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Semiparametric Estimation in Copula Models

Hideatsu Tsukahara
Department of Economics, Seijo University

Introduction. Let X* = (X¥,... X%), k=1,... ,n be independently and identically distributed random
vectors with d-dimensional contmuous distribution function F' = Cp(Fy,...,Fy), where Cp is a copula and
6 = (01,... ,0n) is an m-dimensional parameter. We consider two estimators based on the empirical copula:

rank approximate M-estimator and minimum distance estimator. The large sample properties of these estimators
can be derived from asymptotic results on the empirical copula.

Asymptotics for the empirical copula. Let & = (¢¥,... ,¢%), k = 1,... ,n be independently and
identically distributed random vectors with distribution function C which is a copula. Set

1 1
s é.
Gn(u) = E;l{gfsuh-“,f:fud}’ ni ’LL1 = T_T:kZ (e <u}

Then the empirical copula is defined by
Cn(u) £ Ga(Gy] (W), , G (ua))-
The empirical process US and the empirical copula process DS, both associated with C, are defined by
Uz (u) £ V(G (u) - C(u), DF(u) & VR(Cn(u) - C(u)).

We then have the following asymptotic representation:

d
DF (u) = UZ(u) — D C*(w)UF (L, u;, 1) + Ru(u),

i=1

where C*(u) = 6;:15? , 1=1,...,d and sup, [R,(u)] = op(1) as n — oo.

We can also prove the following maximal inequality: There exist positive constants K, and Ks, not depending
on C, such that

P(sup [DS (u)| > r) < Kle'K2T2, >0,

foralln=1,2,....

Also, under certain regularity conditions on ¢, it holds that

/q)dm,? =, /qdec-Fiz:;/qSiUC(l,ui,l)dC

where ¢ = F—’ i=1,...,d, and U® is a C-pinned Brownian sheet. The random variable on the right-hand
side has normal dlStI‘lbuthIl with mean 0 and variance

d .
ar <¢(£) + Z / ¢* () 1{€iSUi} dC(“))

where € ~ C.
Rank Approximate M-estimate. Let X* = (X¥,... X% k=1,...,n be a random sample on Fy =
Co(F1,... ,Fg). The parameter space is © C R™. In this sectlon we suppose that the copula Cy has a density
8¢ Ocg
co and cg is differentiable with respect to 8, and we write ¢g = (5(7%, e B 22,
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Now suppose ¢g: R? — R™ is a function satisfying [ ¢¢(u) dCp(u) = 0. Then any solution 6,, to the equation

Z ¢9 (Fnl(Xf)s s aFnd(XS)) =0
k=1

is called a Rank Approzimate M-estimator.

Let us denote the left-hand side of the above equation by S,(f), then we have S,(8) = [ ¢o(u)dCn(u).
Assume that ¢g(u) = %‘l’éfl(u) (m x m) exists and satisfies certain regularity condltlons. Then one can prove
that, as n — oo, \/77(571 — 9) converges in distribution to a normal distribution with mean 0 and covariance
matrix A;IEBAO_I, where, letting £ ~ Cy,

d
Ag = /¢9 ng, Eg = Var((ﬁo(f) + Z/gﬁg(u}(l{&sm} - ui) ng(U)),
i=1

and ¢h(u) = 6¢9 “) yi=1,...,d.

Minimum Dlstance Estimator. Suppose that the copula associated with the distribution function of
= (XF,...,X%) isin fact D. On the other hand, we have a given parametric family of copulas {Cp: § € O}
to fit the data. Let us define the MD functional T on the space of copulas by

T(D) % arg mgin p(D, Cp).

Here p is a distance between probabilities on [0,1]¢. In the present paper we consider the Cramér-von Mises
distance:

p(C, D) = /[ 0w =D a

As before, let C,, be the empirical copula based on the sample X?!,...,X™. Define b, = T(C,) and call it an
MD estimator.

We can prove differentiability of T" at Cyp under certain regularity conditions: i.e., V8 € ©° and VD in a
p-neighborhood of Cy,

T(D) =6+ / 70(D = Cy) du + o(p(D, Co))

where

vo(u) & [/ 8o6p du] - bo(u)

Thanks to this differentiablility and the maximal inequality for the empirical copula, we can prove two results.
One is a robustness property MD estimator: T, converges locally uniformly to the estimand T'(D) when the
true D is close to Cy. The other one is asymptotic normality of MD estimator in locally uniform sense: under
any sequence D, in a v/n-shrinking neighborhood of Cp,

VA(To —T(Dn)) -5 N(O,Ts)  asn— oo,

where

1=1

d
Tp = var ( / Yo (w) [1{55u} ~2.C (“)1{ei5uf}] d“>
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Monte Carlo Method
for pricing of Bermuda type derivatives

Shigeo Kusuoka
Graduate School of Mathematical Sciences, University of Tokyo

1 Introduction

Let (9, F, {F: }efo,00), P) be a filtered space with the usual condition, and {B,}te(0,00) bE
a d-dimensinal Brownian motion. Let T' > 0, and let o : [0,77] X R? — RP x R? and
b : [0,T] x R? — RP be continuous functions. For each s € [0,T] and z € RP, let
X(t;s,x), t € [s,T] be a solution of the following SDE.

Xt s,z)=z+ /t o(r,X(r;s,z))dB, + /t b(r, X (r;t, x))dr, tels,T]. (1)

We assumne that the above SDE (1) has a path-wise unique solution for every (s,z) €
[0,7] x RP.

Let g : [0,7] x R? — R be a continuous function with suitable conditions. Let N > 2
and let T,,, n =0,1,..., N, be positive numbers such that 0 =To < Ty < ... < Ty =T.
LetS,,n=0,1,..., N, be the set of 7;-stopping times taking value in {Tn, Tn41,--- , In}-
Concerning the pricing of Bermuda type derivatives, we are interested in computing the
following value functions.

vn(z) = sup{E[g(r, X (7;5,2)));7 € Sn}, n=20,1,... ,N‘

Let us define a probability measure p,(z,-) over R? for each n = 0,1,... ,N — 1, and
z € RP by

Pn(7, A) = P(X(Tpir; T, z) € A), for a Borel set A in R?,

and define a operator P,, n=0,1,... ,N —1, by

P = [ $@)onlz. ) = B X T )

for a measurable function f on RP. Then v,, n = N,N —1,...,0, are given inductively
by the following.

un(z) = 9(Tn, ),
Un-1(z) = (Pn19n)(z) V 9(Tn-1, T)-

So the value function vy(z) is easily given mathematically. However, if D is not small, it
is not easy to memorize a function on R”, and so it is not easy to compute vo(z).
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Several people suggest a Monte-Carlo method to compute the value f@ction. In tbis
paper, we discuss and justify the method given by [1]. We assume the following assumption

(A).
(A) D,,n=0,1,...,N—1, are measurable sets in R" such that (P,vn1)(z) = g(Tn,7)
for any z € RP\ D,,.

Remark 1 (1) D, = RP satisfies the assumption (A).
(2) If g(t,z) > 0, for any (t,z) € [0,T] x R, then D, = {z € RP; g(T,,x) > 0} satisfies
the assumption (A).

Now let L, > 1, n = 0,1,... ,N — 1, and X:n,g = { X (m)} g, £ = 1,..., Ly,
n=20,1,...,N —1, are identically independent random vectors whose distribution is the
same as the distribution of {X(17,;0,z)}Y_. Let K, > 1,n=0,1,... ,N — 1, and 9,
k=1,... K, n=0,1,...,N — 1, are functions on R”. Then we define functions H,,
n=N,N—1,...,1,0, on R? inductively by the following.

HN(JI) =1.
When H,41 = {H,}Y_,.,, are given we let
One =min{m > n+ 1; Hp(X,e(m)) >0},  £=1,...L,.

Then we let {@,4}1, be the minimizing point of the function

L, Kn
Fn({a’k}ljc{gl) = '1—-11: ; ‘g(To'n,u Xn,f(an,l)) - ; an"vbn,k(Xn,f(n)) ]21Dn (Xn,e(n))-

Finally we define H,, by

_ g(Tn,m) - EkK:1 &n,kwn,k(:z); T Dn
Ha(e) = { -1, z € RP\ D,.

Then we let
1 &
Vg = L—o Zg(Uo,z, Xo,e(ao,e))-
£=1
We show that

lim lim Bllv(z) - B> A1) = 0.

References

[1] Longstaff, F., and E. Schwartz, Valueing American Options by Simulation: A simple
Least-Squares Approach, The Review of Financial Studies, 14(2001), 113-147
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Diffusions with measurement errors.

A. Gloter * & J. Jacod |

Let X be a 1-dimensional diffusion process on the time interval [0, 1], of the form

dXt = btdt + \/C(@, t,Xt)th, ﬁ(Xo) =T1. (1)

Here W is a standard Brownian motion, and 7 is an arbitrary initial law on IR, and
b is a (non-anticipative) drift term which may depend on the path of X or W. The
nonnegative function ¢ depends on a parameter § which, for simplicity, is assumed to
belong to some (finite or infinite) open interval © of IR. We observe this process at times

i/nfori=0,1,...,n, but each observation is blurred by an error which is centered normal
with variance pp; in other words we observe the variables
Y;‘,ani/n'i' Vaniy 1=0,...,n, (2)

where the U;’s are i.i.d. A(0,1) and independent of the process. Our aim is to estimate
the parameter 6, knowing the noise level p,, and on the basis of the observations (2).

This problem does not seem to have been studied so far, with the exception of a recent
paper by Malyutov and Bayborodin where no attempt towards optimality is made. The
model is a hidden Markov model for which a lot is known, but our situation differs in that
usually hidden Markov chain are homogeneous ergodic and time goes to infinity, while here
the sequence X;/,,% = 0,1,..., has a transition kernel depending on n which degenerates
as n — oo, while no ergodic property is relevant here.

Our results go as follows. The “optimal” rate of convergence u, depends on the
behaviour of the sequence np,: up to taking subsequences it is no real restriction to
assume that np, converges in [0, 00] and, ruling out the totally uninteresting case where
the sequence p,, itself is unbounded, three cases can occur:

Case 1 npp = u=0 : take u, =1/v/n
Case 2  np, »u€ (0,00) : take u, =1/y/n (3)
Case3 np,—>u=00, SUp,pPn <0 : take up = (pn/n)V4.
We also set \
ey if u=0
pul@,y) = { S i 0<u<oo (4)

2 ]
T if u=o0.
*G.R.A.P.E., Université Montesquieu, av. Léon Duguit, 33608 Pessac, France (CNRS UMR 5113)
tLaboratoire de Probabilités et Modeles aléatoires, Université Paris 6, 4 place Jussieu, 75252 Paris,
France (CNRS UMR 7599)

—731—



The first result concerns the case & = 0 and ¢(,t,z) = c(6,t), that is when X; =
J§ /{8, 5) dW,. Our assumptions are, for a given 6:

Hypothesis (H1p) : The function ¢ — ¢(¢,t) is twice differentiable with partial first and
second derivatives denoted by ¢ and ¢, and ¢, ¢ and ¢ are continuous on © x [0, 1]. Further
the function c(d,.) does not vanish, and the function ¢(6,.) is not identically 0.

Hypothesis (H2p) : The function ¢(6,.) does not vanish.

Hypothesis (H3y) : The set F = {s € [0,1] : é(s,0) = 0} is the union of its connected
components with positive length, plus a Borel set with Lebesgue measure equal to 0.
Moreover the function &(6, .) is Holder-continuous with some index a € (0, 1].

Theorem 1. Assume (H1ly). We have the LAN property at point 8 and with the rates u,
given above and the Fisher information

1
160) = [ pu(c(6,5),6(6,9))ds, (5)

in Cases 1 and 2 and also in Case 8 if further we have either (H%) , or (H3) and the
sequence n'~*p,, is bounded (where o appears in (H3g) ).

Next we come back to the general equation (1). The assumptions are as follows:

Hypothesis (HS) : (0,t,z) ~ ¢(0,t,z) is a function from © x [0,1] x IR + (0, 00) which
is twice continuously differentiable in # and once continuously differentiable in ¢, and ¢, ¢
and ¢ are twice continuously differentiable in z and continuous in t; the process b = b:(w)
is optional and locally bounded (locally in time): hence in particular (1) admits a unique
weak solution Fp.

Hypothesis (HI) : (i) For ¢ # 6 we have Pp(c(¢,t, Xt) = ¢(6,t,X;) Vt € [0,1]) = 0.
(ii) We have Py(é(8,t, X¢) = 0Vt € [0,1]) = 0.

The natural extension of (5) is

10) = /0 ' oulc(,5,X.), 66,5, X,))ds. (6)

Theorem 2. Assume (HS), (HI), and also that we are in one of the three cases of
(8). Then we can construct estimators 8, which converge to 6 in Py-probability, and
the sequence %(Gn — 6) converges in law under Py to a variable which can be written as

U//I(6), where U is N(0,1) and independent of I(8) given by (6).

A precise description of the estimators 6, is a bit too complicated to be given here,
but these estimators are indeed “explicit”.
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A E—=R=F 4+ VAT ZMK LI
ERRT v 7OFBET
An Evaluation Method of Counter party Risk
in Interest Rate Swaps

HHE B P ZFz
Kimiaki Aonuma Toshiyuki Nakayama
R ZEGIT SmpEmBRZEE
The Bank of Tokyo-Mitsubishi, Ltd

1. #EE
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F—R—=F 4~ URITEMKR LT TA T - TFADEL RFTHRT v - R
PiardDYRZFHMETNOMENEE LOBERMBE L /2> TWD, Jarrow and
Turnbull (&, BV F—=/=F 4 « VA7 2RNAT L&AV v T OT T4 7 - &F
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Turnbull DL TIL, €FL deterministic THD ERESNT WD, TR LTARE
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2. HIBHZL—LTU—7

AT E— =T 4 ABEERFNC L BFHVR 20, Ho v — —F 4 B
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M) (W(1) 15 EEX, ENICE DT 4V FL—2 3 (G),, %

G, ={AeF;P(4)=0 or P(4)=1}
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NHMY) A7 ESUELED, MERWEP % U A7 \WTHERNE & L3, ZofsfFick
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Application of tube formula to distributional problems

in multiway layouts

WA (S, Kuriki, $atSEERIZEHT - 860 K E A
P 58 (A. Takemura, 8 5UASE KSEBEIE R T8 RAFJERL)

Standard results of matrix theory play a major role in conventional multivariate statistical analysis
or categorical data analysis. In particular when data are summarized as a two-way table, many
methods of data analysis have been based on the singular value decomposition of the data matrix.
However data may not be suminarized as a single matrix. In a factorial design or cross-classification,
data are usually obtained as a multiway layout. Moreover even when data are summarized as a
two-way table, usual matrix theory is not necessarily applicable. For example, in a two-way cross-
classified table with ordinal row and column categories, ordinary matrix methods invariant with
respect to permutations of rows or columns are not suitable.

Recently, an integral geometric method called the tube method has been actively developed. This
method originates from Hotelling [5] and Weyl [16]. Sun [14] showed how the tube method can be
used for deriving distributions of maxima of Gaussian random fields. A closely related technique is
the Euler characteristic method developed mainly by Adler and Worsley. A detailed review of the
Euler characteristic method and its relation to the tube method is given in Adler [1]. The Euler
characteristic method has been extensively used for analyzing brain image data. In Takemura and
Kuriki [15] we have established the equivalence of the two methods using an extended form of the
Morse theorem (see also Kuriki and Takemura [7]).

Initially we have been investigating the coefficients of the %2 distribution appearing in order
restricted inference from geometric viewpoint. Du:ig this investigation we have recognized that
the tube method leads to approximation of the upper tail probability of maximum type statistics in
the form of linear combination of x? distributions, which can be regarded as a generalization of the
%2 distribution. From this view point we applied the tube method to many distributional problems
in conventional multivariate analysis, where matrix theory cannot be applied.

In this talk we review several applications of the tube method to distributional problems in
multiway layouts by the authors [6, 8, 9] and by Ninomiya [11,12]. We give a brief introduction to the
tube method. Then we review four applications of the tube method to the testing problems below:
(i) A test for interaction in three-way layout based on the three-way analogue of the largest singular
value (Boik and Marasinghe [2]). (ii) A test for multivariate normality by searching a nonnormal
direction proposed by Malkovich and Afifi [10]. (iii) Testing independence in ordered categorical
data by maximizing row and column scores under order restriction (Goodman [3], Nishisato and

Arri [13]). (iv) Detecting a change point in two-way layout with ordinal factors (Hirotsu [4]).
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The Asymptotic Expansion Approach to Finance:
Computation of Optimal Portfolio for Investment
and Variance Reduction of Monte Carlo Simulations

Akihiko Takahashi and Nakahiro Yoshida

Graduate School of Mathematical Sciences, University of Tokyo,
3-8-1 Komaba, Meguro-ku, Tokyo 153, Japan.

January 26, 2002

Abstract

We will propose a new computational scheme for the evaluation of the op-
timal portfolio for investment. Our method is based on an extension of the
asymptotic expansion approach which has been recently developed for pric-
ing problems of the contingent claims’ analysis by Kunitomo-Takahashi(1992,
1998,2001), Yoshida(1992), Takahashi(1995,1999) Sorensen and Yoshida(1998)
and Kashiwakura and Yoshida(2001). In particular, we will explicitly derive
a formula of the optimal portfolio associated with maximizing utility from
terminal wealth in a financial market with Markovian coefficients and give a
numerical example for a power utility function. We will also show that our
formula can be used for the variance reduction of the Monte Carlo method
in computation of optimal portfolios.
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1 Summary

We shall propose a new computational scheme for the evaluation of the
optimal portfolios for investment. Our method is based on the asymp-
totic expansion approach, a unified method of efficient computation jus-
tified by Malliavin-Watanabe(1987) theory, which has been recently devel-
oped for pricing problems of the contingent claims’ analysis by Kunitomo-
Takahashi(1992,1995,1998), Yoshida(1992), Takahashi(1995,1999), Kunit-
omo and Kim(1999), Sorensen and Yoshida(1998) and Kashiwakura and
Yoshida(2001). They have developed the method through deriving formulas
for practical examples such as average options, basket options, and options
with stochastic volatility and with stochastic interest rates in a Markovian
setting, as well as bond options(swaptions), average options on interest rates,
and average options on foreign exchange rates with stochastic interest rates
in the Heath-Jarrow-Morton(1992) framework. In this paper, we extend the
method for portfolio problems. In particular, we will explicitly derive the
formula of the optimal portfolio associated with maximizing utility from ter-
minal wealth in a financial market with Markovian coefficients, and give a
numerical example for a power utility function. In general, it is quite difficult
to compute an optimal portfolio explicitly when the investment oppotunity
is stochastic in a multiperiod setting. The stochastic control approach initi-
ated by Merton(1969,1971) gives a solution in terms of the derivatives of the
value function: While the solution can be evaluated numerically based on
the Hamilton-Jacobi-Bellman equation, the implementation is not easy espe-
cially for the case of multiple assets. In the martingale approach initiated by
Karazas et al.(1987) and Cox and Huang(1989), Ocone and Karatzas(1991)
proposed the representation of optimal portfolios by utilizing the Clark for-
mula. Although their representation formulas were derived in general set-
ting, explicit evaluation was obtained only for logarithmic utility functions
or a financial market with deterministic coefficients, which were already
known without their formulas. Starting with the Clark formula, we will
present an explicit expression for the optimal portfolio in a financial market
with Markovian coefficients which is more concrete but practically sufficient
setting. Moreover, we will show that our formula can be used for the variance
reduction of the Monte Carlo method in computation of optimal portfolios.
Our method can be also extended to the optimal portfolios associated with
maximizing utility from both consumption and terminal wealth, and to the
hedging portfolios associated with contingent claims. The organization of
this paper is as follows. In Section 2 we explain the problem of the optimal
portfolio for investment and restate the problem in a Markovian setting.
In Section 3 after explaining basic tools for the asymptotic expansion, we
illustrate our method using a power utility function and derive the second
order scheme explicitly. In Section 4 we also derive the second order scheme
for general utility functions. In Section 5 we give a numerical example. In
Section 6 we propose a new variance reduction menthod of Monte Carlo
simulations for the computation of optimal portfolios. Finally, in Appendix
we show the result of the third order scheme for a power utility function and
discuss the validity of the asymptotic expansion for the numerical example.
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Information geometry of estimators for diffusion processes with

small noise

SEI Tomonari?

Abstract

The second-order efficiency of bias-corrected
estimators for diffusion processes with small
noise is investigated from the viewpoint of in-
formation geometry. A bias-corrected estimator
is second-order efficient if and only if the an-
cillary manifolds are orthogonal to the model
and their embedding m-curvatures vanish. In
particular, the maximum likelihood estimator is
second-order efficient. It is essential that the
statistics appeared in the expansions of estima-
tors have asymptotic normality.

1. Diffusion processes with small noise
and information geometry

Suppose that X¢ = {X; | t € [0,7]} € Crp,
where Cr is the set of continuous functions from
[0,T] to R, is a diffusion process with small noise
parameter ¢ € [0, 1]

dX; = p(X{,u)dt +edW,, X§= o,
where W = {W,} is a l-dimensional standard
Brownian motion, ¢ = pu(-,-) is a smooth func-
tion and wu is a m-dimensional unknown param-
eter in the parameter space U C R™, and the
initial value xp is a counstant independent of wu.
The log likelihood function £, is given by

I/T 1N, - /T 244
iy Ay — —% “al.
2 o £ t e 0 pc

We denote this model by P = {{,(-,u)lu € U}
and introduce some geometrical notations as fol-
lows. See Amari [1] for details about informa-
tion geometry. A tangent space of P at u € U

(e(X,u) =

*Department of Mathematical Engineering and In-
formation Physics, School of Engineering, University of
Tokyo.

IDepartment of Mathematical Informatics, School of
Information Science and Technology, University of Tokyo.

KOMAKI Fumiyasuf

is defined by 7, = span{d,(.(-,u)}, where 9, =

d/ou” for a = 1,---,m. The Fisher information
e

metric g,; and e-, m-connection coefficients Typ..,

n

Tabe on P are defined by

Gup = au[auﬂsé)bﬁc]q
Lo = Eul@0y00.0.],
Ture = Tate + Eu[0ule0y0.0.0],

Since all of these quantities are or-
2 e 9 €
Al
€8uby I'ate = € Tape
m om - o .

and Type = €“Tape. The explicit expressions for
these quantities have been obtained (See Sei and
Komaki [6]). In the following, we use Einstein’s
summadtion convention.

respectively.

der of ¢=2, we put g, =

2. The asymptotic expansion for the

MLE

The maximum likelihood estimator (MLE) @
with respect to an observed process X¢ has an
asymptotic expansion:

~

W o~ w4 eg™yy + P (9”9”;&&%

Im e df ~ ~
—§ch“9wglf‘ypyf> ,

where
g!t = (aa(c:
oo = Dahle — Eu€0a0pL) = TapTes

(g*) is the inverse matrix of (g.) and the sym-
bol >~ means asymptotic equivalence. See Ku-
tovants [5] and Yoshida [7] for the validity of
asymptotic expansions related to the MLE.

Using the expansion and asymptotic normality
of §, and J., we obtain the expansion of the
mean square error (MSE) of the bias-corrected
MLE @*. See Efron [2] and Amari [1] for the
concept of bias correction.

—739—



Proposition 2.1 The MSE of the bias-
corrected MLE is given by

4
et
Ell[(&*a—‘ua)(ﬂ*b-ubn ~ gttt —_ (%,

2
where
oMb = (T 4 2(fp)*,
B = Bty
('I?Ip‘)%b = Moges gacgbe gdf.
Mees = Eulfeales)-

3. The asymptotic expansions for
Fisher-consistent estimators

In this section, we assume that the model P is
a curved exponential family embedded in a full
exponential family & = {£(-,8)} defined by

((X,0) = *(Bsi(X)-¥(b,¢)),
where # is the n-dimensional natural parameter,
s(.X') is the sufficient statistic corresponding to ¢
and ¥(6,¢) is the potential function. The quan-
tityv ¢ plays a role as the dispersion parameter
(Jorgensen [3]). See Kiichler and Sgrensen [4]
for details about curved exponential families of
stochastic processes. This assumption holds if
the drift coefficient is in a linear form.

Let n» be the expectation parameter: n; =
nilu.e) = Eufs;(X°)], which depends on e. We
suppose that the asymptotic normality

7= e Msi(X) =) — N(0.(g:;) (1)

holds.

Let us consider an estimator expressed by
it = T(7), where T is a smooth function from
R" to U. We assume that @ is Fisher consis-
tent, i.e., u® = T°%(n(u,¢€)) holds for all u € U
and €. We define the ancillary manifold A, by
A, = T7'({u}). The notations about the ancil-
lary manifolds follow Amari[1].

The estimator 4 is expanded as

~a

) 2
PO uﬂ+e{a‘1‘“}fn+%{a‘wa}fm-

Here, E)“T”(U‘) (¢ =1,---,m) are interpreted as
vectors normal to the ancillary manifold A,. Tt

can be shown that the estimator @ is first-order
efficient if and only if A, and 7, are asym ptoti-
cally orthogonal, i.e., 3T ~ g a0t

From now on. we assume that @ is first-order
efficient and discuss second-order efficiency of 1.
By using asymptotic normality (1) of 7 and a
relation &'/ T = —AiﬂA"'.A'IIT“la»ya, where 4" =
J'w?, the MSE of the bias-corrected estimator
#* is represented as follows.

Theorem 3.1  The MSE of a bias-corrected
first-order efficient estimator is

Bu[(7 = u)(2 - ub)] ~ ﬁg“"+§mub
where
C¥ = (D) 4 20k )2 4 (Ha)X,
(Ha)2t = If}ﬁ,\“rfzﬁ,ybg““g‘\ﬂ,

m 5 € ) . . Py
and (T)** and (H )‘ab are given in proposition
P,
2.1,

The three terms in 2" are all non-negative
and (Ilalf)z"b and (}e{p)“b are independent of the
estimator. Therefore, & is second-order efficient
if and only if (?{IA):"“’ — 0 as ¢ — 0. The
quantity (ﬁA)Q”‘b means square of the embed-
ding m-curvature of A,. In particular, the bias-
corrected MLE is second-order efficient.
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A flexible class of stochastic volatility models

Michael Sgrensen, Department of Statistics and Operations Research,
University of Copenhagen.

A generalization of the Black-Scholes model for the logarithm of an asset price
dX: = (u+ vo?)dt + ocdW,,

that takes into account the empirical finding that the volatility o2 varies randomly over
time is a stochastic volatility model:

dX; = (p+VV,)dt + /VidWi. (1)

Here the volatility V; is a stochastic process that cannot be observed directly.

We shall in the following be interested in constructing stochastic volatility models
where the volatility process V' is stationary with a given distribution with density f.
First, a diffusion process with linear drift and a marginal distribution with a given density
function f can be obtained as the solution of

dVi = —6(V; — €)dt + \/o(Vi)dB, 2)
where
—6 x
W(@) = 77 ) W= 5wy, 3)

This is, of course, provided that (2) has a weak solution. It is not difficult to see that
v(z) > 0 for all z > 0. Under the condition that there exist positive constants K,C and
e such that f(z) < Kz~ for z < C, we find that [°v(z)f(z)dz < oo and that the
autocorrelation function of V' is p(u) = exp(—6u). The advantage of a diffusion model
with linear drift is that analytically it is relatively tractable. A problem is that it is a
well-established empirical fact that the autocorrelation function of the volatility process
decreases more slowly than a single exponential function. Under relatively weak regularity
conditions, a diffusion model has an exponentially decreasing autocorrelation function. A
sufficient condition is that it is p-mixing. For this reason, stochastic volatility models
with a diffusion volatility process can usually not fit the autocorrelation of the volatility
process well.

In applications where the autocorrelation of the volatility process is important, a
solution is to use the following construction. We construct a volatility process with auto-
correlation function

p(u) = prexp(—01u) + - - + o exp(—Omnu), (4)

where §; > 6y > -+ >0, >0, ¢; >0, and p; + - -+ v, = 1. Again we want a volatility
process with a given marginal distribution. Suppose that this distribution is infinitely
divisible and denote its density function by f and its characteristic function by C(t). Let
fi,i=1,...,m, denote the density of the distribution with characteristic function C(t)¥:.
Define the volatility process as the sum

Vi=V 4 v, (5)
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where

dV¥ = —0; (VY - pi&) dt +/ u(Vi)dBY. (6)
Here B, ..., B(™ are independent standard Wiener processes,

(o) = 5 [ = v o)y

and € is the expectation of f. Note that ¢;€ is the expectation of f;, and that Var(Vt(i)) =
@;Var(V;). The volatility process V' defined in this way has marginal distribution with
density f and autocorrelation function (4).

Example 1. Suppose we want a volatility process with gamma distributed marginals,

lLe.
xn—le—-z/ﬁ

f(x):m’

where k > 0 and 8 > 0. Then f; is the gamma density with parameters x; = @;x and

,Bi = ﬁ, and
av = g, (Vt(“ . wiaﬁ) dt +/286;V,"dBY.

Example 2. Suppose we want a volatility process with inverse Gaussian distributed

marginals, i.e.
1
_ A2 -3 1 A(:c—u)z
)= (5] e (- (25521)).

where A > 0 and g > 0. Then f; is the inverse Gaussian density with parameters \; = ?\
and u; = @;u, and V;() solves (6) with ¢ = p and

2mp 1A A Az
= 0. %A/u 3/2 2 23\ 1 I —
vi(z) = 034/ /\ —— ¥V by exp(2 (ﬂ:c—kgo AT ))Q)((’D”/x+ "

with ¢ denoting the standard normal distribution function.

A more detailed account of the theory presented here can be found in Bibby and
Sprensen (2002).
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On inherited ergodicity in a class of partially observed
stochastic models

Hiroki Masuda*
Graduate School of Mathematical Science, University of Tokyo. T

1 Contents

In this talk, we consider a moment estimation in a class of partially observed stochastic models with a
certain stochastic structure. Our argument is motivated by the recent work of Genon-Catalot, Jeantheau
and Laredo (2000, Bernoulli). With continuous time framework, our model consists of a hidden (unob-
servable) process X with an e-Markov structure, an observed process Y and their driving Lévy processes
L) and L?). We assume that observed data is only {¥;a : 7 =0,1,... ,n} with a fixed (deterministic)
time interval A > 0. We suppose that a hidden process X = (X¢)ier, is strictly stationary and o-mixing
(hence ergodic) and construct a discrete time observed process y = (yj)jez:'*., 2% :={1,2,...}, such that
y; = Yja — Y(j-1a. Then, under some regularity condition, y inherits ergodicity of X so that the usual
moment method can be applied for this model. Of course, construction of moment estimators strongly
depends on the concrete structure of the model.

As a special case for X, we treat a strictly stationary Ornstein-Uhlenbeck type (OU) process driven
by a Lévy processes. Recently OU process based modeling have been proposed by the work of Barndorff-
Nielsen and Shephard (2001, JRSS) mainly about stochastic volatility models in mathematical finance.
They have not only flexibility for modeling purpose but also mathematical tractability. Under mild
conditions, it can be seen that they possess exponentially decreasing f-mixing coeflicients so that they
exhibit ergodicity and then the moment estimation in their model can be verified.

Two types of examples including stochastic volatility models with numerical experiments are presented
in one-dimensional framework.

2 A class of hidden e-Markov model

We will consider a stochastic process (X,Y) = {(X,Y}) }ser, driven by a process L = {(Lgl) , Lig))}temr
on a given probability space (9,3, P) where X and Y are R%- and R%-dimensional cadlag stochastic
processes, respectively. We assume that only ¥ is observable while X is unobservable. Moreover, we as-
sume that L) and L® are R™ and R"-dimensional Lévy processes (cadlag processes with independent
increments, in other words, random walks in continuous time) starting at the origin, respectively. The
distribution of (X,Y) (possibly also of (L{!), L?))) depends on unknown parameter  which we want to
estimate where ® is a bounded domain in R?, p > 1. Let Fy and Ey denote the probability measure
corresponding to the true value g € © and the expectation under Fy, respectively. For an I C Ry, let
F¥ = o[X, :t € JVN and F¢ := g[L; — L, : 5,t € I]V N where N denotes the o-fleld generated by all
the P-null sets.
Assume the following three statements about structure of our model.

Al (X,,Yp) and (Lgl),ng))telh are mutually independent while Xy and Yp, and L(Y) and L may be
correlated respectively.

*E-mail : flstf@ms.u-tokyo.ac.jp
13-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan.

—743—



A2 Under P, X is strictly stationary and a-mixing, that is,
ax(t) = sup{|Po(ANB) ~ Py(A)Fo(B)|: A€ F5, B€ Ty .} = 0
as ¢ tends to infinity.
A3 g[X,| C 3”["5_5’5] % ST{dsﬁ] and o[¥; = Y,] C ?{?_E,S] v ?ﬁ:ﬁ] for some € and any s and ¢ such that £ > 0,
s,t € Ry and 0 < s < ¢ where, for convention, X, = Xq for u € [—¢,0].

As we have seen, we construct a discrete time observable process y from Y by
vi =Yja = Y5-na,  JE€ZL

where A > 0 is a fixed deterministic sampling interval.

It can be shown that y inherits ergodicity from X under above assumptions so that the moment
method can be applied with the aid of Birkhoff’s ergodic theorem and Ibragimov’s central limit theorem
for strictly stationary mizing processes with additional assumptions.

Our argument is also valid in discrete time framework by modifying the assumptions by an obvious
way.

3 Some concrete examples in one-dimensional framework

3.1 The random trend model with a hidden Gaussian process

Consider the model

dX; =plg— Xi)dt + /rdW,,
dy, = Xidt+dL,

where W and L are one-dimensional Wiener process and Lévy process, respectively, which may be

correlated. For example, L; = pW; + /1 — W, with lpl] £ 1 and an Wiener process W which is

independent of W. In this example, X = (X;):er, expresses a certain trend varying along time, and

Y = (¥})ier, does a noisy observation. It follows that y possesses ergodicity.

3.2 The stochastic volatility model of Barndorff-Nielsen and Shephard

A strictly stationary one-dimensional OU process X = (X;):cr, is expressed as

t
Xy =eMXo+ / e M4z,
0

with a one-dimensional Lévy process Z = (Z;)ter, and a positive constant (regression parameter) .

Under following conditions, X is ergodic with an exponentially decreasing -mixing coefficient.

B1. The Lévy measure of Z has an absolutely continuous part whenever Z is non-Gaussian. If Z has no
jumps, the Gaussian part of Z is nondegenerate.

B2. The stationary distribution p of X has a first order absolute moment at least.

In multi-dimensional case, we need a further condition on the regression parameter for ergodicity of X.
Barndorff-Nielsen and Shephard (2001, JRSS) considered a stochastic volatility model with X as the
squared volatility process. The dynamics is

dXt = —/\Xtdt + dZ)\t, X() =1,
A, = (u+ BXy)dt + vEdW., Yo = 0.

Here g, A > 0 and f are parameters, W is a standard Wiener process which is independent of a Lévy
process Z containing some unknown parameters, 7 is a random variable distributed as a given marginal
one of X, and yo is a random variable or a constant. The reason why the time scale of Z is different
from other processes is to stay the stationary distribution of X hold whatever the value of A is. Again
ergodicity of y enables us to apply the moment method. ™
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WINDOWS 2001

Yu.A. Kutoyants, Laboratoire de Statistique & Processus,
Université du Maine, 72085 Le Mans, Cédex 9, FRANCE
Tokyo, December 2001

We consider several problems of parameter estimation concerning ergodic
diffusion process

dX, = S(9,X,) dt + o(X,) dW,, Xo, 0<t<T,

where 9 € © = (o, §) is the unknown parameter and the trend coefficient
S (-, z) and diffusion coefficient o (z)? are known functions, providing a weak
solution of this equation. The goal of this work is to show how the choice
of windows for observations of this process can help in the construction of
estimators. The detailed proofs can be found in [3].

Optimal observation windows. Let us consider the problem of pa-
rameter estimation in the situation when we can observe the process X; in
the window A, of fixed length. The goal is to obtain an optimal window in
the class, i.e., the window which provides the minimal asymptotic variance
of the best estimator.

Therefore we have two problems. The first one is to construct the lower
bound on the meansquare errors for the all choices of the windows and es-
timators and the second - to construct a window and an estimator which
attains this bound.

Proposition. Under regularity conditions

_ 2
lim lim  inf sup T Ey <0T,AT - ?9> > 1o, Ag) ™,

§—0T—o0 {Ar,J7} |[9—00|<s
where inf is taken over all possible choices of windows and estimators and
the quantity I(Jo, Ag) plays the role of Fisher information in this problem..
We call a strategy (window A, +estimator ﬁT,AT) asymptotically optimal
if it provides the equality and we propose an asymptotically optimal in this
sense strategy.

Contaminated model. Let us suppose that the observed ergodic diffu-
sion process 1S

dX, = S(9,X,) dt+h(X,) dt + o (X;) dWj,

where K (+) is unknown to the observer function of known support A, i.e.,
hz)=0if x € A°.
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We have once more two problems: to construct the lower bound on the
risk of all estimators and then to find an estimator which attains this bound.
Let us fix ¥y, ko (-) and introduce the d-vicinity V; of this fixed model

Proposition. (Hopfner - Kutoyants) Suppose that the regularity condi-
tions are fulfilled, then for all estimators 9. and £(-) € #,

lim lim sup Eqgpf (\/Cf (97 - 19)) >E{ (gi(ﬁo, ho)-lﬂ)

§—0 T—r00 9, h(-)€ Vs

a(é)
Then we propose an estimator ¥z, ,. which provides the equality in the
given lower bound.
Similar result for nul-recurrent diffusion process are obtained in [1].
Change-point problem. Suppose that the observations are contami-
nated, i.e.,

. 2
i, S(8,6.)
where (U, h) :Ea,h( oL ) X{lf:l>A} > 0.

dXt = —5gn (zYt —?9) dt"r‘h(Xt) dt‘f‘th, XQ,

where A (-) is unknown to the observer function. Let us fix v < 1 and denote
by H., the set of functions ., = {h(:) : sup, |h(z)| < 7}, i.e., the values of
h(-) are in the window B = [~7, 7].

Proposition.([2]) The “MLE” 9. is uniformly in h(-) € H., consistent,
Lo {T (@T - 19)} = L9 {u*}, and the moments converge too.

Here u* is the random variable defined with the help of the limiting like-
lihood ratio.

Remark. Similar results are obtained in the problem cusp estimation,
i.e., in the problem of parameter estimation by observations with the trend
coeficient admitting the representation S(9,z) = a |z — 9P +r (z — 9) where
p € (0,1/2).
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General State Space Modeling for Complex Time Series

Genshiro Kitagawa
The Institute of Statistical Mathematics

1. General State Space Model and State Estimation

Consider a nonlinear non-Gaussian state space model for the time series y,,
In an(m‘ﬂ—l’vn): Yn =Hn($nawn)a (1)

where z, is an unknown state vector, v, and w, are the system noise and the observation noise
with densities gn(v) and r,(w), respectively. Two models in (1) are called the system model and the
observation model, respectively. The initial state zo is assumed to be distributed according to the
density po(z). Fn(z,v) and Hy(z,w) are possibly nonlinear functions of the state and the noise.

The most important problem in state space modeling is the estimation of the state vector z, from
the observations, Y; = {v1,...,%t}, since many important problems in time series analysis can be
solved by using the estimated state vector. The problem of state estimation can be formulated as the
evaluation of the conditional density p(z,|Y;). Corresponding to the three distinct cases, n > t, n =t
and n < t, the conditional distribution, p(z,|Y}:), is called the predictor, the filter and the smoother,
respectively.

For general state space models, the conditional distributions become non-Gaussian and their dis-
tributions cannot be completely specified by the mean vectors and the variance covariance matrices.
Therefore, various types of approximations to or assumptions on the densities have been used to ob-
tain recursive formulas for state estimation. However, the following non-Gaussian filter and smoother
[2] can yield an arbitrarily precise posterior density.

[Non-Gaussian Filter]

p(zalYarr) = / P(@nlnt )Pt Yot )dTuer,  P(5al¥a) = p(y"ijz;ifff’i 'l’;"—l), )

where p(yn|Yn—1) is the predictive distribution of y,, and is defined by / D(Yn|Zn )0{Tn|Yn—1)dz,.

[Non-Gaussian Smoother]

PlanlYiv) = planl ) [EEt RO M) gy, )

The direct implementation of the formula requires computationally very costly numerical integra-
tion and can be applied only to lower dimensional state space models. To mitigate the computational
burden, numerical methods based on Monte Carlo approximation of the distribution have been pro-
posed [1, 3]. In the Monte Carlo filtering, we approximate each density function by many particles that
can be considered as realizations from that distribution. Specifically, assume that each distribution is
expressed by using m particles as follows: {pﬂl), .. ,p%m)} ~p(zn|Ya-1) {f,(Ll) e ,f,(zm)} ~ p(za|Yh),
{Ssﬂw cee sglr;\),} ~ p(zn|¥Yn). Namely, p(zn|¥n—1) is approximated by the probability function

Pr(z, = pﬁf)m_l) = 1/m, for j = 1,.--,m. Then it can be shown that a set of realizations ex-
pressing the one step ahead predictor p(z,|Y,—1) and the filter p(z,|Y;,) can be obtained recursively
as follows.

[Monte Carlo Filter]

1. Generate a random number féj) ~pol(z) forj=1,...,m.
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2. Repeat the following steps forn=1,...,N.
(a) Generate a random number o§) ~ g(v), forj=1,...,m.
(b) Compute pﬁlj) = F(f(j_)l,vg)), fori=1,...,m.
(c) Compute o =p(yn[pg)) forj=1,...,m.
(d) Generate fy(bj), i=1,...,m by the resampling ofpﬁ,l), . ,pg"), with the weights proportional

to aﬁ;l),...,a,(f).

The above algorithm for Monte Carlo filtering can be extended to smoothing by a simple modifi-
cation. The details of the derivation of the algorithm is shown in [3].

2. Self-organizing State Space Model

The state space model, (1) and (2), usually contains several unknown parameters such as the variances
of the noises and the coefficients of the functions F;, and H,. The vector consisting of such unknown
parameters is hereafter denoted by 8. If the non-Gaussian filter is implemented by the Monte Carlo
filter, the sampling error sometimes renders the maximum likelihood method impractical. In this case,
instead of estimating the parameter 8 by the maximum likelihood method, we consider a Bayesian
estimation by augmenting the state vector as z, = [zZ, §T]T. The state space model for this augmented
state vector z, can be easily defined from the original state space model.

The marginal posterior densities of the parameter and of the original state can be obtained from
the posterior distribution p(z,|Yn) given the entire observations Yy = {y1,+-,y~}. This method can
be easily extended to a time-varying parameter situation where the parameter 8 = 8,, evolves with
time n.

So far, we have considered the case when the parametric form of the model is given. As an
extension of the self-organizing state space model, by using the prediction error in on-line modeling,
we developed a method of constructing state space model without assuming a parametric form of the
noise distribution. We note here that in the state space modeling, from the derivation of the non-
Gaussian filter and smoother, we can use all the information in obtaining the predictive distribution

Zn ~ P(Tn|Xn-1, Yn-1), Yn ~ D(Yn| Xn, Ya-1). (4)

It suggests that the noise density g(v) can be estimated from ¥,_;. One way of estimating the noise
distribution g, (%) is to use the following upadating formula

K
aa(v) = (1 — @)gn-1(v) + @y s(v - el))), (5)
Jj=1
where Eﬁlj ) is the prediction error at time n, s(v) is an arbitrary density function and « is the discounting
factor and satisfy 0 < a < 1. By the use of this updating formula and the Monte Carlo filter, it is
possible to construct a self-organizing state space model that can automatically adapt to the change
of noise distribution.
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In this study, we considered conditional limit theorems and conditional asymptotic expansions.
Our discussion is based on the Malliavin calculus. We provided asymptotic expansions in a general
setting including the so-called small o-models. In order to give a basis to the asymptotic expansion
scheme for perturbed jump systems, we built an extension to the Watanabe theory in part. Finally,
we derived the asymptotic expansions (double Edgeworth ezpansions) of conditional expectations.

The Malliavin calculus is nowadays recognized as an important instrument from a practical com-
putational point of view in theoretical statistics, stochastic numerical analysis and mathematical
finance as well as probability theory. It enables us to apply a usual differential calculus to irrequ-
lar functionals, which very often appear, for example, as coverage probabilities, non-differentiable
payoff functions, and so on.

The conditional expectation may be one of most irregular functionals. For a continuously
distributed conditioning variable, it requires the analysis over a null set. Without doubt, the
conditional stochastic calculus features in statistics: sufficient statistics in unbiased estimation and
testing hypotheses (e.g., Lehmann-Scheffé theorem, Rao-Blackwell theorem, Neyman structure),
conditional likelihood and conditional inference, conditionally Gaussian experiments as limits in
LAMN situations, approximation formulas connected with the conditional distribution such as the
p* (magic) formula of Barndorff-Nielsen, filtering problems, recently introduced partial mixing, etc.
In spite of the importance, conditional asymptotics does not seem to be so well founded as to fulfill
the practical purpose.

We provided, in a general setting, asymptotic expansions under small perturbations. The small
o-theory has been well developed in statistics. Kutoyants [11] thoroughly investigated inference for
diffusion type processes with small noises. Asymptotic expansions were presented by [21, 22, 23]
by means of the Malliavin calculus and Prof Watanabe’s theory. See also Sakamoto and Yoshida
[12], Yoshida [24], and Uchida and Yoshida [18] for more statistical applications. As a byproduct,
inspired by Professors Kunitomo and Takahashi’s first-order approximation for a geometric Brow-
nian motion, the asymptotic expansion scheme to compute the values of options was provided in
[22]. There are many studies thereafter in this direction: Kunitomo and Takahashi 8, 9] Taka-
hashi [14, 15], Kim and Kunitomo [6], Sgrensen and Yoshida [13], Takahashi and Yoshida [16],
Kashiwakura and Yoshida [5].

Recently, modeling with Lévy processes is attracting attention in financial statistics. In order
to give a basis to the asymptotic expansion scheme for perturbed jump systems, we built an
extension to the Watanabe theory. We adopted the Malliavin calculus formulated by Bichteler et
al. [2]. Differently from the original form of Watanabe’s theory [20] for Wiener functionals (also
see Watanabe [19], Ikeda and Watanabe [4]), we do not use (have) Sobolev spaces of generalized

*This work was in part supported by the Research Fund for Scientists of the Ministry of Science, Education and
Culture, and by Cooperative Research Program of the Institute of Statistical Mathematics.
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functionals in our setting. For this reason, we will go through by the generalized integral operator

for Schwartz distributions.
After preparing asymptotic expansions for generalized expectations, it is straightforward to

obtain our main results. The asymptotic expansion of conditional expectations will be derived
together with a few variants. They are called the double Edgeworth expansions. In the
present article, we only treat most simple double expansions. We will present other variants (e.g.,
Edgeworth-saddlepoint approximation) elsewhere by applying Schilder-type expansions of densities
(cf. Kusuoka and Stroock [10], Takanobu and Watanabe [17]).

As for the role of the asymptotic expansion in the theoretical statistics, we refer the reader for

example to Barndorff-Nielsen and Cox [1], Ghosh [3].
An application to the Kitagawa filter [7] was also considered.
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Wavelet Methods for Time Series Analysis
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1. Introduction

The wavelet analysis started from quite a practical reason some 20 years ago. Since
then it has been developed in fields as diverse as engineering, mathematics, image
processing, statistics and so on. A special feature of the wavelet analysis is to look at
the signal or data from two aspects, that is, the time and the scale, which enables us
to see, not only the forest, but also the trees, so to speak.

In this report, concentrating on statistics, particularly on time series analysis, we
review the methodology of the wavelet approach and seek to explore some applications
to time series analysis. In Section 2 the idea of the wavelet analysis is explained from
a statistical viewpoint. The detailed and basic ideas of the wavelet analysis can be
found in Percival and Walden (2000), where discrete wavelet methods are extensively
discussed for time series analysis.

Section 3 gives some useful examples in which the wavelet analysis offers a pow-
erful tool, among which are as follows. The first is concerned with the wavelet-based
estimation of the fractional differencing parameter in the so-called fractional ARIMA
(ARFIMA) models. It is the power law nature of the spectrum of the long memory
process that the wavelet analysis turns out to be successful. The second deals with spu-
rious regression among fractionally differenced series and considers the wavelet method
for detecting spurious regression. The third is concerned with wavelet-based tests for
homogeneity of variance in long-memory time series, whose problem is related with

testing for structural breaks.

2. DWT and MODWT
The DWT (discrete wavelet transform) has been devised as a need to analyze and
synthesize discrete time series. It is the CWT (continuous wavelet transform) that has
been initially developed. A wavelet ¢(t) plays an important role in the definition of
the CWT, which is a generic function, unlike trigonometric or exponential functions.
The CWT is different from the Fourie transform in that the former has two param-
eters, while the latter one parameter only. It is possible to restore the original signal

from the resulting CWT under some restrictions, which is given by the ICWT (inverse
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CWT).

The transition from the CWT to the DWT is not straightforward and takes a long
way to arrive at. We leave the details of the derivation of the DWT to Percival and
Walden (2000). An important thing is that we can accomplish the DWT in an efficient
way by the so-called pyramid algorithm. The resulting wavelets are collected on a scale
by scale basis.

The DWT is an orthonormal transform and is most often used, but it has several

limitations (Percival and Walden (2000)), among which are
(a) The sample size T must be a power of 2.

(b) The number of wavelet coefficients, T}, decreases by a factor of 2 for each increas-

ing level of the transform so that wavelet coefficients W; for j large cannot be

used for inference purposes.
(c) The DWT coefficients are not circularly shift invariant.

These deficiencies can be overcome by using the MODWT (maximal overlap DWT)
with some copmputational price to pay, although its computational burdem is the same
as the widely used fast Fourier transform. Note that transforms that are essentially the
same as the MODWT have been discussed in the wavelet literature under the names

non-decimated DW'T", "translation invariant DWT’, ’time invariant DWT’ and so on.

3. Some applications

We discuss some examples in which the wavelet method proves useful. Among
the important and advantageous features associated with the DWT are (1) the decor-
relation property, that is, the property that the DWT makes a strongly dependent
sequence uncorrelated, which is possible even in nonstationary processes, and (2) the
special relationship between the wavelet variance and the scale. These properties of
the DWT enable us to analyze time series data more closely. More specifically, we can

apply wavelet methods to the following problems.

(a) Wavelet-based estimation of the fractional differencing parameter d
(b) Wavelet solution to the spurious regression of fractionally differenced processes

(c) Wavelet-based test for homogeneity of variance in long-memory time series
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Use of Stochastic Differential Equations in Financial Time Series Analysis
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The innovation approach, in time series analysis, tries to find a causal model which "whiten" the observed time
series data into Gaussian white noise. By doing so it provides us with a method to predict the series and to
characterize the dynamics behind the time series with the identified causal model. The optimal smoother and
the optimal filter of the variables used in the model for the time series are obtained at the same time from the
identified causal model. This technique has been developed by Wold(1938), Kolmogorov(1941), Wiener(1949),
Kalman(1960), Kailath(1968), Akaike(1969) and Box-Jenkins(1970) etc in the last century. Of course the
causal model for the real data is unknown and we have to identify the model among the several candidates. The
success of the approach in real application is closely dependent on the "causal model" we use with the
innovation approach. Naturally the models employed with the approach were limited to linear models at the
early stage of the development in 1940 to 1960s. However there is no reason why we have to use only linear
causal models. Unfortunately developing useful nonlinear causal models in applications did not attract time
series analysts' attention as much as applied scientists in meteorology and biology etc.. Emergence of chaos
studies in 1970's was a challenge to the traditional approach of time series analysis. It is May(1976) which made
the idea of deterministic chaos widely known among scientists related to time series analysis. This encouraged
many scientists to pay more attention to models with an alternative nonlinear dynamics, which could reduce the
uncertainty, i.e. the prediction errors, hopefully to be zero at an ultimate stage. In recent time series analysis, as
several linear models have been taken over by mewly developed nonlinear models, the original idea of
innovation approach developed by Wiener, Kalman and Box-Jenkins seemed to have been put aside as well.

The innovation approach, however, was not completely thrown out in some of the group of time series analysts.
Studies of nonlinear dynamic models, including those new animals such as deterministic and stochastic
differential equation models and neural network models, have been pursued also from a stand point of the
traditional innovation approach. In 1960-1970, it was widely known, in the traditional time series school, that
nonlinear polynomial AR models are not appropriate for simulating the process although they improve
prediction performance significantly compared with linear models. They are computationally easy to estimate
but they always lead us to computational explosions if the models are simulated with Gaussian white noise of
the estimated variance. Because of this, nonlinear time series models which are good for simulations as well as
predictions start attracting people's attention in the traditional time series analysis in 1970's(Discussions to
Campbell & Walker(1977) and Tong(1977), Ozaki & Oda(1978)). Here time series models which demonstrate

some kind of nonlinear dynamic structure is analysts' main concern.
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In this presentation we showed that the innovation approach can play an essential role in the assessment of the
new animals such as chaos, neural network models and nonlinear differential equation models as well as of old
animals such as linear and nonlinear time series models. These models are in the class of Markov models. One
of the important nature of Markov models is that prediction errors are Gaussian when the trajectory of the
process defined by the Markov model is continuous(Doob(1953)). This is the reason why innovation approach
could still play an important role in the nonlinear time series modeling, where the data are usually sampled from
continuous processes with sufficiently small time interval. We have seen that classic theories developed for
Markov processes are useful in directing nonlinear time series modeling. Examples of nonlinear stochastic
differential equation models successfully applied to real time series data and artificial data are also shown in the
talk.

An application of the present idea to real financial time series analysis was presented. Here the time series is
the currency exchange rate data between US Dollars and Japanese Yen. A combination of monitoring and
control through an efficient dynamic model was shown to yield to a useful method in financial engineering
similar to the PID control method in control engineering. A useful model for characterizing the market tendency
of the price is the micro-market structure mode! (Bouchaud & Cont(1998), Iino & Ozaki(2000)). The model is
given by the following stochastic differential equations:

d = (o + Bd)dt+ydwm(t)

dA =(aq + BoA)dt +y ,dw,y(t)

dP =¢exp(A)dt + y3 exp(A/2)dws(t)
Here P(t) is the price of the currency in the market. dw(t), dw(t), dws(t) are increments of Brownian motion.
The state variable ¢(t) characterizes the state of the market, and whether the market is over-valued or
under-valued: in other words, whether the currency (US Dollars) is over-valued or under-valued against the
Japanese Yen. If ¢(t) >0, it means the market is over-valued, and if §(t) <O the market is under-valued.
exp(A(t)) represents the stiffness of the market, i.e. its inverse represents the liquidity of the market. If liquidity
is large, stiffness is small, and the price of the market does not swing away much from the present price even
though the currency is over-valued or under-valued. If we obtain good estimates of these state values from the
past records of price data, it may provide us with useful information in controlling the currency allocations
between US Dollars and Japanese Yen. Using this information we could design a rule for allocating currency
between US Dollars and Yen. A model identification method was presented based on the innovation approach.
Numerical results of the application of the identified model for allocation of the currencies between US Dollars
and Japanese Yen was presented, where it was shown that significant gain was obtained even with very a simple

allocation strategy based on the filtered estimate of the function ¢(t).
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1. Introduction

Classical time series models assume a constant one-period forecast variance. In order to
overcome this implausible assumption, Engle (1982) introduced a class of ARCH(p) models,
which allows the conditional forecast variance to change overtime as a function of the past
values. Since then, ARCH related models have become perhaps the most popular and ex-
tensively studied financial econometric models (Engle (1995), Gouriéroux (1997), Chandra
and Taniguchi (2001a,b)). Moreover, Giraitis et. al (2000) discussed a class of ARCH(oo)
models, which includes that of ARCH(p) model as a special case, and established sufficient
conditions for the existence of a stationary solution and its explicit representation. For
ARCH(p) model, Horvath and Kokoszka (2001) derived the asymptotic distribution of the
empirical process based on the squared residuals which is considered of fundamental im-
portance for statistical analysis. Then they showed that, unlike the residuals of ARMA
models, these residuals do not behave in this context like asymptotically independent ran-
dom variables, and the asymptotic distribution involves a term depending on estimators
of the volatility parameters of the model. Also Lee and Taniguchi (2000) proved the lo-
cal asymptotic normality for ARCH(o0), and discussed the residual empirical process for
ARCH(1) with stochastic mean.

In the ii.d. settings, two-sample problem is one of the important statistical problems.
For this problem, a class of rank order statistics plays a prominent role since it provides
locally most powerful rank tests. The study of the asymptotic properties based on such
rank order statistics is one of the most essential parts of nonparametric statistics. Many
authors have contributed to its development, and numerous theorems have been formulated
to show the asymptotic normality of a properly normalized rank order statistic in many
testing problems. The classical limit theorem which generated much interest in this area is
the celebrated Chernoff-Savage (1958) theorem. This theorem has been used to study the
asymptotic power and power efficiency of a class of two-sample tests. Further refinements on
the conditions of the theorem, extensions and related results, for example, are due to Héjek
and Sidak (1967), Pyke and Shorack (1968) and Puri and Sen (1993). More specifically, the
Chernoff-Savage theorem given in Puri and Sen (1993), is formulated under less stringent
conditions on the score generating functions.

The present paper discusses the asymptotic theory of the two-sample rank order statis-
ties {Tn} for ARCH residual empirical processes based on the techniques of Puri and Sen
(1993) and Horvath and Kokoszka (2001). Since the asymptotics of the residual empirical
processes are different from those for the usual ARMA case, the limiting distribution of {Ty}
is greatly different from that of ARMA case (of course i.i.d. case). Based on the asymptotic

!chandra@sigmath.es.osaka-u.ac.jp
2taniguti@sigmath.es.osaka-u.ac.jp
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results, we evaluate the asymptotic relative efficiencies, construct confidence intervals and
study robustness for various residual densities in some two-sample problems. These studies
illuminate some interesting characteristics of ARCH residuals in comparison with the i.i.d.
settings.
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Asymptotic expansion for hidden Markov models

Yuji Sakamoto*

Hiroshima International University

1 Hidden Markov model

Let us consider the following hidden Markov model:
t t
X: =X, +/ Vo(Xs, 8)ds +/ V(Xs,0)dws, (1)
0 0
t
Y =yo +/ So(Xs,0)ds + Ly, (2)
0

where § is an unknown parameter varing in a parameter space © C RP (the dimension of 6 is p), Vo, V and
So are real-valued given functions on R x ©, w = (w;):er, is a one-dimensional standard Wiener process,
L = (Lt)ter, is a one-dimensional Lévy process, Xy is a random variable independent of w and L, and yg
is a given constant. The distributions of Xy and L may also depend on 8. Suppose that (i) X is strictly
stationary and the moments of X, up to any order exist for any ¢ € R, (ii) w and L are independent. Note
that the increment L, — L; has the same distribution as L,.

Suppose that we can observe ZA (Ya; = Yag-1y)/4,j =1,...,n, for a fixed A > 0, while X cannot

be observed. In this article, we w111 consider the moment estimator 0 based on Z2 = (Z7)7.
Example 1. (L is a Wiener process) Let Ly = \/ouw;, where w = (1) is a standard Wiener process.

Example 2. (Normal inverse Gaussian Lévy process) Let L, be distributed as a normal inverse Gaussian
distribution NIG(a(8), 8(8),5(8), u(8)) for given functions («,8,6,1) : © = {0 < |8 < @, 8 > 0,4 € R} .

Example 3. (hidden Ornstein-Uhlenbeck diffusion) Let X = (X{)icr, be a stationay diffusion process
satisfying dX; = p(q — X;)dt + /rw;

Example 4. (hidden Coz-Ingersoll-Ross process) Let X = (X);er, be a stationay diffusion process satis-
fying dX; = p(q — X:)dt + /1 Xidw;.

For the model (1) and (2), the first order property of the moment estimator studied by Masuda(2001).
For NIG-Lévy motion, see Barndorff-Nielsen(1998), and for the application of HMM, see Genon-Catalot,
et.al.(2000).

2 Asymptotic expansion

For any lag set & = (kj)j=1,.. m, kj € Zy 1, let
W(t:6) = Ey [(Zﬁ B ZPY) (2B, — BolZ2]) (s sn Ee[Zf])]-

For the case where ¢ is the empty set ¢, we denote E[Z{] by u(4;6) . In order to estimate 6, one may
construct a estimating equation : v, ;(#5;8) =0, j =1,...,p for lag sets (J;)%_, such that 4; = j,
Hi=¢,j=1,....d Here ¢pn1(¢;0) = 30, (Z{ — p(¢:9)), and

n—kjm; _m;

INEFUEID> {H B, - (6i0) - u(530) |

for j =2,...,p, where J& = (k;;) =, kjo =0, and kj; = kj 1 +---+kj;. In general, it is known that under
some regularity conditions, M-estimator 6, corresponding to the estimating function ¥, = (¥, ,)"_; admit

*Fax:81-823-70-4852. E-mail: y-sakamo@he.hirokoku-u.ac.jp
tZ4 denotes the set of non-negative integers.
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the second order asymptotic expansion: for any measurable function f having at most polynomial growth
order, there exist constants C > 0, € > 0, and a positive definite matrix § = (g“b)zybzl such that

< cw(f,On~leF/2 gaby 4 o(n1/2) (3)

‘E[f(\/ﬁ(én ~o0l- [ anale)is

where g, ; and w are defined by

1 .
4n1(2) =¢(z; 9°%) (1 + G%C“bclzabc(z;g“b) + ﬁﬁ“’cdg”dha(zw“h)>,
w(fir i) = /R sup{|f(z+y) - F@)] : |yl > ryolz: i),

for the nomal density ¢(z;¥%) with mean 0 and covariance matrix £ = (E‘“’) =1 and the first and

third order Hermite polynomials h,(z; Z‘“”) and hape(z; %) generated by ¢(z Z‘“’) The positive matrix
g=(g° )a », and the coefficients ¢2*° and 4%, are defined in terms of the moments of ¢ and its derivatives.
For the rigorous derivation of the asymptotic expansion above, see Sakamoto-Yoshida(1998), which dealed
with the expansion up to third order.

As for the moment estimators, the corresponding estimating function becomes 4, o{#5;€) defined for
suitably choosen lag sets J#;, and it is rather easy to show the validity of the asymptotic expansion.

Theorem 1. Let © be a open conver subset of RP. Suppose that X is strictly stationary, has moments
up to arbitrary order, and a-mizing with the mizing coefficient decreasing exponentially. Moreover, suppose
that n is smooth, and that /80 is non-singular. Then, if the distribution of Ly has the smooth absolutely
continuous part of the Lebesugue decomposztzon, the moment estimator 6, admits the second order asymptotic

expansion given by (8). 8% =6, (6 )g°4(8,) is a bias-corrected version of 6, i.e., then E[vn(8:-6)] =
o( —-1/2)

Example 5. (OU-diffusion & Weiner ) Let X and Y be processes considered in Example 3 and 1, respec-
tively. Suppose that ¢, r and ¢ are unknown, p is known. In this case, the moment estimators g,, frn, 6y
are given by

Gn = 27?7 Tn = 2A2p3(1 - e_Ap)—Qﬂ(l), Gn = A(ﬂ(O) + _;27;)3 (1-Ap- €_Ap)>-

Their bias-corrected versions are

e 1 2Ap v . 1(3-2Ap—demBPqemarny
dn = Qn, r"_T"+n(1_e—A) ( +P U"), Un“an'*‘ﬁ (1-—-6_Ap)2p2 (rn+]) 011)~

Example 6. (CIR-diffusion & NIG-Lévy ) Let X and Y be processes defined in Example 4 and 1, respec-
tively. Suppose that ¢, o are unkown, p, r is known and 8 = u = 0. Then the moment estimators and their
bias-corrected versions are given by

N 2P U R S
In = Zy,, Un“A<ﬂ(O)+A2p3(1 Ape ))7 4n = Gn, Un*0n+ﬁ<gn+I_J§Qn>-
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A Generalized SSAR Model and Predictive
Distribution with an Application to VaR *

Naoto Kunitomof
and
Seisho Sato ¥

December 2001

Sumrary

In our talk we have proposed to use a class of nonlinear time series models,
which is a generalization of the SSAR (simultaneous switching autoregressive)
models, and develop a new approach to deal with the asymmetrical sample paths
of time series. Earlier, we have introduced the stationary and nonstationary
SSAR time series models and discussed their statistical properties in some detail
(Kunitomo and Sato (1996, 1999, 2000), Sato and Kunitomo (1996)). The SSAR
models have been developed for applications in econometric analyses including the
disequilibrium econometric models and the time series models with adjustments in
financial markets. Although the SSAR models have been discussed in econometric
applications, there are some interesting new aspects for statistical nonlinear time
series modelling. We are trying to extend the SSAR models to a class of GSSAR
models in time series analysis and discuss some possible applications. Since the
most important application of time series models is prediction, we shall discuss
some related applications based on the predictive distribution of the GSSAR
models. In particular we shall propose a new estimation method of the percentile

*Qur talk was bascd on the paper which was originally written for our presentation at the
3rd US-JAPAN conference on time serics analysis held in June 2001 at Kyoto University under
the title "A Gencralized SSAR Model and its Applications”. We thank Profcssor Genshiro
Kitagawa for his uscful discussions on our previous studies on the SSAR models, which lead
us to work on the present study. The full text of this paper has been available as Discussion
Paper CIRJE-F-122 from http://www.c.u-tokyo.ac.jp/cirje/rescarch/dp/2001/list.htm.

tFaculty of Economics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, JAPAN.

Hnstitute of Statistical Mathematics, 4-6-7 Minami-Azabu, Minato-ku, Tokyo 106, JAPAN.

—761—



points of the predictive distribution such as the median when it is not necessarily
symmetrical and the resulting volatility function of the time series can be also
asymmetrical. It is essentially the same problem as the estimation of Value-at-
Risk (VaR) in recent financial risk management. In the standard VaR procedure,
however, it has been often assume that the underlying return process is a sequence
of uncorrelated random variables. (See JP Morgan (1996) or Jorion (2000) for its
details.)

There can be other approaches in the estimation problem of asymmetrical
volatility function and VaR. In particular some non-linear statistical time series
models along the line of Nelson (1991) and Harvey and Shephard (1996) in the
econometric or financial analysis of the asymmetrical volatility functions have
been known and there have been many related studies already appeared, which
are closely related to the applications we shall investigate in this paper. However,
our approach to the problem of estimating asymmetrical volatility function and
measuring VaR is a simple but different one from the existing literatures in this
respect.

We have introduced a generalized univariate SSAR (GSSAR) model and dis-
cuss some examples. Then we have investigated some properties of the GSSAR
models including the geometric ergodicity and the estimation problems of the
GSSAR models. Also we shall discuss the predictive distribution in the GSSAR
models and the estimation problem of percentiles of the predictive distribu-
tion such as the median. As an application we shall discuss the prediction
based on the median and the estimation of VaR in the financial risk manage-
ment and give a case study on the interest rates futures market in Japan. The
full text of ourtalk has been available as Discussion Paper CIRJE-F-122 from
http://www.e.u-tokyo.ac.jp/cirje/research/dp/2001 /list.htm.

Key Words

Asymmetrical Sample Paths, Generalized SSAR Model, Predictive Distribution,
Predictive Median, Transformation Models, Value at Risk (VaR).
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Large deviations limit theorems for the kernel spectral density estimator
bRERFRERRF MR MR ES

1. FUoIc FHEEEBE (Y, :t € Z) HTH 0 CHDESKEH (1) =
E(Y.Yin) = v(—h) 262895, KE T2 o [7(h)] < co T THEFEL AT

%
1 & .
) ==Y yhe™ = 21 )+ — Z’y cos(hA)

2 oo

NEZIND. BRIRIIY,,. .., Yp KESW I —FNVEI RS NHEER
Fr(a) = /HKM(a-/\)IT()\) d)
= [ 5 {Kula=3) + Ko+ )}z ()

EEXLED. 2 Ip(\) BE VA RS T A

1 & 0
- Als—
-QWTX::

Ky (A E3FA CRASHREGBER K(0) (0 € R) IZESW=ZRR7 My 4 R

1 2

27T |

IT()\) — itA

K (N = M i K{M(\+27v)}

V=0

ThHd. I—xVEHE KO ORIl =[-mr THHZ L, RY, [ K)dv =1
RIRETD. FmT o0 DEE M=MT)F1/M+M/T -0 2kt ed5.
Fr(a) ZEARFRCEY 2r 2500 h, LI#EKS 2 &2< ae0,7] LIRETS.

JT/M{fr(a) — f(a)} DEREEREIZH SN TS, KEETIE fr(e) KBTS
TEREREZH D .

2. #lE (s,1) ERH
s —1) = [ FNe*0 dy

THdD T xT MHTHE Spp LEL Z EIZTHIE, I—RABRRT MHERT
Y =(Y,...,Y7) ~ Np(0,57;) D2RBERNTHDZ LIZEEL K I:

R M
fT(a) - —f YIQT,aY
T IT Qrg T x T HBATFIT, D (s,t) BHRIT

drra(s—1) /2 B )e? 0N, Ky(hia) = {KM()\ @)+ Ku(A+a)} .
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KREEHE TIIERGELRPLETHD. SO8EE

M / M
T logE(etY QT,QY) = ~5T log det (I — QtET,fQT,a)

DIERBIEE f(N), K(\) A E€R) DY T vy YBEO T ORHD LN TE D,

3. 8

BE 1 a=a)e0,n] PROFHEHET LT D:
(Clyn/M<a<a-—n/M, 72, imroa=w € [0,7].
IDEEF, 0< <z XL T

Jim 7 log Plfr(a) = £(@) > 2] = ~Tyfa)
Jim 2 log P{fr(a) — f(a) < ~a] = ~Tye(a),
lggo% tog P[|r(e) ~ f(a)] > 2] = ~Tji(c).

2d, FERORERH

(C2) 0 < a<7m/M, »D, limpr oM =w € [0,7]
HBHUNE

(C3) 7 — /M < a<m, 132, imr_ (7 — &)M = w € [0, ]
R LTHLREND.

EBE LD ||fr— flloo = sSuDsepon [Fr(N) — F(N)| DBHERZ T2 2 & b TE 2.
FE2 O<z<az)lZxLT

M .
A = log Pll|fr — [lleo > 2] = —A(2) .

Alz) HER 1 OFEDTELRE (C1),(C2),(C3) DBEOR/MES LTEZESIS.
BBz N\ 0 BT BEBIIRNL > Th 5.

%3 Cy=maxeeps f(z) 2 (1) max{f(0),f(n)} < Cy/V2 &=+ & x

M !
lim lim — log P — Jlloo
L s 7103108 Py = fllo > 2] = = e

(ii) Cu/vV2 < max{f(0), f(7)} < Cy ZW-T L&

1
 8r[max{f(0), f(m)}2 [y {K(v) P v~

lim lim. i‘iloanlfT — flloo > 7] =
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On semiparametric estimation of
a fractional difference parameter
F.J.Hidalgo(London School of Economics)
Yoshihiro Yajima(University of Tokyo)

We study two estimators of d in the model f(\) ~ CA~2? as A\ — 0+, where
f(X) denotes the spectral density of a covariance stationary linear process
xz;. We show that one of the estimators achieves the optimal semiparametric
rate of convergence, whereas the other has a rate of convergence as close
as desired to the optimal rate. Moreover , we show that the estimators
are asymptotically normal with a variance , which does not depend on any
unknown parameter.

Define the discrete Fourier transform and periodogram of z; by a(\) =
(27n)~Y2 51 e and I()) = |a()\)[2. Then define 7, by

m/2 .
= F,) = —= ZJ_/_m/2 L, ifm<2p
P 2 Ly H0<20<m

where )\, = E}Zﬁ,p =1,...,n — 1is a Fourier frequency and I; = I(};).
Then first we define d by
- 1.k R
d=tu | 2 wplog fy = pr log frt1 | »
p=1 p—-l
where w(u) with u € (0,1) is a positive weight function and

Py = (—2 [3 w(w) log(u)du)~! and w, = w(p/k).

Next let
fp ) l . 1 (fk-f‘l )
( :4;1 wp log (f* (lc ;::1 wp) 0g fin) ]’
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where

_C_ §m/2 -2d
= ( p) = m+1 EJ*-—m/g ’\J+p if m<2p
3 Zm/ )\;fz‘f if0<2p<m

and fy = CAJ%
Finally we difine the first estimator by

d=d—-bd),

where d is a preliminary estimator of d , say d but with a different bandwidth

number k'/2 instead of m for f,. And we define the second estimator by

'"I“Z%

where

¥
ll

( szlogfz (;Z) 108fp+1>,

=1

and w(l/p), v, = v(p/m), T = m™* ™ v, and the bandwidth of f, is m,
insted of m.

3.Theoretical results

Theorem 1 Under some assumptions, as n — oo, m?(d — d) converges

to N(0,h2®2) in distribution where ®,, = [, w(u)du.

Theorem 2 Under some assumptions, as n — oo, mY2(d* — d) converges
to N(0, k2 (f3 v(z)dz)~2®?) in distribution where ®* = [§ ((v(u) [} w(z)dz)—
Lz w(u/z)v(z)dz)?du.

d* achieves the optimal semiparametric rate of convergence, whereas d has a

rate of convergence as close as desired to the optimal rate.
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