 X = XY A-1X%+50,
0 A ~1y0
AT X

and the likelihood ratio test rejects Hy when e is too large. This statistic may take

the value 0, as X% =0 may hold true, and moreover the value 1 when T2 is not present and
X%=X.
3 DISTRIBUTION

We discuss the distribution of the following statistic.

:»_ XTAIX° XUA-1Xx0
E = ’
POXAIX4T2 T XUA-1X0 4 504 72
The orthant probability of a positive definit matrix =, denoted by P{X}, is the probability
that the random vector distributed in N (0, £) has components all positive.

Theorem The distribution of the statistic £2 under the null hypothesis is given by the
following.

Pr(E2=1)= P{A} in case when T2 is absent

Pr(E2 =1) = 0 in case when T2 is present

Pr(E2 =0)= P{A~!} in both of the above two

and for 0 < a < 1 we have

PUE>a)=Pr(E2=1)1 3 P{(Aw) -I}P{AM:M'}IQ(““”),p“”(‘“’”) 1)

2 2
CMCP
When T2 is absent t should be understood as 0, and
k q 1 @ 4_q
- 2 = — 3 2
Ia(m) B(g,%)/ o)t de )
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Here, > denotes the summation for all possible non-empty proper subset M of P = (1,2,...k)
, n(M) is the number of elements in subset A, A’ is the complement of A/, A, is the variance
matrix of X ;i € M, Aps.ppo is variance matrix under the condition X; = 0. € M, and
P{A} is the probability that the random variables distributed in a multivariate N (0, A), where
covariance matrix A are all positive.

4 CASES WHEN LR TEST IS POSSIBLE WITHOUT T2

The equation (1) in this theorem states when 7' is absent, the likelihood ratio test with the
significance level « is possible only when P{A} < a.

This condition is satisfied when A = I, the unit matrix and as 0.05 > 2~% when k > 5.

Another case when this condition is satisfied is the case of simple order alternative. Let
X = (z1,z2, -x,) distributed independently in normal with means 6#,,8;,--- ,8,. the null
hypothesis is the equality of them and the alternative is 1 > 6, > --- > 6, where at least one
of n — 1 inqualities is strict. This problem can be transformed to our frame work by taking the

successive difference, and then the condition is seen to be satisfied as P{A} = — and this is
T
less than 0.05 when n > 4.

5 HISTORICAL REVIEW AND DISCUSSION

The first paper in this area is said to be due to Kudo[2], and cited in [1} and [6]. The recent
paper [9] dealt with the computational algorithms based on the method (8].

The case when T? does not exist was first treated in [4] and a table was published for simple
order case in [3]. When these works were done, the method of calculating the normal orthand
probability was not well developed untill [7], which had made one of the authors, Kudo, coward
in developing and publishing the general form.

The recent devopement reported in this meeting [10] is most congratulated.

About the checking the accuracy on (1), two identities are available.

P{AY+ > P{(Aa) "}P{Apar} + P{AT'} =1 (3)
(-1)"P{A}+ ML) D P{(Ap) Y P{Aar} + P{ATT} =0 (4)
¢CMCP
The first one is trivial and second is due to[5]
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Asymptotics for the Likelihood Ratio Test under Loss of Identifiability

Rockefeller Univ. Xin Liu

The classical quadratic expansion of the log-likelihood ratio around the true
parameter can fail when parameters characterizing the true distribution are not
unique. In finite binomial mixture models, a reparameterization can reduce this
problem into the likelihood ratio test under nonstandard conditions. In general, this
reparameterization technics may not work. To overcome this difficulty, we establish a
quadratic approximation of the log-likelihood ratio function in a Hellinger
neighborhood of the true density. Then the asymptotic null distribution of the
likelihood ratio test statistic can be obtained by maximizing the quadratic form even
when there is loss of identifiability in parameters. Testing the number of

components in finite mixture models are considered.
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Detecting the number of change-points via likelihood ratio test
JUIN K 8 BAT
LU ®IC

Iaiﬁgﬁﬁé%ﬁﬁw TELEEEROLEH IS, BEIZEDSOTELE T ko 5 HHITE
BLTWaV, BICEROEC ST 2 REKIT BN EHIZMT 2H b4\, #I T,
JRSTIZ %%%ﬂ@ﬁﬁﬁﬁcmvﬁﬂ®¥hn/x—9ﬁxmwvu1/7hﬁ7 AN X1y
SRR L EARN L EE TSI RO G & R, MIEEBRTZOR UL 1D 5.

2. ER
2 (=1,....m) DEAMIIERDA N6,1) 12FED & L, BILEET VLD LV )RS
Hi : 0= =0k #0p1= =0k, # - #Op,y1= =0

EEZL. P LENEIHROZD ki Em ODEBETH 5T limp_ski/m= X\ <1 2@z dbnL
T 5.

Top1 5 2 TTOFH L s Li/(t—s) B ILERRTIEIZTHE, s o 1, 2%
) Ho & Hy O @?Ti&tl‘;ﬂ:’ﬁcufgli T() 1 = maxi<s<m{s(ZE)? + (m — 8) (@)% —mn(z)?}
EET, KDL ) RERYD D,

EIE 1 (Csorgd & Horvath [1] p.23) t(m) > 1/m, t(m) > 1/m 2B\ T

lim sup m{t(m) +¥(m)}exp{—-(logm)! ="} < ¢ (1)

m—00

WHH0< e <1TIZDWTHENDTITIE, FED U< e<e* I3 L, IREIEE Hy Db & T

B(t)? /2 1-
To.1 — sup =op| exp{—(logm) ~¢
{To. 2(m)sm_am){t(l—t)} ‘ P( {=( ) })

VYD, ZIZT, B(t) (& Brownian 7' v ¥ T, EB(t) = 0, EB(s)B(t) = min(s,t) — st %
7.

E1 %Eﬂ:l/t Brownian 7Y v ¥ ORAMEDHEFERIZE L TEEFMERLH Y, Csérg('ﬁ & Horvith
(1] 1 t(m) =T(m) = (logm)¥?/m £ LTENEFH VDL Z L2 REL TV S

J:Tﬁabﬂflﬂéfi riRL, Bt n st n+ 1, 20 H, & Hypy OREDOX B
e & Tnn+r b L THWAS
EE 2 t,(m)>1/mty(m)>1/mth=1...n+1) 25 (1) 23 2ol FEN 0<e< e
WL, Hy Db ET

; Bh() 1/2 _ l—¢
T = i [ o {iop) ] = or(ep(-tom )

WO VZD. 22T By(t) (h=1,...n+1) I3& %M 7% Brownian 7)) v T Th 5.

TILEE O 2 DBRELZEZAN, TEFIv 754 TOELRMD 72D DK REIZE
THRERTIBRTEL.

T 3 (Yao [4])
He : 91:”':9;{1:0k2+1="'=€Tﬂ§£0k1+l="'=9k‘z

EL, COFEMEDMNBIZELT tom <k — Kk < (1—t))m &I HlEIE AND (b, ty 1FHE

WIEDEL). ZOHIFDOTTOH Hy 3t He DREDHELELKETE (—RIELEL EIFITN D)

75: To. &L, 72 Vip = 2p % exp{-232  n71&(—|unt/?/2)} &F UL, IRERE Hy Db
LT

P(Tp.e > mé) —5 4\}2—7;(771{0)3/2 eXp( 150) /t“ 1 _175)7521/[{15(1fi t) }I/Q}Zdt

SN D
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COEICHE E=mé ABAIHREO m CHTAIARAOTIEHE S 25 Z L3, #BHESR
DRFEEPLMIENS. T2 THY S5 1L5 Siegmund [2] X Yao (3] DFEZILRT S &, Hy #F
Hy O— b RELICET 5L T OMRZET 5.

FIE 4 Hy OFLEOMEIZELT ky > tom, ky ~ ki > tym, m —ky > tom L) ?ﬁfﬁ}'ﬂ%)&
N5 (to, 11, tr WHEWEDEH). ZORMDTTO Ho 34 Hy OREDH MK ILHME & &

. 1 ¥ 1—to—ty 1—-to Eu(1— t/t
P(To.0 > mé) P _—mPexp ( — _71_59_ / ds / dt /
8w 2 t

+t Ea(1- t)/t
o\ L/ 5
[Vims (6~ ) {0 =Rt = Vs = nc)
V[VQ— - VS] + (1/1— - l/2+)2(l/2+ — 1/3)2V[I/1_ — U2+]V[y2+ — 1/3]}:’

AEHITD. 22T

t N\t—s i S ty
vt o )t emt (- )t =
1/15:‘ yi\/(fo l—ty) o Voxr =Y \/50 T = s) 3 T3

Z LT Hy 5 Hpgo OREDHBLEILHEE Tninge KHLTIUTOMRZET .

TR 5 TV (my) (f = 1,...,n+1) & Top ®IE— (F— 8 Homy, S4WL) EFHIL H,
nbHET

B; (1) Bh(t)?
Trinyz ~ max [15jl<nf?§n+1 { Sup t(1 —t) +sup

[0:2] *
t(l—t)}’ 1513'1’122(“]}' (k5 &kj"l)} (2)

YLD, SIThY,.. . k) WEDERILETHY, /0, ki =0k, =m ELTWVD

3. BEEBREER

J:T‘ BN-HERTLEL SNAIEHRIIH L TESRELED, TEvFhosIal— 3
X BEHE B L/
iﬂQKﬁwﬂiﬁli%EL

t;(m) =T;(m) = {log(k; — k;—1)*}/(k; — k;_1) (3)

RBEWAZEFRELL. Z2Thy,... ky 3 H, OFCOENLAOBAHEETHD, FO—
BN oo b &) S RbIE AR (1) #i@reT. FLC, BEAEn IHTAF -5 Hm
AN ET ERIFIUE, #ERYD B L BB

EE 4 3wfuto-n_Q20m&%m—%kfﬁmwkﬁ%ﬁwﬁﬁﬁﬁ%w:k,%
LT, ZEECHPO R WBEOEELGHBIIEL TR to=t, = ta = 1/m 2HV20O2HK
THHEDDOD, ThiZ m HAKEVE & ;me%M%%x&w_t%ﬁ;LL
EE5IBVTE, (2) @ TR — k) Opb 012 TV (ky —kymy) #Mva 2 L & (3)
EERELL. B EO—HIEL D, CORRIER 5 Ll By(t) & T i3 Tia

RCDHBIZETH 5720, BFMLREOHEZ BIEL, B;(t) & TV WHUTHEb0L L
TEREEEM L. £ LT USRTNT B ERE 52 VD L RRIAL S

ZEXE
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Selection among the k& Bernoulli Trials — Fixed Sample case

BIREBER - B 7o &

NEOXMRIZH L TEEOLED > bOWTRMERTI LTS BREX Z00100Th
HTHY, BiNBEEFEALLLEPX =)=p=1-q&RDETH BMTECY, Xi)
EFRRIZTALDICMEZIOAZLETHD. X I TAHMBEORBIRIT X, -, X ([ZDH
EEFET D LTI,

N k k
E (in) = ZPiE(Ni) = Zpil/i
i=1 i=1 i=1

LB Ny 3B B EEATIERTHS.
maxp; = p* & BIFIL regret i3

EEERSIND.
Fixed sample rule IZHB W TIIEH kn EOXHRIZHOWT, kL EOLE %2 n B3 2220 Tl
L,ZRYVDO N —kn il o0 TE, ZUMIDENSTobDEET (A4 BRboto b EiZT7 04
WED D) D nBIZONTORDOEE Yy, -+, Ve ET5 &, ZHIT 2HNH B(n, p;)
ZHEH. 5T B

k
R=n) (0" =p)+ (N = kn)}_(p" - pi) P(¥i = maxj)

LREND (54 DPLEEETNITORBMIRS).
P(Y; =maxY;)=P(Y; > Y1,Y; > Yo, )
DFHEICKREEUER NS, Y, - Y1=21,-- Y~ Yo =21 V-V 2B 95 &
P(Y: = maxY) = P(Z, >0, , Zy_r > 0)
LB, BIREOFER VT

P(Zy=-=Zp=0) = — (5 + Q)™

<27r)’°—5—\/ﬁ>5

5= ([Tr)", =G]@ , P=p/p+)=1-0Q
L, el —pi/pea Bl bp <p (=1, kjAi) REIE
@+qm

Wﬁ—§:Q>p)

P(Zl 207 7Z/€~120)

LB, ol s, FEIL

Rexn (0" —pi) + (N —kn) Y (0" = pi) P(Yi 2 Yie).

2120, pr = maxp; L7 DD T, n il DN TOELIA minimax fEE B S IZKRDH D 2 LN T
5.
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Asymptotic properties of estimators for small diffusions

SEI Tomonari}

Abstract

The second-order efficiency of bias-corrected
estimators for diffusion processes with small
noise is investigated from the viewpoint of in-
formation geometry. A bias-corrected estimator
is second-order efficient if and only if the an-
cillary manifolds are orthogonal to the model
and their embedding m-curvatures vanish. In
particular, the maximum likelihood estimator is
second-order efficient. It is essential that the
statistics appeared in the expansions of estima-
tors have asymptotic normality.

1. Diffusion processes with small noise
and information geometry

Suppose that X¢ = {Xf | t € [0,T]} € Cr,
where Cr is the set of continuous functions from
[0,7] to R, is a diffusion process with small noise
parameter € € [0,1]

dX; = p(Xiu)dt+edW;, X§= zo,
where W = {W,} is a l-dimensional standard
Brownian motion, g = p(-,-) is a smooth func-
tion and u is a m-dimensional unknown param-
eter in the parameter space U C R™, and the
initial value zq is a constant independent of w.
The log likelihood function €. is given by

I/T dx 1/T 24y
62(}“*1 262()# ‘

We denote this model by P = {{(-,u)ju € U}
and introduce some geometrical notations as fol-
lows. See Amari [1] for details about informa-
tion geometry. A tangent space of P at u € U
is defined by 7, = span{8,{c(-,u)}, where 9, =
d/du® for a = 1,---,m. The Fisher information

f(X,u) =

*Department of Mathematical Engineering and In-
formation Physics, School of Engineering, University of
Tokyo.

'Department of Mathematical Informatics, School of
Information Science and Technology, University of Tokyo.

KOMAKI Fumiyasu'

€
metric g, and e-, m-connection coefficients I'ypc»
m
Tupe on P are defined by

9wy = Eu [aaésabgc]e
Tase = Eu[0.05L0:L.].
f‘labc = f‘abc + E-u[aufeabﬁeacée]a

respectively. Since all of these quantities are or-
der of 6_2, we put ggp = ezgabw f‘abc = 6212116("
and If‘labc = 62111‘:1,6. The explicit expressions for
these quantities have been obtained (See Sei and
Komaki [6]). In the following, we use Einstein’s
summation convention.

2. The asymptotic expansion for the
MLE

The maximum likelihood estimator (MLE) @
with respect to an observed process X°¢ has an
asymptotic expansion:

0t o~ ua+€gabgb+€2 (gabgrd,gbcgd
lm a ,ce ~ o~
— 5l q° gdfyeyf) :
where
@a = faaéca

Gob = €DaDybe — EuledaOhb] — Tub'Fer
(g??) is the inverse matrix of (gq) and the sym-
bol >~ means asymptotic equivalence. See Ku-
toyants [5] and Yoshida [7] for the validity of
asymptotic expansions related to the MLE.

Using the expansion and asymptotic normality
of §, and 4, we obtain the expansion of the
mean square error (MSE) of the bias-corrected
MLE @*. See Efron [2] and Amari [1] for the

concept of bias correction.

Proposition 2.1 The MSE of the bias-
corrected MLE is given by

4
Eu[(ﬁ*“—u“)(ﬂ*b——ub)] ~ 629ab+_€_2_C2ab’
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where
Cv?ab — (F)Zab + z(ﬁp)zab’
m m m
(F)2ab — charefbgcegdf7
(‘H'P)hb — Mcdefgacgbegdf’
Mcdsf = Eu[f/cdgEf]-
3. The asymptotic expansions for

Fisher-consistent estimators

In this section. we assume that the model P is
a curved exponential family embedded in a full
exponential family £ = {{.(-,0)} defined by

L(X.0) = THOs(X) = U(8,e)),

where 6 is the n-dimensional natural parameter,
5(X) is the sufficient statistic corresponding to 8
and U(6,¢€) is the potential function. The quan-
tity € plays a role as the dispersion parameter
(Jorgensen [3]). See Kiichler and Sgrensen [4]
for details about curved exponential families of
stochastic processes. This assumption holds if
the drift coefficient is in a linear form.

Let n be the expectation parameter: 7, =
ni(u,€) = Eylsi(X€)], which depends on e. We
suppose that the asymptotic normality

i = € Msi(X)—m) — N(0.(gs)) (1)

holds.

Let us consider an estimator expressed by
u = T(7), where T is a smooth function from R"
to . We assume that @ is Fisher consistent, i.e.,
u® = T%n(u,0)) holds for all u € U. We define
the ancillary manifold A, by A, = T~ ({u}).
The notations about the ancillary manifolds fol-
low Amari[1].

The estimator @ is expanded as

a* o~ u®+e{0'T} i + %{313]Ta}7~7i7~7j~

Here, 8'T%n) (a = 1,---,m) are interpreted as
vectors normal to the ancillary manifold A,. It
can be shown that the estimator 4 is first-order
efficient if and only if A, and 7, are asymptoti-
cally orthogonal, i.e., 8'T% ~ ¢*8,6".

From now on, we assume that 4 is first-order
efficient and discuss second-order efficiency of .

By using asymptotic normality (1) of % and a
relation 9'9'T? = —AiﬁA”rlg/h“, where A" =
&' w?, the MSE of the bias-corrected estimator
@* is represented as follows.

Theorem 3.1 The MSE of a bias-corrected
first-order efficient estimator is

4
Eu[(ﬁ*a _ ua)(&*b _ 'U,b)] ~ 6‘29ab + 6—2*02@5
where
m e m
C2a,b (F)Zab + 2(H‘P)2ab + (H‘A)zab’
m m m
(Ha)™ = T Tw’9™g",

1\ 2ab Cr\2ab . . "y
and (I')**® and (Hp)**" are given in proposition
2.1.

The three terms in C?®® are all non-negative
m €

and (I‘)Q“b and (Hp)%*® are independent of the

estimator. Therefore, 4* is second-order efficient

if and only il (H4)*® — 0 as ¢ — 0. The

2ab means square of the embed-

quantity (EA)
ding m-curvature of A,. In particular, the bias-

corrected MLE is second-order efficient.
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HIEEEOEREHETIL . 5/ LELLLBRMYRE

FIUKRE - BEEMBE BHIEA
J=RARZAFTHTIKE . SA A A Tr—~TFT 47 A Jeffrey L. Thorne

1 &

BEL HDT 7 LOEROPDEL | EYOWREIZAENIZE SO L OB LHITE AR EL 0L
WMHEEIZL > THAERONTE, SEOLIA, 7/ AL TOMBEEO TR ZBH T 3B S
CDEENT 7a—F & LTREMTH T2 T 2 HiEBEHHEN TV S, EEHBETFOER
([6. 4]). BEEOIAE & FHALEE DI ([3]) 78 £, 90 R EIE7 & BURIE B TEA K 2 12 HI T & 7=,
FEELEINET, HFEEBEREETIHETE, BN SA—7HT T 50RO HOEELS 2 L
CEFBUCHETIRBETAVEEELE ([5]). FL T, DFMEERE LI & OFEIZ VT, Sl
A E oA & F 72 ([2)).

2 HFRBBEOLELELCEREOHERTHETIL

“ AT ERTREIND D EOEBRETHEZTT AT HZLICL 0. S FRERO LN RE
ENnd, HEZG s AOESIZLE L TRRBMEZHET 2 HO04E2 5, BSIORSE 0 ET5 L, %%
B T ooxt#cbE

1(8]X) = Zlogf X46) (1)

h=1
ERLEND, ZITO DT ot RERET BT A—2TH B, BAOLELOFFHETLLE LT
TN TBRCEDET MR RET B, HIKHEZNENOBOESITMIZHELT S L RET S &L £(X]0)

[
X|8 ZWZ H ZPZ",,‘U),Z,(tanc(j).j) (2)

iy J€node(T)\in Z,
LHEICREND, ZIT, node(T) IXHMHM T OEZRL, iy ITFOWRTH D, HREHBOEGIZIT,
LEDEZIRET D, anc(j) 13 J ICBEET DL RBEITH D, Ppy(t) IR ¢ 2RISR THD,
MELHEDRABTOIERERNE LT, @BRITOL LA PO E LBELAH, EMoOKE SOLH, IHo
REDLEBHREAEZLGND, INHHEWTRLHCHBELE-TLBTA LN FHEND, 220, %
Aoy L LCHE r(t) OxHE & o b O BERILEHEIZR S L+ 5, +2bb, 7(t) = logr(t) 131
Rz 7@RT, LED 2Rt s (t>s) LT

EF(@)[7(s)]
V7 (@)I7(s)]

1l
3
—
v
~—
|

Il
<
—_
o~
|
o

FIRET 5. BEILECEEDOHFEMANEIZ A EE RN EDIL T b0 TH S, ik, HET
2FRMTMIVIZEIT 2 LT 5, FHOTHELL., FhaiE S8 2 O8ICE T2 HED EHTIEET 5,
DR EFTE & LR OIZR 2SO, SARMMTR SIS,

NHERET DR ANTA—F L LTEWE p B LOBIEREK v #5555, “hb 20035 A — 4%
MR = HEWED LT D, MRy — L ZMRE L, o ORFHEIT 1, EEEET 05 IC8ET 5,
oo v IZOWTIEEWHR E 262055 T, H8L 220108 ET 5, HEROMETFEN S BEC
13, mvﬁﬁﬁ\ﬁ%%ﬂ¢é
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3 HEEEFORMNEAEEORE

EEFRTORdELBOFR A EEAL, ST E A ST oBIGF oML A EE T
LERFTS, YIal—varkililT, EELASORE L@  DBEFIZHOVWTHIERHET D2
BIZIHEZ L OB LT, SIEFEROHEEIZOWTIHL, HEOBGFEBITTH LI 0EENE
NERCENAZ ENbhotz, 727l RNA DAL AD L DB AWML ESICIL . 5 it
{EHEICBET A IERAEEEN TV D,

AT, BIGFRTHSY ARE L FAAHIS ST OMEOER AR TR THERT S s ic LY,
A BRHITAZENTES, 2T, HEOZRKMORIMELH D Z EIEENBLETHD, 2 HE
FIBTARETOEEDEEFY Ty (m=1,2, j € node(T)) &R, IEAFARZ IS . MEFIRE 0> 5 e
RO T TONHFIL, HEALOMLRLEEHEREBICLDTHERELR E AT vidiudes iy, 22
Tk, BESLOFMEMEBLT I LICLVRERD, Thbth, BRESO T TORFIZEHIT HH
EOEGRTS T, &

— —
T"mi, — Tmiy

-/ =/

T"mi T Tmorancy) + Wm] (7"1.] - Fmﬂ'a”(‘(])) (J € TLOdE',(T) \ i())

WEDEERT D, Wy 121, -1 ZENENHESR § TEDZAWIIMVAHERLLTH D,

[N

4 WET/ LEREOD—RR

FraEIzalbb e w7 o b~ TELLEET TV A, 20 RPE 20 ORE CRESA TV S
ZEnbhoaTEE ([1). ELOBERICE-SL Y AOMBEEGRIE. BE2RIGTEERT D L &m0 E
WMTELNTZMRAEZRATED ZEEABLTWE, HEFM 27—V Tk, v — 7 —R®IEF Oz
RAEBRIZEBANEDLY AH DL L WS HIBBE LSO H D,

BT ) MM L AW AOSHERBREFMIZES TIT & &I0E, HEALETH D, MIEE
BRBFOE OB MHEEEETHY ., BEMAME E LS, o, HOMITHEFEESEZ Y, B
BN ZOBETOa bt —REL L REA L ANT EBETFABBI LIS TLE Y ZE0RH 5,
T LADERLBRRIIHT DL OAOBENEKRE D IZ o0, HIEMERFIZIST 5 REEREEZBEIZAN
T D BEEMERSHERINTLIATHA I,

B & 3k
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[2] Kishino, H., Thorne, J. L., and Bruno, W. J. Mol. Biol. and Evol, 18: 352-361 (2001)
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QTL MATICHIF B IEEHINE: BEMTIVIT Y XLITXK D RERIRE(L & BE
HREARFREREZEMEI LR PEL—8

1 BH

EYEFERICBWTEMNEEICHEES T2 &G TE (quantitative trait locus, QTL) DL, H
ERBEETHD., BROREIREELEBERRETFUNOBERIIE> TEHL., LENHRONE
WEBOBEGETEIZL > THEINTNE 2D, TORTICIIHTBEFNFIENLETH D,
REED —MEASOE, EEHN EOLTOMET QTL DFEZLEICLVRETHFIETH
53] LML, QTL ORIIF/ICH D ZENTERNWZD, FRERETD QTL D EMED
HASDLRICH L TREZTI OTRENTIT RS, IBRHLZRRIENVDETHD. £, €
FINZE VAT QTL OEITX L TARFINT 4 — %8BT 20D, RERE I L EY/RREEE
DELELHD, ARETIE, F, EMEBEAREEN EXRIZ. EHE % (Akaike's
information criterion, AIC) % SFHRE & 3 2 EEM 7 IV T U X L(genetic algorithm, GA) & W T,
B’ QTL BTV 2 RIRT 2 FEERET 2.

2 BERQILDERETIEALE
—RUBBEHETN DD ET. HDEMBEROXRREE ¥ NAOL I ILRI N5,

M
Y=p+3¥g, +e
m=1
IIT pRBBEFEICESAVERTH S, e IREHRIZLIEETHOEH O FH—E
DERSHICHKED EHETS. MIZQTLDET, g, (m=1,2,, M) EmBEEHD QTL DiEfx
MRTH D, BEOLD QTL MICEEFHAMENER (epistasis) ZE VDD EL TINS,
HEPERIZK > THMROBERMEED ZENEBRED T, 2 DOMRHAEIKL TH
SNBHEERERHVWTREZTY. RLEFOHE, MED QTL IZXMT2LE L AL TFOX
IIFELENS.

N 3 N
L=HE{PM ‘9; ( Z B )}

j=1 k=1 m=1
ZIT. NI R BEHEOKT. Pt BE (=12, N) O FEED m 8 (m=12,M O
QTL A%, BT — D —OBETFRIZZVWLTAEE (=1,2,3") ORB/NY— 134T 5
FUEDEHRTHD. ORI QTL EX—N—DMENSHBMIZL > TROENS, ¢,
I QTL B FREIZH T 2 EBMNEEDOERHMSMTH . RO K S IZ 2R EDERAIZER S
MERETDHOTUTOLIITEREND,

2
¢j(G)= 1 exp{ (y, u:G) }
\/2p0'2 20
ZIZTolIIRESHTHY., guildmBED QTL BNk ZHODBE/NY — TN THEED
BEIRTHS.

MROERAZIEDONERBREY TRERERO TV 1 000 B MRS, HE. Bi
PNEALTWSTHA 2T AETER» S BERIC N, BEBEL THEKRET 2, 20
BREAEBT N, (N-1) [ 2 O 2T, RE I Ny @R FIEFERS, 20X M
O QTL IZxT B LE LIZLITOL D125,
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Np Mo h%u) N [ 4 Mo,
L= {4’1' (M‘E,gm.i )}x IT I E(P;k X¢j( Zlg,,,‘,‘))
i =1yt k=t m=

i=1
ZZTC, g ki &FEH (=12,N,) DBEED m FH (m=12, M) O QTL DELEZNET.
P tdj BE (=1,2,Ne)) D F {EIKD QTL 2% Bt~ — 7 — O#a FARUZZZ WL T A& H (=12,
e 4 DB — LT BEEDERRTHD, DO EEOREBEIRTH S,

3 GAIWEBKBIRERE AICITXDRFINT 14—

QTL D EMEARETIUEL, TOREELEICE > TS 2 Z EMAETH D, £ T,
TEEZBRRIZTS QTL DR EMEDOHA GO ZHEEM T IV 1) XL (genetic algorithm, GA)
ko THETS, SEERETLE GA TiE, GA BERETHIE QTL OREMNETH S, MED
QTL 2dp B &, Ziud 2m+1 HDER DL, M, (c,l), (cnh) ... (ewly) THODHSIND, T
ZT cm m=12,M) 1 d m BBEHD QTL DHEHET HRBEOESTHV . ,id m FHD QTL
DOYEIE ¢, LTORBETH B, [,1L. REK o, DHENS DOIERE (M) IZE->TEEND, &
D GA BETRIZHT % GA BISEIZIZ, 26D MO QTL IZHT 2 LEE NS0, QTL
DEELBRWVIBIC I -ZA M ERIETHZEEMZ D720, BEREHYE (AI0) 2HANVWE &
2k, QTL BT RFILT 1+ — &R T,

GA fitness=—2In L +2(/NT XA —% ¥)

ZDEST GA EEOEMAZIZUDIZ T >4 LITER L., BISEIZ Uik & K8l & RARE
BEBOERELTHE GAEARZERL. LD EWEEZRED QTL O ELMEOHAGDOEZE
BHRT S, THTIE, BREIECT2 D0 GAEKERDHIL. TN5D GA Bz FRIZE
FND QTL DALEMN S, EAEAIZ QTL DMEZBERL T, H LW GA EEHEDELETFHEER
T5, £/r, BRLERTIE, GABGTRIZEZEEND QTL DNEEBIEAICLETS, N
2. QTL HOBEA SO RIFERERE, QTL DMEZHITNITSTATO/NMEREREZL &
bbb,
4 GAIZKBEN-ERERMEREESEDORE

TIal—ialltho THERLAEMZHWT, SEIEAKHET QTL MHERETTL.
WROFHEEDEKHITo . ERICHWEEADOT— I —BETFRT—4% & QTL B TET
— %13, Haldane DETFIIVIZEDNWT, BETFEMTHFENENWSOE L TEKLZ. BHF
HOXEBRAUEIL. B QTL EFINICEDE ERDMITEDAME L TEMRL . TORR. HF 4
IREMEDH E T, GA KD stepwise FRFR[2]%° Bayes HEE[4][5]K D BN /2 KEIRRIMEREZ R
Lize —F. BHOBMBEORTEIINELWEETHD. BESEFTIE. QTL HTOEEKIZE
RIEEEZbDORMERIKLEREEZITO ZETH D7D, FRFA ITELER liberal ZRBETH D
AIC ZEER UM, KD conservative 78, Permutation Test[1]"°HE #Eat B D 701 DIUTEIB)IT K
S THEZKRDDFEDLIEONTNS, BHO QTL 2& S HEITIT. MEELRVROI >
rO—)L EEFEAROEBOM S ARMERNDY, B ATIREDOFEDREE TR,

B3 R
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[5] Stephens, D. A. and Fisch, R. D. (1998) Biometrics 54: 1334-1347

—789—



Approximately unbiased tests of regions using
multistep-multiscale bootstrap resampling

Hidetoshi Shimodaira
The Institute of Statistical Mathematics shimo@ism.ac.jp

1 Introduction

We consider a function taking 0/1-value, denoted Ho(X,), of data X, = {z1,...,z.}.
(Ex. 1) Ho(Xn) =1if T = (1 4 --- + ) /n <0, and Ho(X,) = 0 otherwise. (Ex. 2) Ho(X,) =1
if {rabbit, mouse} clade is supported by a cluster analysis of mammalian DNA sequences, and
Ho(X,) = 0 otherwise. Let Hp(Xs) be the limiting value of Ho(X,) as n — o0, and Ho(Xs)
is assumed to be what we want know here. However, observing Hp(X,) = 0 may not necessarily
imply Ho(Xx) = 0, since randomness of the data X, leads to randomness of Hy(X,,). There-
fore we consider a hypothesis testing of the null hypothesis Hyo(X.) = 1 against the alternative
Hp(Xs) =0, and decide Ho(Xs) = 0 when the null hypothesis is rejected. The p-value, denoted

&(Xn), of the test takes a real-value between 0 and 1, such that

Pr{a(X,) < a} <o, Ho(X.)=1, and (1)
Pr{a(X,) < a} >a, Hy(Xx)=0 (2)

hold at least approximately.

In practice, Ho(X») is given as a procedure (computer software), and its analytical expression
is hard to obtain. Our p-value calculation described below works perfectly even in such a case.
Our method accesses the data only through the function Ho(X,) and resampling of A,,. The same
feature is shared by the naive bootstrap and the double bootstrap. The advantage of our method
is that it achieves the same asymptotic order of accuracy as the double bootstrap (third-order
accurate), yet it requires only the same order of computation as the naive bootstrap (linear in the

number of replicates).

2 Multistep-Multiscale Bootstrap Resampling

Let X, = {z},...,z;,,} be a replicate dataset obtained by resampling n, elements with re-
placement from the data X, = {z1,...,z,} of sample size n. Usually ny = n, but we reserve the
generality of using any value for n;. Let A3Y = {z}*,...,z}:} be a replicate dataset obtained

by resampling ny elements with replacement from the replicate Ay, - We repeat this step again,
and X;r* = {z1**,..., 232"} is a replicate obtained by resampling nj elements with replacement
from A}, Let (ngk),ngk),ngk)), k =1,...,K be K combinations of (ny,ns,n3). For each com-
bination, (&5, Xy, X;r*) is repeatedly generated B®) times; Cl(k) is the observed frequency of
Ho(%7,) = 1, C{) is that of Ho(X) = 1, and C§¥) is that of Ho(X:*) = 1. The total number
of replicates is 3 Zi;l B®)| rather than Z,};l (B())3,

Each Cék) is binomially distributed, and the limiting value as B*) — oo is denoted by
Cg(,k)/B(k) — rrg(n/ngk),n/ngk),n/ngk)). vrl(n/ngk)) and ﬂg(n/ngk),n/ngk)) are similarly defined.

These functions 7;(-) are related to the p-value as described below.
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3 Approximately Unbiased Tests

Let us assume the existence of unknown smooth transformation y = f(X,) such that p-
dimensional random vector y = (y1, ..., yp) belongs to the exponential family y ~ exp(6'y; —(0) —
h(y)). Using the expectation parameter 7; = 8y /96", the region of Ho(Xo) = 1 is assumed to be
expressed as Ho = {n = (n1,...,1p) | 7p < —d%n,n, — e®*°n.memc}, where the indices a, b, ¢ run
through 1,...,p— 1. Without loss of generality we assume the potential ¢(n) = maxp{0'n; — ¢(0)}
satisfies A¢/0n;lo = 0, 9%¢/On;On;jlo = &;; and the observed data is y = (0,...,0,). Then the

following holds with error O(n=3/2).
my(ri, 73, 73) = 1- ‘D{"/lTl (1 +v3T2 + 4v3T5 + 75 T3 + v6T4)
—(NT) 7 (v2 + vaTe + TVTS + T + 37T + 3v61h) }, (3)

where T} = (1£ +72 +72)"Y2, Ty = (23 + 1372 + 1278)TE, Ts = (rRrdr2 + o2+ i (v +72)) T,

and Ty = (727272)TP. The coefficients 71, ..., vs are defined geometrically by

M o= A+ %)\2¢ppp + )\3{_%¢amﬂ¢aw _ Tl_g(qf,ppp)Z + %(ppppp},

vy = )\{_daa — équpp} + )\Q{dabdab _ %daaqupp + %¢app¢app + 715(¢ppp)2 _ 21_4(]510171717},
Y3 = _%)\Qgppp + /\2{%(/)app¢app + %(qbppp)Z . .é_d,pppp},

ya o= )\2{_dab¢abp + %daaqupp + %qsabpqsabp + %¢app¢app + %(¢ppp)2 _ zliqywpp _ éwnpp},

5 = )\2{—§¢>“m’¢“”p _ %(gf)ppp)Z + 11_2¢pppp}) V6 = )\2{_%¢aw¢aw _ _é_((pppp)? + ilzquppp}’

where ¢U% = 03¢ /0n,0m;0mklo, ¢ = 8¢/ 0n:0m;OmkOmilo.

Since A = O(1), d®® = O(n~1/2), ¢¥% = O(n~Y?), $"* = O(n~1), the coefficients are y; =
O(1), y2,73 = O(n~Y?), 74,75, = O(n~1!). The coefficients 71, ...,7s are estimated by fitting
n3(rZ, 72, 72) to C’ék), k = 1,...,K obtained by the multistep-multiscale bootstrap. Using the

coefficients, we can calculate the p-value
A(y) =1-@ 1 42 ! 2/2 4
a(y) = ’71( + 73 + ’73+’)’6)+71 (’Yz+73/ + v+ 7)) (4)

which satisfies (1) and (2) with error O(n~3/2). We also obtain some information from (1) =
m3(72,0,0) = 1 — ®(n/n1 = (y2/m)71), m2(78,72) = m3(72,72,0). For example, v1,72,73 are
estimated from C’ék) so that the p-value is calculated with error O(n~!). When y is normally
distributed, y3 = --- = 76 = 0 and thus the p-value is calculated with error O(n~%2) from C'fk).
In the normal case, the results of [1] and [2] lead to 7r1(7'12) and &(y), and the onestep-mutiscale

bootstrap is proposed in [3]; the computer software [4] is available from the author.

Bibliography [1] EFron, B. (1985). Bootstrap confidence intervals for a class of paramet-
ric problems. Biometrika 72, 45-58.  [2] EFRON, B. AND TIBSHIRANI, R. (1998). The problem
of regions. Ann. Statist. 26, 1687-1718.  [3] SHIMODAIRA, H. (2000). Another calculation of
the p-value for the problem of regions using the scaled bootstrap resamplings. Technical Report
No. 2000-35, Stanford University.  [4] SHIMODAIRA, H. AND HASEGAwa, M. (2001). CON-
SEL: for assessing the confidence of phylogenetic tree selection. Brioinformatics 17, 1246-1247.
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Large Deviation Approximation of Multivariate Distributions

BIR=BE R - [EHER

Xi(i=1,--,n,--)Piid Ep- ~7 MEREHTHDLLE
XHZZXi/TL
=]
P(Xy 2 x) = Qn(x)
OEEEEEZ5. X; D mgf

M(@)=FE [exp(B’Xl)]

PERT L O DFERESDRES L ERZSND & &, KIREDUNTEIZRS.

1) X; O5AAERREERE f(x) ZFFo L &, IEM SR
p(x|6) = M(0)7 e’ f(z)
REHRTD. Xn OBEBEE p,(2]0) LRTL
pa(z|0) = M(0) "™ ® fu(z)  (fa() = pa(|0))

ERRBMPDB
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X, ORI,
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ERBMD
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L2 nb

tvlv—‘

fulz) = (27)" EnE D1(6)"e 0= |K;;(6)| (1 +0 (i))

LR, BROBRLAETHE (ZOZLFENTHL). RKiZy>0ELT

I (:I: + 2) :(271-)“%ngj\{(é)ne—né’w—é’y

. n
X M(9A+:LE> M) e itE—it'y/n gy
n
=(2m) " EnE M) e K ;(0)" 2
1 1
X <1+—ny+—y’Ay+O< 2)>
2 0

Iri 1 Aj 1
e I NCO N P ol W ol oY
Hei n ; n? 91'9]' n?

D X, ODHHNERDH THD & &, 2t Mill's ratio DZIRITT~DILREFKT.
NX, DHFIRETFEST (X = 0,41, ) DE X, AEELY, = Y0, X; &+

p(Yn = y) = (271-)'?]\/[(0)716—9’3; M(e + I,t)n ]\I(e) n —it’ ydt

7o, Ki(0) = y/n TO BEHTIUE
P¥, = y) = m) @) k@) (140 (3))

P(Y,=y+z)=P(Y, =y)e ¥ (1 +0 ( )
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Distributional and Related Problems on the Complex Matrix Spaces
FNIK - THFE FUEEF

1 Introduction

Let S, and Rm,p be the spaces of m x m Hermitian matrices and of m X p complex rectangular

matrices, respectively, that is,

S = {S = S1 +iS2, with S; m x m symmetric and S, m x m skew — symmetric}

and
Rm,p ={Z = Z, +iZ,, with Z) and Z; m x p real rectangular matrices}.

The statistics on S, and Rm,,, are of great use in Statistics, in particular, in time series analysis. This
paper is concerned with some results on (i) complex matrix analysis, (ii) complex matrix-variate
normal distributions defined on S, and R p, and (iii) complex-Hermite polynomials associated
with these complex matrix-variate normal distributions.

Some applications are presented to asymptotic distribution theory, defining certain exponential
distributions on the complex Stiefel and Grassmann manifolds, in use of the theoretical results,

especially Rodrigues formulae.

Some of the recent results on the complex normal and Wishart distributions are given by Ander-
sen et al. [1]. Chikuse gives discussions of the real spaces [2, 4, 5] for the fundamental distribution
theory and [3, 6] for the asymptotic distribution theory.

2 Complex Matrix-Variate Normal Distributions

2.1 Complex Normal Nmm(O,Im) Distribution on §m

The complex normal Ny,m(0, I,) distribution defined on S, has the probability density

@™ (S) = 7~ Petr(-S2) (2.1)
with respect to the Lebesgue measure (dS) = (dS;)(dS,), having the characteristic function E
etr(iTS) = etr(—3T?) for T € S,a- The general normal N,,,(0,%) distribution is defined by
S = £Y2VEY/? with V being distributed as normal Ny (0, Irn), for £ € S the space of m x m
positive definite Hermitian matrices.

2.2 Complex Normal Ny, (0,1, ® I,) Distribution on Ry,

An m x p matrix Z € Ry, is said to have the complex normal Ny, (0, I, ® I,,) distribution
if the probability density is given by ©(™P)(Z) = 7~™Petr(—Z*Z), with respect to the Lebesgue
measure (dZ) = (dZ1)(dZz) (see [1]). The general normal N, ,(0,L; ® £) distribution is defined
by Z = 2;/2),2;/2 with Y being distributed as normal Nn (0, In ® I)), for £, € S and £, € St.
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3 Associated Complex-Hermite Polynomials

3.1 Complex-Hermite Polynomials on S,

We may define the complex-Hermite polynomials flﬁ‘m) (S) associated with the normal Ny, (0, Im)
distribution, having the generating function

Z y — CA(I im)(S)C’,\(T) = /O - etr(SH*TH — %Tz)[dH},

1=0 AH

where &y (T') complex zonal polynomials in T € S,,, with ordered partitions A + { of an integer I, A =
(i, lm)yli 2+ 2 1m > 0,22, 1; =1, and [dH] the normalized invariant measure on the unitary
group O(m) = {H; H*H = I,,}. We obtain the Fourier transform, Rodrigues formulae [differential
and integral versions (inverse Fourier transform)], H (m)(S)(,o("‘)(S) CA(—lBS)tp("‘)(S), and series
expansion for H (m )(S )- Use is made of the discussion of differential operators and Taylor expansions.
The normal density (2.1) and the associated polynomials H im)(S) can be defined as certain limits
of the complex-Wishart density and associated complex-Laguerre polynomials.

3.2 Complex-Hermite Polynomials on Rm,p

We can proceed a similar discussion of the complex-Hermite polynomials H i""” )(Z) associated
with the normal ]\7,,,,,,(0,Im ® I,) distribution, including the close relationship with the complex-
Laguerre polynomials.
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Gassiat inequalities and some new results for singular models.
(Abstract)

Didier Dacunha-Castelle Paris-Sud University

We give a global and simplify approach to test the order of a non-identifiable model using
L.R.T or to identify this order using penalized likelihood. Then we these results to popular or new
examples.

Let a family (fa)eer of densities, I" being the set of parameters in R* and let I'y the set of true
and unknown values of 8 and f, the true density. The singularity comes from the fact that I'y is not
a singleton and we are interested in situations as  tends to I'; and in the behavior of the likelihood

or related functions.The more usual case isI' = Upep ', with a partial order on P and to test p < ¢
using LRT or to estimate p using penalized likelihood.

There are mainly to linked approaches. The first one, introduced by Dacunha-Castelle and
Gassiat, uses a functional reparametrization using the set D of directionnal scores defined as

5 .. — So—folfe
L2(fdv) limits for 0 tends to I'g of 59 = ool o

D is included in the sphere of L2, we call locally conic parametrization (LCP).The other
approach is to find suitable expansions of the likelihood using specific distances as Hellinger or
Pearson one,it is for instance the work of Liu and Shao. Using Gassiat powerful inequalities on the
likelihood, and starting from the LCP, we get a nice expansion of the likelihood under natural
hypothesis and make synthesis between the two approaches .

Gassiat inequalities. Let s, = 7 :_‘J{/;f“ the norm being that of L*(fdv) and let In(g)

log-likelihood of the of the iid random variables X;..X,, when is their density. Let
(s¢)- = —min(0, s,)
PIHEILO)

Inequality 1 SUP geGiin(g)-In(z0 |€ = AIf1l, < 28upgec W
l Sg =z i

Inequality 2

()

supgec(in(g) — In(H)) < Lsuppec “Si———
pgec(in(g) —In(f)) < 5 supgec S

Let now G be a set of densities and S = (s,;g € G) . Let Hy» the entropy with bracketing of
S with respect to the norm of L(fi) and suppose j :} JHp2(u) du < o0 s0 S is a Donsker class. Let
D as previously defined by d € D iff it exists a sequence g, such that ||g» — fo/fo | ;2(4,) — 0 and
ld = s, 1)~ 0

Theorem (Gassiat) Under the previous hypothesis

supgec(in(g) — In(f) = +supp(max(- 3" d(X:);0) +o0p(1)

From this result we obtain the classical limit theorem with for limit

supp, (max(W(d);0)* where W is a centered gaussian field with the scalar product in L*(fov)
as covariance.

Now we can applied this theorem in many situations, the main point being to generalize
Gassiat inequalities and entropy estimates to more general situations than iid random variables.

Let us recall some examples studied in our group.

Order of finite Mixtures : Dacunha-Castelle and Gassiat

Mixtures with Markov regime : order estimation Gassiat and LRT Gassiat and Keribin

ARMA processes : order estimation and LRT:Dacunha-Castelle and Gassiat

A different situation is that of segmented regression models in Fedder sense.

Let F = (f(6,1);6 € ©) a set of functions on [0, 1 ]and g a density of probability. Let

X = Z’l’ f0;,D11i.4() +&; be a segmented regression model with €; sequence of iid

random variables with density g and f{(6;,1) € F. The parameters are the order p the 8, ’s and the
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break points t;.

The model is clearly singular even, and it is and interesting case, if we suppose that
>V 8,111, (1) is a continuous function (note for instance in the case we want to test p=1
against p=2 the paper played by t;, = O or t, = 1. For simple hypothesis on F we can apply the
previous scheme of proof, after extension of the various ingredients to this case of independent
variables with the same density after a suitable translation (depending on j).
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Likelihood Ratio of Unidentifiable Models and
Multilayer Neural Networks

Kenji Fukumizu
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I discuss the asymptotic behavior of MLE under the condition that the
true parameter is unidentifiable such as mixture models, ARMA, RRR, and
neural networks. If the set of true parameters is of dimension larger than
zero, the Fisher information matrix at a true parameter is singular, and the
standard asymptotic normality is no longer satisfied.

Let S = {f(%;0) | 6 € O} be a statistical model, and Z1,...,Z;, ii.d.
sample from the true probability density fo € S. I discuss on the asymptotic
order of the likelihood ratio (LLR) test statistics of MLE,

suppeo Ln(6), where L,(8) =37 ,log ff(?(z%o)l, (1)
as the sample-size n goes to infinity. This work focuses on divergence of
LR in locally conic models (Dacunha-Castelle and Gassiat 1997), which
formulate the unidentifiability of true parameters.

Locally conic models and divergence of LR

Let 4g be a (d—1)-dimensional differentiable manifold, and © a submanifold
in Ay x R>p. The parameter 6 € O is decomposed as § = (¢, 3) for a € Ay
and 3 € Rxq. The statistical model S is called locally conic at fo if [1] ©
includes @ := Ao x {0}, and the set of the parameters to give fy is Oy,
[2] for each a € Ay, the set O(a) := {8 € Ryy | (o, 8) € O} is a closed
interval with open interior, and [3] for each «, \ d—% log f(2;¢,0) l

L2 L
Intuitively, a locally conic model S is a union of one-dimensional sm(x{());riodels
So = {f(z:e,8) | B € O(a)}.

Under the assumptions of asymptotic normality for each S,, the LR in
the model S can be decomposed into (Dacunha-Castelle and Gassiat 1997)

suppeo Ln(8) = swacao{ H{ gz i va(Z0)4 Y +0p(1)}, (@)

where v, (2) = 5‘% log f(2; (@, 0)) is a unit tangent vector along S,. 1f we can
find an arbitrary number of almost uncorrelated tangent vectors, the limiting
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distributions of —= Zz 1 Va(Zi) are almost independent Gaussian variables
and tle supremum is arbitrarily large. Generalizing this idea of Hartigan
on a Gaussian mixture model (Ilartigan 1983), we have the following useful
suflicient condition of LR divergence;

Theorem 1. Assume S = {f(z; (o, 3))} is locally conic at fo € S, and
for each o C 4o the submodel Sa = {f(z;0,08) | 3} satisfies asymptotic
normalitJ If there exists a sequence {vn}32, in the set of unit scores
{d‘ log f(z; (2, 0)) | @ € Ao} such that v, — 0 in probability, then, for
avbn‘mrJ \[ > 0, we have

limy, 00 Prob (sup(aﬁ) L,(x,B) < M> =0. (3)

Asymptotic order of LR in multilayer perceptrons

Another main result is the asymptotic order of LR for the multi-layer neural
network model, which is defined by regression using the function family

w(z;0) = ZJH=1 bj tanh(ajz + ¢j) + d, (4)

where x € R and 8 = (a1, b1,c¢1,... a1, b5, ¢, d) € R3THL | assume a law
Q = q(z)pug for input sample, and a conditional probability density function

r(y | u) for a noise model. The statistical model is defined by f(x,y;0) =

r(yle(x;6))g(x). Asample is given by the true density r(y|eo(z))g(z) for the
true function oo (). Tt is casy to sce that the true parameter is unidentifiable
if the true function is given by a network with a smaller number of hidden
units than H. We can introduce a locally conic parameterization in this
unidentifiability, and show divergence of LR as follows;

Theorem 2. Assume that the model is the multilayer perceptron with H
hidden units, and the true function is given by a network with K hidden
units for K < H. Under some regularity conditions on the noise model
r(ylw), for arbitrary M > 0, we have

limy,, -y 00 Prob(sup(aﬁ) Ln(e, B) < ;\,[> = 0. (9)

If there are at least two redundant hidden units to realize the true function,
we can derive a lower bound of the order of LR.

Theorem 3. Assume that the model is the multilayer perceptrons with H
hidden units, and the true function is given by a network with K hidden
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units for K < H — 2. Under some regularity conditions on the noise model
r(y|u), there exists § > 0 such that

liminf, o Prob(supy L, (8) > dlogn) > 0. (6)

If the noise model is Gaussian, we have logn upper bound for a wide
class of regressors.

Theorem 4. Assume that the VC dimension of a function class F is finite,
and the true function po € F is bounded. Then, for the statistical model

{Fl@,ysp) = F=exp{—2(y — p(x))?}q(x) | ¢ € F}, we have
V2r

n

f(X5, Y5 0) -

sup » log —————"5 = 0Op(logn). (7)

wef; f( X3, Y55 90) P

From the above two theorems, we know that LR of the multilayer percep-

tron model is of exactly order logn, if the model has at least two redundant
hidden units to realize the true function and the noise is Gaussian.

Most of the results presented here are completely shown in Fukumizu
(2001) (http://www.ism.ac.jp/~fukumizu/papers/memo780.pdf).

References

Dacunha-Castelle, D. and E. Gassiat (1997). Testing in locally conic mod-
els and application to mixture models. ESAIM Probability and Statis-
tics 1, 285-317.

Fukumizu, K. (2001). Likelihood ratio of unidentitable models and multi-
layer neural networks. Research memorandum, Institute of Statistical
Mathematics.

Hartigan, J. A. (1983). A failure of likelihood asymptotics for normal
mixtures. In Proceedings of DBerkeley Conference in Honor of Jerzy
Neyman and Jack Kiefer, pp. 807-810.

—800—



R MAHES L URERIVEM S OFRIR
AR LERY EOER

1 iz

FERB qz) 2FOBELER X 260 n HOMY LYY T vE X" = (X1, Xo, -+, Xn) &
£, d RESHEORSES W %57 A —FBEELTHED/T A M v 7 EFL p(z|w)
(we W) X BHFETMEROMEEEZ 5, FIZwe p(w) P11 T &, FESGER
HETETF IV EWD, ANy JIEREY
H@O:/ﬁ@b%éﬁﬂz

E§5h, Hw)=0 Zifi/z3 /37 2A—% (EDNXTA—%) OEEWRLERFILV) LD
EE, FEINHEBIOBENED X ) (2 AP RBROMBETH S5, ZOMEIL, REEBRSH
RO A D, HARPSIRENRNTRZ WES 2 FOMERET IV CRULTENLLIMETD
D, HFIZ, %%%ﬂ%féménfméﬁ%&%L%%Oﬁ EFVIZBWTEIT TIEERL R
WHIETH S, ZORETIE, " ZEOHABEOEERICOVWT—HRNBEL 52, 20F
BUHDLERN LB ETEZ S,

2 ANA XHA

T R — 5 ERIZEFA p(w) Db b LT e IRANLELNEBERIMME pw]X7) &L, <
A XFWFH%E p(z|X™) = [p(z|w)p(w| X dw &F 5, N4 AHERIZBVTIE, FBROEM S
(& 4 7 M BRED 5 KE)
P(X") = ~log [ [] pXitw)p(w)du
i=1

RO IETEERBREERIT, (1) N AFRBER, BROBEHSOBGIIFLY, T4
bbb, —logp(Xnp1]X™) = F(X™) — F(X™) $5B0D LD, (2) A XETFVERIT, FERHE
BESERMITEIEILENITbNRAE, (3) N4 /78—/8TF A — ¥ IIREFRMEH S ORAMEIZE D
BEfLSND, £ TRENRESIOINENZL2IVERAL LI

3 BE

KBEDFEETHIIARDBEY TH 5,

TH 1 A0Sy ZIERE Hw) 75w ORFEE TS5 01F (X0 BHCE. BRRIKESR
BOMIMTHILICED), HERBEESIZ n— o0 TROLIITHERMTE 2,

F(X™) = S(X™ + Alogn — (m — 1) loglogn + R(X™) (1)
ZITS(XM) =~ logg(X;) REEBRIYPIE-THN, A & m ZE-IHH
7@) = [ Hw)ew)

—801—



DR BIHED N2 VW E 2O TH o & oT J(z) RAHEEFE ETEETE 5 AR
BC. ZORBIETRCEOEERTH b, 77 R(X™) 1. EO/1T A — ¥ &0 EOERBRE
DERE LTRLNDH Y ABEORS TE SN HRERIERIGET 5.

IO L OFEEIR, FRAREER (KIS Lo GEFH SN e L (Atyah,1970) O BEHLH R
ThIYPTV) ZESVWT H(w) =0 DFERSEFHEL, ¥— yBERZE L TERIEMES
REBRTET I LI o TiFbA, Mk m it Hw)=0 DHEABEEZHLIZLTRDL
N5, BESOBEILTHEET I, ZORRIERTHD I LHPR %, L Ladh
J(z) D—#OE -N &, 7O-=T v 7L o TRDBZENTE, —A PERLEHED NS
BTHLIEDPL, ASN FEVILODT, LREBLIILBEHTHSD, —#IZ1<m<d
BN LB, b LL, BRSMAED/IT A—F ETOTRIFNL, 0< X< d/2 FHD LD,
Jeffreys BRIOAIZED/ST A—5 ETOII% D, —f%IZ A< d/2 25D LD,

4 EE

DEDMBICHEEL T, $HBOBELBRD, (1) REAEHERIMFIFETIIOHASIN/Z L
NhV, KBRETHEREREOEMEY. L VS (OFICITEBZZ DI RBERTE AV 2
VEBADE NG, (2) EME~OLATIE. EOBERBBIIMAET VICEELREIATY
v, ZOBEIETAREYEHEAT L, 3) N & milownTid, BA¥WLERESFLHZ L
HTEBH. RX™) BRZAATH S, THICRMENLBRE 52 2, (4) Jeffreys DHER
SHE, BEEFVOEFVERICBVWTERTHS ERDONEH, A=d/2 LB bLRVWIRETE
FNOHFIET %o Jeffreys DEFHA LD &, B LFEMOMIFET 2 D255 »s (5) K
B CCITRERABME S OB E 5 2 720, MM ST BANIET AT VT 0% 5
R TiE RV, N7 A PREREREZFOGEIIBVTEMN L R HAHEFRETRLT 2,

5 iR

BESTEOFFEFTVONRS TR A2ENERT MO THIIL, €KL - T,
BT & EETE L PSEEMICE T, EREEL CORBE CEEICHEMLERE T VOR
HEFI 7DDV E DORBESHER I N,

EPEIN

o

Atiyah, M. F. (1970). Resolution of Singularities and Division of Distributions. Communica-
tions of Pure and Applied Mathematics , 13, 145-150.

Watanabe, S. (2001). Algebraic analysis for non-identifiable learning machines. Neural Com-
putation, Vol.13,No.4, 899-933.

—802—



	0767.tif
	0768.tif
	0769.tif
	0770.tif
	0771.tif
	0772.tif
	0773.tif
	0774.tif
	0775.tif
	0776.tif
	0777.tif
	0778.tif
	0779.tif
	0780.tif
	0781.tif
	0782.tif
	0783.tif
	0784.tif
	0785.tif
	0786.tif
	0787.tif
	0788.tif
	0789.tif
	0790.tif
	0791.tif
	0792.tif
	0793.tif
	0794.tif
	0795.tif
	0796.tif
	0797.tif
	0798.tif
	0799.tif
	0800.tif
	0801.tif
	0802.tif

