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Spatial Smoothing via a Resampling Method:
Estimation with Area-based Panel Data
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(Preliminary)

Abstract

When we use area-based panel data to analyze economic activities in a metropolitan
region, we have to treat cluster effects because some economic activities agglomerate in
a group of areas adjacent each other and thus form a cluster. We propose a resampling
method, namely leave-one-out cross-validation, to find how many clusters are there in
the region and which area belongs to which cluster. We examine the effectiveness of the
method with simulation studies and compare the estimates with the within-class estimates.
We also apply our method to find potential demand for houses in Tokyo Metropolitan Area.

Key words: cluster-effects model, housing start, leave-one-out cross-validation, panel
data, resampling method
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1 INTRODUCTION

In this paper, we will consider statistical issues when we use area-based panel data models in
order to analyze economic activities in a metropolitan region. The metropolitan region consists
of officially pre-determined areas like counties or municipalities. Most of the data available for
us are based on these areas.

These official borders do not necessarily constrain economic activities of a private sector
in a metropolitan region. Economic infrastructure such as railways, subways, highways, roads,
canals, ports and so on, which are called the second nature by Krugman (1993, 1996), lays across
the borders and possibly affects the activities. We often find manufacturing factories agglom-
crate along a canal, while software firms agglomerate around a university in the metropolitan
region. Their activities are across the pre-determined official areas but are concentrated in areas
adjacent each other. We will call the group of areas where some economic activities agglomerate
a cluster.

Although detecting the clusters may not be difficult when the economic activities of concern
are observable, it is a statistical issue to do so when they are unobservable. We will consider
the case where area-based panel data are available and the clusters are represented by cluster
parameters in a linear regression model, which are the same within a cluster but different
between clusters. Thus the model is regarded as a panel data model that has cluster-effects as
fixed effects.

If we are not concerned with the cluster-effects but concerned only with the parameters of
observable explanatory variables, we can adopt an area-effects model that has area-specific-
effect parameters for cach area and obtain the within-class estimates of parameters of concern
by applying analysis of variance (see Hsiao (1986) for details). Even in this case, the within-
class estimates are possibly less efficient than the estimates of the cluster-effects model, as long
as we can detect the structure of clusters among the metropolitan areas.

In section 2, we will consider a statistical method how to detect which area belongs to
which cluster. From statistical viewpoint, this issue is regarded as a sort of model selection

problems. We adopt a resampling method, namely leave-one-out cross-validation, since the
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method is robust to distributional assumptions and the calculation is easily implemented in a
linear model. The method is introduced by Stone (1974) and Geisser (1975) and its application
for broad model selection problems is discussed in Davison and Hinkley (1997), though it has
not been applied to detect clusters with area-based data. The selection procedure with the
method is also explained. Section 3 shows results of simulation studies how well the leave-one-
out cross-validation works to detect the clusters. We also compare the within-class estimate
with the cluster-effects estimates. We find the cluster-effects estimates are more efficient than
the within-class estimates. The method is also applied to estimate a housing demand function
in Tokyo Metropolitan Area. Housing demand in an area depends upon basically income per
household, amenity of an area and the disutility caused by congestion. It also depends on
unobservable utility-improving environmental factors that are not capitalized in the land price of
an area. Potential housing demand is affected by these factors in an area, which are represented
by the cluster-effects in a statistical model] and are to be estimated. Section 4 concludes and

discusses remaining issues.

2 STATISTICAL MODEL WITH CLUSTERS

Let us consider a model with area-based panel data. Assume that we have observations of m

areas for T periods. The area-effects model is expressed as follows:
Yie = i + Tpf+ vy, 1=1,...,om;t=1,...,T (1)

The {y::} and {z;}, which does not include a constant term, are dependent and independent
variables that represent socio-economic properties of the ith area, respectively. The 8 (K x 1)
represents the relationship between them which is of concern for researchers. The u;, one of
area-effects, represents unobservable socio-economic characteristics in the ith area. The vy, is a
error term that is independent and identically distributed for all 7 and ¢.

Let us assume there are ¢ (¢ < m) clusters, which are unobservable and thus we have to

decide g statistically. The area-effects, p;,7 = 1,...,m, should be classified into ¢ classes, say
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{1, - -, Mg Then the cluster-effects model is as follows:

Yie = pg +TaB+vy, 1=1,...,m; t=1,...,T; ifi € gth cluster (2)

The vector form of eq.(2) is
yve=Dopo+ XeB+uv, t=1,...,T (3)
The pg = (111, - - - , i4g) 1S & parameter vector to be estimated. Dy is an m x ¢ matrix of dummies

that indicates which area belong to which cluster. For example, if sth area and lth area belong
to the same cth cluster, then the cth element of the sth and Ith rows of Dy are the same, namely
1, and the other elements of the rows are Os.

We will consider how we can estimate the rank of Dy (namely q), o and G, and identify
the structure of Dy based on the model eq.(3). There are two points to be considered for the
estimation. Firstly, we have to find how many clusters are there, which area belongs to which
cluster and to estimate the parameters of concern at the same time. Without the classification
of area-effects into cluster-effects, we cannot obtain the consistent estimates of po. Secondly, let
A be an adjacent matrix of areas in the region, which is an m x m symmetric dummy matrix
indicating which areas are neighbors of an area. For example, if the 7, jth element is 1, then
i,jth areas are adjacent. The diagonal elements are 1 by the definition. Since Dj indicates
the structure of clusters, it should be a transformed matrix of the adjacent matrix A by using
information of which areas are combined together to a cluster.

From the statistical point of view, detecting the rank and structure of Dy is regarded as
a model selection problem. In this case, the largest model is the case where p,,..., g, have
different values, that is, they are not classified into fewer classes at all, namely the area-effects
model. On the other hand, the smallest model is the case where 3, . . ., 4, have the same value,
that is, they all are classified into one class. There are a lot of possibilities of classification
between the largest and smallest models.

In a statistical model selection context, there are two major methods, one is using Kullback-
Leibler-information-based selection criteria, namely AIC, BIC and SBIC (see Liitkepohl (1991),

for example), and the other using a resampling-method-based selection criterion. The former
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criteria are easily calculated but they heavily depend upon the assumptions of distributions.
On the other hand, the latter criterion needs huge computation time, though they are robust
to them. The asymptotic equivalence of cross-validation and AIC is proved by Stone (1979).
The model-selection criterion with the resampling methods is aggregate prediction error. In
a linear regression model, it is defined as
1 & - -
8 = =3 B((Ya; = (X PPIF)
i=1
where Y, is one of possible realizations at Xj, n(X;, 13') being an estimate of mean response
function and F' is an empirical distribution of Y and X that represents data. One of the
estimate of the aggregate prediction error is obtained by leave-one-out cross-validation, which

is defined as
R 1.m R
Acy = o > (y; — n(z;, F_j))?

i=1
where F_; represents the n — 1 observations {(zk,yx), k¥ # j}. In a linear regression model, we
have n(z;, F_;) = ij..j where 3_; is the estimate using just the data of Y and X excluding
the jth sample. To select a model among possible combination of explanatory variables, we
calculate Aoy for all combinations and select the combination which attains the minimum value
in principle. It is, however, almost impossible because there are too many possibilities to try.
In general, forward, backward, or stepwise methods are often used for selecting combinations
of variables when trying all combinations is impossible. In our model-selection problem, we
select the backward method, that is, starting with the largest model, we combine two adjacent
areas for all possible cases, selecting the combination that attains the smallest APFE and regard
a newly integrated area as a cluster. Then the number of the areas decreases by one in every
step of the procedure. By repeating this process, we can find the clusters where the APFE is the
smallest.

Let us explain the procedure stated above more precisely. The matrix form of eq.(3) is
y = (17 ® Do)uo + X + v, (4)

where y = (y1,...,¥7), X = (X§,...,X%) and v = (v},...,v})". The purpose is to find

the structure of clusters which is expressed in Dy and estimate py and 3. Since we use the
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backward method to combine the adjacent areas, we need an m x m adjacent matrix, A(m),
as an initial areal condition, while an initial matrix for D is an m x m identity matrix. First,
we calculate APEs for all possible combinations of two areas adjacent each other. For example,
assuming the kth area and [th area are adjacent, we calculate APE wi‘th an m x (m — 1) matrix
D(m — 1;k = 1), which created by integrating the kth and Ith column vectors. Among APEs
for all possible combinations, we can select the minimum-attained combination. We define the
value of APE(m-1) as APE*(m—1) and new (m—1) x (m—1) adjacent matrix as A(m—1). In
the next step, we use the adjacent matrix A(m—1) for searching possible combinations of areas.
Let us redefine y; and z; as the jth element and row vector of y and X for all j = 1,...,m7,
respectively. Then APE(k) is calculated as

1 ™7 ) .
APE(k) = —= > — di(k) -y — z;6-5)°
=1

where d;(k) is the jth column of 1® D(k), fi_; and (-; is the estimates using the data excluding
yj,d;(k) and z;. The optimal APE(k) is
APE*(k) = min APE(k)

Repeating this procedure from k = m to k = 2 and selecting k* as k* = min; APE"(k). Then

k* is the optimal rank of Dy and its corresponding D(k*) is the structure of clusters.

3 SIMULATIONS AND EMPIRICAL EXAPMPLE

In this section, we will examine if the method proposed in the previous section would work well
and apply it to analyze municipality-based data of housing start in Tokyo Metropolitan Area.
In the simulations, we will compare the estimates of cluster-effects model with that of the area-
effects model, namely within-class estimates. Note that we are not able to find the structure
of clusters or obtain consistent estimates of p with the area-effects model. The within-class

estimate of 3 is defined as follows:
Bw = (X'QX)™1X'Qy

where Q = I — 2(2'2)7'2', Z = I, ® 17.
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3.1 SIMULATIONS

In the simulations, we generate the necessary data based on eq.(2) for 3 years (T=3). We use
a 6 x 6 lattice for a total region to be examined, where there are 36 areas (m = 36 in eq.(2)).
We have to define which are neighbors of an area at first. We assume that left, right, upper
and lower adjacent areas of an area are its neighbors. Note that there are just 2 neighbors
for 4 corner-areas of this region and 3 neighbors for edge areas. We make sequential numbers
for the areas in an order so that the 7,7th cell of the lattice should be 6 x (i — 1) + j (see
Fig. 1). We set three clusters, the upper-left cluster consisting of 9 areas (1,2,3,7,8,9,13,14,15),
the upper-right cluster consisting 9 areas (4,5,6,10,11,12,16,17,18), and the rest consisting of
18 areas. The cluster effects are set as p = (2, 5,10) for upper-left, upper-right and the rest
clusters, respectively.

The explanatory variable and the errors , z;; and vy, are independently drawn from N(3,9)
and N(0,4), respectively. The parameter J is set to be 2. We conducted 1000-times simulations.

In these simulations, we also consider the other case, where the cluster-effects are random

and spatially correlated. The model is specified as
Yir =mit18+ui+vit: 1= 1)"'1m; t= 1"'-1T)

where u; represents random cluster-effects. We specify the conditional density function of the

ith variable, u;, as follows:

' . 1 .
fual{uy, 3 §Ni}) = s &P [—(ui —m(u;;j € M))2/02] , (5)
where N is a set of neighbors of the ith area and the conditional mean is defined as

m(us; 5 € M) = s + 3 Ae(uy — 1)
JEN;

where ¢;; = ¢;i, ¢ = 0 and ¢ =1 if there is pairwise dependence between area i and area k,

otherwise it is 0. The joint distribution of u = {uy,...,un} is obtained as follows:

u~ N, (I = 20) ™M), (6)

—512—



where g = (u1,...,4m), C a m X m matrix with its 7, jth element being ¢;; and M is a

2. The detailed explanation of

m X m diagonal matrix with its ith diagonal element being o
its properties is discussed in Cressie (1993). The random cluster-effects, u;, 1 = 1,...,m, are
generated from normal distribution of eq.(6), where p = 0, A = 1/4, M = 3 x I, and the
adjacent matrix is defined above.

Firstly, we evaluate how correctly we can select the number of clusters, the structure of
clusters and how efficiently we can estimate the values of i with the method. For the first
point, we examine the distribution of the selected number of clusters in the simulations. We
also examine the expectation how many estimated clusters lay across the true clusters. For the
second point, we evaluate the efficiency by the mean squared error for each 36 areas, comparing
three mean squared errors of the estimates, namely estimates with true clusters, those with
selected clusters and the within-class estimates.

In table 1-1 and 1-2, we can see descriptive statistics of the distribution of the estimated
number of clusters and the number of estimated clusters laying across the true clusters for
the cases in fixed- and random-effects models. The mean and median of estimated number of
clusters obtained with 1000 times simulations are 9.58 and 9, respectively, in the fixed-effects
model and 14.16 and 14, respectively, in the random-effects model. Its standard deviation is
1.80 and about 80 % of the estimates is in the region from 7 to 12 in the former case. With
this simulation, we can see the method tend to select larger number of clusters. Even if the
estimated number of the clusters is larger than the true clusters, it does not cause bias of the
estimates of the parameters as long as the column vectors of true cluster matrix, Dy of eq.(3)
are expressed as linear combinations of the estimated cluster matrix D, though it affects the
efficiency of them. The expectation of the ﬁumber of estimated clusters that lay across the true
clusters is less than 0.5, its median being 0 and the 90 percentile is 1 in the fixed-effects model.
Thus the probability of the estimated clusters lying across the true clusters is extremely small.
On the other hand, in the random-effects model, the expectation is more than 1 and the median
is 1 so that there is a little possibility that the estimates of parameters are biased.

In table 2-1 and 2-2, we can see means of i and mean squared errors (MSEs) of the OLS

estimates in the estimated cluster model, true cluster model and non-clustered model, namely
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the within-class estimates. In both cases of fixed- and random-effects models, the estimates
of the cluster-effects in each area are almost unbiased. In the fixed-effects model, the mean
squared error of the clustered model is uniformly smaller than the non-clustered model, though
they are larger than the true model. Note that the mean squared error of the clustered model
consists of three parts, that is, the squared bias, variance of the estimate and the bias caused
by misclusterihg. The third factor of the MSE is negligibly small from table 1-1. Even in the
random-effects model, the MSEs of the estimates in clustered model are uniformly smaller than
the non-clustered médel, though the values are not so different from the non-clustered model.

Secondly, we compare the estimates of 3 in the estimated clustering structure with the
within-class estimate. In table 3, we can see means, standard deviations and MSEs in OLS
estimates with estimated clustering structure, in the within-class estimate and in OLS estimates
with true clustering structure. In the case of fixed-effects model, both the standard deviation
and MSE of the estimates of the clustered model are superior to the within-class estimate,
though OLS estimates of the true cluster model is the most efficient among these estimates. In
the random-effects model, since the within-class estimate is obtained by eliminating the effects,
it is the most efficient estimate among them. Even in this case, the estimate of the clustered
model is nearly as efficient as the within-class estimate. The OLS estimate with true clustering
structure is the worst.

From the results of the simulations, we are able to conclude as follows: Firstly, the leave-one-
out cross-validation tends to select larger model than the true model but the estimated clusters
seldom lay across the true clusters so that the estimates of the cluster-effects are almost unbiased
and also efficient than the within-class estimates. Secondly, in the case where the cluster-effects
are fixed, the parameter-estimates of the explanatory variables are more efficient than the
within-class estimates. Even in the cluster-effects being random, they are nearly as efficient as
the within-class estimates. Thus, the estimates proposed in this paper are more preferable than

the within-class estimates when the cluster-effects exist.
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3.2 EMPIRICAL EXAMPLE

In this subsection, we apply our method to examine the determinants of the number of housing
start per household of the municipalities in Tokyo Metropolitan Area (TMA) from 1996 to 1998,
which is defined as a collection of areas that locate within 60-minute-distant from the Tokyo
station. There are 87 municipalities in the region.

The explanatory variables are logarithm of income per household, logarithm of average price
of residential land and logarithm of population density in an area. The explained variable is also
taken logarithm. We expect housing start in an area with higher income per household will be
larger than other areas. The average price of residential land in an area represents amenity of
the area since amenity is capitalized in the land price. Thus in the area with higher land price
demand for houses is larger than the other areas. The population density represents disutility
caused by congestion. These three variables are the kernel of the determinants of housing start.
At the same time, we are concerned with unobservable factor that affects housing start except for
the kernel. The unobservable factor represents potential demand for houses in an area where,
for example, housing stock per household is below the standard. Or it may be resistant or
improving factor to build new houses by some official restrictions or area-development policies.

In table 4, we can see the estimates with clustered and non-clustered models. The within-
class estimates are somewhat different from the clustered model. In both models, the income
factor is insignificant but land price and population density are significant, though the values
of the estimates are different. The coefficient of the land price is positive because it represents
amenity of an area. Population density affects the housing start negatively because of the
disutility of congestion. In figure 2, we can see which areas belong to the same cluster. Clusters
.are found along railways and river. East areas of TMA along Sumida River; Southern areas
of Tokyo and western areas of Yokohama along Odakyu line; Western areas of Tokyo along
Seibu-Shinjuku line, areas in Chiba along JR Sobu-line and so on. In figure 3, we can see the
potential demand for houses represented by the cluster-effects. Potential strong demand for
houses is found in northern part of Tokyo-23-districts and a southern area of Yokohama. On

the other hand, the potential demands in the center and the border areas of TMA are weak.
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Let us compare figure 3 and 4 that is a crude map of logarithm of housing start per household.
These two maps give us different impression. In figure 4, the border areas and center of TMA
have strong demand for houses per household. After adjusting the data with income, amenity
and disutility by congestion, the potential demand is found in the areas where the demand

seems to be weak in figure 3.

4 DISCUSSION

We propose a method of deciding how many clusters are there and which area belongs to which
cluster and show by simulations that it works well and the estimated parameters of concern
are more efficient than the within-class estimates. We also apply our method to examine what
are the determinénts of the number of housing start in Tokyo metropolitan area and spatial
distribution of the unobservable potential demand for houses.

We adopt an aggregate prediction error as a model-selection criterion, which is estimated
by a resampling method, namely leave-one-out cross-validation. It is possible to estimate the
criterion with other resampling methods, say bootstrap or a hybrid type of them, leave-one out
bootstrap, that may be work better than leave-one-out cross-validation.

The cluster-detecting procedure proposed in this paper does not search for all possibilities
of clusters, because the calculation cost is huge. There may be, however, another efficient
procedure to find the optimum among the possibilities.

What if we cannot use a panel data set? One possible solution is to assume g is unknown
function of location, which is often called an intensity function, and estimate it with a nonpara-
metric method. Though the method in this paper is regarded as spatial smoothing by decreasing
parameters related to clusters, the method employing the intensity function is regarded as a

nonparametric smoothing method.
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Table 1-1: Descriptive Statistics of Selecting
of Clusters in Fixed-effects Model

Number of Clusters

Number of Estimated
Clusters Laying across
True Clusters

Mean
Standard
Deviation

5 percentile
10 percentile
Median

90 percentile
95 percentile

9.58

1.80

e ]
W N O a3

0.46

0.58

_—0 O O

Table 1-2: Destrictive Statistics of Selecting of
Clusters in Radom-effects Model

Number of Estimated
Number of Clusters  Clusters Laying across
True Clusters
Mean 14.16 1.047
Standard
Deviation 2.50 0.81
5 percentile 10 0
10 percentile 11 0
Median 14 1
90 percentile 17 2
95 percentile 18 2
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Table 3: Comaprion of the OLS Estiamte with the Within-class

Estimate

OLS estimate with
estimated clustering Within-class estiamte

OLS estimate with
true clustering

structure structure
Fixed-effects Model

mean 1.997 1.997 1.996
standard

deviation 0.076 0.079 0.067
mean squared

error 0.0058 0.0062 0.0045

Random-effects Model

mean 1.998 2.000 2.002
standard

deviation 0.076 0.075 0.084
mean squared

error 0.0058 0.0056 0.0071
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Testing the One-way Effect and Application
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This paper provides an approach to testing the measures of one-way effect for cointegrated
vector time-series in the presence of trend breaks. We propose the Wald tests of the
measures of one-way effect and their computational algorithm. It is an extention of the
work of Yao and Hosoya (2000) to the case where trend breaks are explicitly taken into
account in the cointegration relationship. The discussions of the one-way effects are based
on cointegrated system. Hosoya and Takimoto’s (2000) cointegration rank test in the
presence of trend breaks is used. On the basis of the proposed method and the derived
evidence, the paper presents a causal-structure characterization of the Japanese money and
income as well as interest rates in the last forty-four years.

To solve the problems of determining the direction of causality between a pair of time
series and also of statistically testing the absence of feedback, Granger (1969) introduced
a celebrated definition of causality. Among the earlier representative studies of testing the
absence of feedback relation are the Granger test of zero restriction on specific coefficients
of a stationary autoregressive representation and the Sims test of the zero restriction on
some coefficients in moving-average representation of stationary bivariate processes. For the
purpose of quantitative characterization of the feedback relationship between two multivari-
ate time series, Hosoya (1991, 1997) introduced three causal measures which summarizing
the interdependency between a pair of time series. Incorporating Johansen’s algorithm for
the ML estimates and the likelihood ratio tests, in dealing with nonstationary time series
processes by error correction model, Yao and Hosoya (2000) proposed the Wald test of
the causal measures and a method of confidence-set construction for the causal measures,
providing computational algorithm for them. Diflerent from most of the econometric causal
analysis literature which seems concerned only with testing Granger’s non-causality, Yao
and Hosoya (2000) gave a new approach for empirical causal analysis of macroeconomic
data based on the concept of the one-way effect measure.

This paper extends the causal inference based on Wald statistics by Yao and Hosoya
(2000) to cointegrated processes possessing trend breaks, and exhibits relevant computa-
tional procedures. We investigate causal structure among Japanese money, income and
interest rates during the period of the first quarter of 1955 through the fourth quarter
of 1998. Diflerent from Yao and Hosoya (2000), which dealt with no structural change
case, the causal analysis in this paper is based on following cointegrated VAR model which
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involves trend break dummy variables,

AZ(t) =B Z(Et—1)+ ir(i)AZ(t —1)+ iijj(t) + <I>P(t) + £(t),

i=1

where cointegration rank r and B (rankf = r) are determined by the test of Hosoya and
Takimoto (2000) for ¢ = 2 and 3. The reason we chose two or three break points is that
in the last forty-four years, Japanese economic growth experienced three major stages of
high, medium and low growth. The time points of macro economic structural changes are
commonly considered located around the twice of oil crises and the collapse of the “Bubble
Economy”.

In order to characterize the causal relationship between Japanese money, income and
interest rates, we use the one-way effect method based on error correction model with trend
breaks. The data used are the quarterly observations of GDP, M2+CD, Call Rates, and
Loans & Discouts (LD, all banks and other financial institutions) in the Bank of Japan.
Since in our model, the distribution of the likelihood ratio statistic depends upon the loca-
tion of breaks and the related nuisance-parameters, we present simulation-based estimates
of large-sample p-value due to Hosoya and Takimoto (2000)’s algorithm. Our empirical
analysis indicates that income notably causes M2+ CD; on the other hand, M2+CD causes
income very weakly and only in the long-run. The LD causes income but income seems
causing the LD only in the very long-run. The interest rates cause both M2+CD and
income but not the other way around. Although the estimated causal measure of inter-
est rates to LD is not significant, a small eflect of LD to interest rates is observed in the
long-run. As regards the policy instrument choice between M2+CD and interest rates to af-
fect the growth of output, our evidence suggests that interest rates might be more effective.
The empirical results also show that the effect of the second oil shock is comparatively small.
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Abstract — We consider a prediction method based on cokriging for improving quality of images. It is assumed
that sets of multivariate data with different spatial resolutions are observed at the same rectangular region such as
imagery from satellites. The data of low resolution are corrected by the data of high resolution through cokriging-
like method. In this approach, we assume the ordinary covariance structure in cokriging as well as a simple structure
called the intrinsic correlation model. Our predictors are applied to the fusion of the multiresolution imaging data
from the satellite Landsat. It is seen that they show an excellent performance in comparison with the method in
the literature.

I. Introduction

In remote sensing, high spatial resolution images are required. However, in most cases, instruments are not
capable of providing such data because of observational limitations. Hence, only one sensor in several sensors may
be high-resolution.

As a first example of such situations, suppose that high-resolution panchromatic image and low-resolution
multispectral images are given. For instance, the spatial resolution of visible lights of the satellite IKONOS is
of 4m, whereas that of panchromatic sensor is of 1m. Also, the resolutions of SPOT are respectively 20m and
10m, and those of LANDSAT 7 are 30m and 15m. Many algorithms for enhancement of lower resolution imagery
by combination of high- and low-resolution data are proposed. The most commonly used procedure is the Hue-
Saturation-Value (HSV) transform, in which three band spectral data corresponding to red, green and blue at
the lower spatial resolution are converted to hue, saturation and value, after which the values are replaced by the
panchromatic values of the higher resolution. Then, the result is transformed back to the red-green-blue. Thus,
an enhanced multispectral image is obtained. However, the HSV method produces spectral degradation, and this
is valid only when the number of images is three.

Here is another example. Suppose that seven bands of the Landsat 5 Thematic Mapper (TM) sensor are given.
The Band 6 of the sensor is physically important because it is a measurement on heat radiation. Unfortunately,
its resolution is of 120m, while that of the other six bands is of 30m. This difference of resolutions causes many
difficulties in analyzing TM data. For example, discriminant analysis on TM data is performed by omitting values
of Band 6 in many cases. Such a strategy may lose much information. If one can enhance the resolution of Band
6, 7-dimensional data of high resolution would be helpful in many applications.

Inamura (1988) proposed a deterministic approach for this purpose by estimating proportions of categories.
Zhukov, Oertel and Lanzl (1995) and Zhukov et al (1995) took a deterministic and statistical approach. First, the
images of high resolution are used for clustering spectrum characteristics. Second, the value of Band 6 at each
pixel is replaced by the estimated mean of Band 6 of the corresponding cluster. This method may be powerful,
but needs much computation and overfits to the data. See, e.g., Duda and Hart (1973) for clustering techniques,
and Zhukov et al (1999) for data fusion. Nishii, Kusanobu and Tanaka (1996) took a fully-statistical approach by
employing a multivariate normal distribution for the joint distribution of 7 band values. By assuming a conditional
spatial-independence of Band 6 given the high-resolution bands, they correct the values of Band 6 by the conditional
expectation.

In this paper we take another statistical approach based on cokriging. The values of low-resolution bands in
some pixels are enhanced by the high-resolution bands observed in the first /second order neighborhood of the pixels
by taking spatial correlation into account. The proposed procedure is examined by the TM image of Hiroshima
City. And then we compare our method with the HSV method and the conditional expectation by Nishii et al
(1996), and shows a good performance. See Cressie (1991), Wackernagel (1998), and Chilés and Delfiner (1999) for
cokriging methods.
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II. Prediction for low resolution bands based on cokriging

2 6 2 S
3 0 1 3 0 1
4 7 4 8

Figure 1: Four-adjacent-pixels window (left) and all-square-pixels window (right) of the center pixel 0.

Figure 1 illustrates two local windows discussed in the article. The values of low resolution bands at the center
pixel 0 will be enhanced by the high resolution data at the pixels 0,1,2,3,4 or 0,1,---,8. In both cases, we use
the same notation for spectrum data. Let

m:(?):@+@xLi=Qhuﬁ, W

be spectrum data at the ith pixel, where X; represents a random vector of low resolution bands, and Y; represents
a random vector of high resolution bands.

We suppose that the random vector Z; (i = 0,1,...,8) have a common mean vector and a common variance-
covariance matrix in the respective windows defined as

Bzi=p = () Grax1 VEZ)=20):6+dx G+ ®

Corresponding to the following spatial covariance-structures of Z;, we propose enhancement procedures.

A. Cokriging in four-adjacent-pixels window
Consider the four-adjacent-pixels window. Each pixel is numbered from i = 0 to 4, see Figure 1. We suppose
the following spatial covariance-structures of Z;:

(1), ifd(i,j)=1
Cov(Z;,2Z;) = 2(V2), ifd(,5)=+v2 fori,j=0,1,...,4, (3)
©(2), ifd(i,j)=2

where d(z, ) denotes the distance between two pixels ¢ and j. We partition the covariance matrices T(k) as

p q
P (Zaz(k) Iz (k)>
o(k) = v t(p+q) x (p+q) for k=0,1,v?2,2. 4
®=2 (3= 28 eroxero o @
In our setup, observations on Y; of high resolution bands, say y; are available for ¢ = 0,1,...,4, whereas each

X of low resolution bands is not observed. We assume that the values of low resolution bands at the center pixel 0
are observations of the average values }: —0 X;/5 = X5. Under these conditions, our aim is to predict the values
X of low resolution bands based on the observations yg,y1,...,¥, and Ty in the local window. We shall derive
the predictor of X o based on cokriging.

The linear predictor of X is defined as

4
Xo=Xs+BoYo+B) Y, (5)
j=1

where By and B are unknown p x ¢ coefficient matrices.

In the literature, several models in cokriging are proposed, for example, ordinary cokriging, simple cokriging,
collocated cokriging and so on. See Cressie (1991), Wackernagel (1998), and Chilés and Delfiner (1999) for these
models. Our model is new one in cokriging, which is not discussed in the literature. It is different from the above
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models in that X and Y} are available at the center pixel 0.
Also, ask for a predictor that is uniformly unbiased, that is,

E(Xo] = p, + Bop, +4Bu, = p,. (6)

The equation (6) yields the necessary and sufficient condition for unbiasedness as

By +4B = 0. )
Hence, under this condition the generalized mean-square prediction error is given by
= fe— = - 4 8
ol=FE [ (X0 — Xo)'222 (0)(Xo — Xo) ] = tr{ £22(0) ( %Eu + EBE”: +4BT,, B’ ) } , (8)

where the symbol ’ denotes the transposition of the vector/matrix, and Tgz : p X p, Ty : ¢ X P, Dyy g% qare
submatrices of ¥ defined by

L = 52(0) — 8T(1) + 22(V2) + £(2). (9)

Hence, the best linear unbiased predictor (BLUP) is obtained by minimizing the generalized mean-square prediction
error (8). After differentiating (8) with respect to B, and equating the result to zero, we get the optimal parameters.
Consequently, we have BLUP of low resolution bands at the center pixel 0 as

—~

— 4 . —
XA = X5 + 's'ExyE;;(YO - Y4) with Y4 =

o

4
>y, (10)
J=1

B. Cokriging in all-square-pixels window
Next, we consider an all-square-pixels window consisting of 9 pixels, see the right hand side of Figure 1. We

suppose that the random vector Z; (i =0,1,...,8) have the following covariance-structures:
(1), ifd@Ej =1
2(v2), #d5)=v2
Cov(Z;,Z;) = Z(2), ifd@s,j) =2 for ¢,j=0,1,...,8. (11)
B(v3), ifd(i,j) = V5

In this case, we suppose that the values of low resolution bands are regarded as observations of the average values
E?.—.o X;/9 = X,. By the unbiased condition, BLUP is of the form:

4 8
XB ZYQ‘FBZ(Y]' ~Y0)+CZ(YI: "YO)a (12)
j=1 k=5

where B and C are parameter matrices of size p x g. By minimizing the generalized mean-square prediction error,
we estimate them as

B =5 2m () Ey - B (B, - S ) e} ad O= —BEy + en o)
where
Thy = 9%ay(0) — 1055y(1) — 284y (V2) + gy (2) + 282 (VE),
5, = 935(0) — 284y (1) — 1252y (V2) + 285 (2) + 284 (V) + £4y (V8),
Loy = 5Zy(0) — 82y (1) + 2%y (V2) + Ty (2),
Ly = 5Zy(0) - 8y (V2) + 284, (2) + T4y (VB),
E;;‘ = 284y(0) = Ty, (1) - 221111(\/2-) + Ew(\/g)~

C. Cokriging under the intrinsic assumption

In the hypothesis of the intrinsic correlation model in which the covariance function matrices L(k) (k =
1,v/2,2,+/5,/8) are all proportional to a function p(k) called a spatial correlation function, that is,

(k) = p(k)T(0), for k= 1,v2,2,/5, 8. (13)
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Under the assumption, the matrix Esz;J appearing in the formula is simply given by E;v(O)Efy‘J(O), which is
independent of the spatial correlation function p(-). Hence we get the BLUP of X, say X ¢, at the center pixel 0
in the four-adjacent-pixels window by

4
= -~ 4 _ — S |
Xc=Xs+ g‘\:E‘!,(O)zw}(o)(yO ~¥,) with ¥y = ; >y (14)
=1
Similarly we have the predictor in the all-square-pixels window, say 5(\0 as follows:

——

Xp=Xo+

| co

8
— U |
Zay(0)E; (0)(Yo — ¥s) with ¥y = 3 >y, (15)
=1
See, e.g., Wackernagel (1998) for more detail explanation in the intrinsic correlation model.

I11. Enhancement of imagery based on a panchromatic image

Many satellites equip panchromatic sensors whose spatial resolution is finer than other sensors, see (a) and (c)
of Fig. 2 for example. Concerning the satellite IKONOS, the spatial resolution of visible lights is of 4m, whereas
that of panchromatic sensor is of 1m. Also, the resolutions of SPOT are respectively 20m and 10m, and those
of LANDSAT 7 are 30m and 15m. The panchromatic images aim to supply supplementary information for the
low-resolution images.

The following data fusion technique, called HSV transform, of low-resolution colored imagery and high-resolution
panchromatic imagery is widely used. The intensities corresponding to Red, Green and Blue of low-resolution im-
ages are transformed into Hue, Saturation, Value. Next, only Value is enhanced by the high-resolution panchromatic
image. Then, Hue and Saturation of low resolution and Value of high-resolution are transformed inversely. Thus
we obtain pseudo-enhanced colored imagery.

Unfortunately, this method is only available in the case that the dimension of the multispectral imagery is just
three. Further, this loses information on mean values of colored images in each pixel of low-resolution.

In this data fusion, we employ the methods proposed in the previous section. The actual Landsat TM data of
Hiroshima taken at Oct. 23, 1990 are used for numerical study. We generate a panchromatic image with spatial
resolution 30m of size 860 x 1120 by summing four Bands 1 to 4 corresponding to Blue, Green, Red and Ultra red.
Then, we average the visible bands 1 to 3 by 4x4 pixels and get a low-resolution colored image with resolution 120m
of the same size, and the inner region of size 250x250 is corrected by of the panchromatic image. The correction
is evaluated by the ratio of sums of absolute errors or of square errors:

250 250 250 250

PP RSN

i=1 j=1 i=1 j=1

—b b

&
U.{ for b=1,2,3 and a=1,2, (16)

where X fj, X?j and X f} respectively denote original values to be predicted, averaged values by 120m square regions,
and the predicted values for the band b at pixels (3, 7).

Table 1 compares the HSV method, conditional expectation due to Nishii et al (1996) and our methods. This
table shows that the conditional expectation method is best, and the intrinsic model in all-square-pixels window is

the second best.

Table 1: The ratios (16) due to the correction methods through the images of size 250x250

Absolute errors (a = 1) Square errors (a = 2)

Correction methods Bandl | Band2 | Band3 Bandl | Band2 [ Band3

Cokriging (4-adjacent-pixels window) 0.9635 | 0.9660 | 0.9696 | 0.9174 | 0.9187 | 0.9190
Intrinsic model (4-adjacent-pixels window) || 0.7796 0.7580 0.7533 0.5869 0.5627 0.5568
Cokriging (all-square-pixels window) 0.9518 | 0.0543 | 0.0586 | 0.8911 | 0.8920 | 0.8918
Intrinsic model (all-square-pixels window) || 0.7155* 0.6805* 0.6767* 0.4794* | 0.4432" 0.4373*

Conditional expectation 0.5435** | 0.4480** | 0.4359** || 0.2623** | 0.1760** | 0.1655**
HSV 1.2646 0.8840 0.8078 0.9520 0.4992 0.4867
** and * denote the best and the second best values.

The figure (c) of Fig. 2 gives a 4x4 averaged image of the original image (b). Using the panchromatic image (a),
(c) is corrected by the three methods: Intrinsic model in all-square-pixels window (d), conditional expectation (e),
and HSV (f). In the figure (f), the forest is painted by blue. This point can be also confirmed by Table 1, because
the correction of Band 1 (blue) due to HSV is poor. Figures (d) and (e) are clear, but (e) can detect narrow roads.
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(e) Correction by conditional expectation (f) Correction by HSV

Figure 2: Images of Hiroshima of size 250x 250,
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IV. Enhancement of infrared images

Next, we consider enhancement of spatial resolution of infrared images. The spatial resolution of Landsat 5 TM
sensor except Band 6 is 30m, and the resolution of Band 6 is 120m. Fig. 3 shows a local window consisting of 16
pixels of size 120mx120m at which Band 6 is observed, and Fig. 4 shows gray scale images based on Bands 3 and
6 respectively.

There are some algorithms for enhancement of infrared images based on high-resolution bands as we described
in section I. However, these methods seems not to be satisfactory because they can distort the radiometric char-
acteristics of Band 6. In this section, we employ our methods for improvement of the spatial resolution of the
infrared images. The proposed methods are applied to Landsat 5 TM images of Hiroshima City, Japan taken at
Oct. 23, 1990. .

120m

120m
Figure 3: Low- and high-
resolutions of the TM sensor

Figure 4: Band 3 (left) and Band 6 (right) TM images of size 300 x 300,
Hiroshima, Japan at Oct. 23, 1990

Concerning Band 6, their exact values observed from respective pixels of 30 meters square are not available.
Using the wider area of size 2,000 rows X 2,000 columns of the same data used in the previous section, we generate
quasi-true values of Band 6 and examine our procedure in the following steps:

(S1) All band data are 4x4 averaged and seven images of size 500x500 are derived.
(S2) Band 6 values are again averaged in 4x4 pixels.

(83) Choose a subset of the high-resolution bands. Then, Band 6 values generated by (S2) are corrected by our
methods based on the selected variables generated by (S1).

(S4) The correction is evaluated in the same way as the previous section.

Table 2 compares conditional expectation due to Nishii et al (1996) and our methods. We see from Table 2
that when all high-resolution bands are used, the cokriging in all-square-pixels window is best, and the cokriging
in 4-adjacent-pixels widow comes next. In this case, the remaining methods are poor because the evaluated values
are greater than 1. However, the evaluated values are improved in all methods when the high-resolution bands
are selected. The minimum value and the selected bands in each method are shown in Table 2. The problem for
selection of bands is discussed in Nishii, Kusanobu and Nakaoka (1999).

Table 2: Ratios of sums of absolute errors or of square errors due to correction methods

Absolute errors (o = 1) Square errors (a = 2)
Correction methods All bands | Selected bands || All bands | Selected bands
Cokriging (4adjacent-pixels window) || 0.0688° | 0.9410°(2,3) | 0.8696° | 0.8275(2.3)
Intrinsic model (4-adjacent-pixels window) || 1.1224 0.9464(1) 1.1214 0.8275(1)
Cokriging (all-square pixels window) || 0.9606" | 0.9371"(2,3) || 0.8577" | 0.8199°(2,3)
Intrinsic model (all-square-pixels window) || 1.1757 0.9453(1) 1.2105 0.8039**(1)
Conditional expectation 1.2813 1.0076(1) 1.4574 0.9148(1)

Selected bands are given in parenthesis.

Each figure in Fig. 5 is enlarged to observe in detail. The figure (b) of Fig. 5 gives a 4x4 averaged image of
the figure (a). Using all high-resolution bands, (b) is corrected by the two methods: Cokriging in all-square-pixels
window (c), conditional expectation (d). Figures (c) and (d) are clearer than the averaged image (b). However,
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it seems that figure (d) is overfitted by the high-resolution bands, that is, the corrected image loses radiometric
information of Band 6.

(a) Quasi-true image of Band 6 (b) Averaged image of (a) by 4x4 pixels

(c) Correction by cokriging (all-square-pixels window) (d) Correction by conditional expectation

Figure 5: Enlarged images of Hiroshima of size 500x500.

V. Concluding Remarks

The purpose of this paper is to enhance low resolution images based on cokriging method. We derived predictors
theoretically by considering spatial correlation between pixels.

According to the results of the application to the colored images in section HI, the enhanced images by the
intrinsic model in all-square-pixels window are better than those by the HSV in the sense that mean values of
the colored images in each pixel of low-resolution images are preserved. Thus, our method can be considered as
an improvement of the classical HSV method. However, we cannot conclude that our method is best in this case
because the results by Nishii et al (1996) are better than those of our method.
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In another application to the infrared images in section IV, we could get better results than Nishii et al (1996).
In this experiment, we saw that it was difficult to get the high-resolution infrared images as the high-resolution
colored images could be obtained in section I. The wavelengths of Band 6 are quite different from those of the
other bands, in addition, only Band 6 is a measurement on heat radiation, on the other hand, the other bands
are reflective measurements. It can be considered that these differences cause difficulty in enhancement of Band 6
using other 6 bands

Although we applied our methods to only Landsat 5 TM images and showed good performances in this study,
we would like to apply those to IKONOS and Landsat 7 TM images, and evaluate the performances in the future.

Finally, the most difficult and important problem is in estimation of the covariance function matrices (k) (k =
0,1,v2,2,v5,/8). The better estimates for the covariance function matrices would improve the predictors. This
problem still remains.
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Hybrid expansion for option pricing
R RS HERE
R KFHE LN

1 Random Limit Expansion for Small Diffusion Processes

Consider a d = d(1) + d(2)-dimensional diffusion process
Xe=(X(e X m");qom is defined by the stochastic differential equations:

dXt(l),e - Vo(l)(Xf’e)dt.‘.V(l)(X“,e)dwgl)

ax® = v(xPe)dt + VXD, )dw?,
1),e 1
X(() e :cg )
Xc()z),e _ x(02))

where:

w): r(1)-dimensional Wiener process, w(®: r(2)-dimensional Wiener process,
coefficients are all in class C{°, (namely, smooth in (z,€) with bounded §:87-derivatives for i > 1 and j > 0).

Moreover, we assume that
V@(.,0) =0 equivalently.

We here consider a functional Z¢ defined by
T
VARES / ﬁ(X:)e)V(dt)v
0
where § € C3°(R® x [0, 1}; R*) and v is a random measure on [0, T}.

Given a function 7 : W) x W®) — C22(R? x [0,1]; R4.), let

G° = exp (—/OTT(X‘,e)dt) .

Note that time-dependent 7 can be treated if we extend the original X*°. In order to evaluate the option price, we

need to calculate the expected value
P[G*T (Z¢)]

for a measurable function T.
Functionals Z¢ and G* have an asymptotic expansion:

Z¢ ~ ZO) 4620 + 223 4. in Do (R¥)
as € = 0 with Z(®,Z(), .. € Doy (R*) and
Gt ~ GO 4GV +GP 4. in Dy

as ¢ = 0 with G, GV, ... € D.
Under the non-degeneracy condition for Z () one obtains the asymptotic expansion:

PIGT(29)] ~ P[o®]+eP[o®] 4.

as ¢ —+ 0 for any measurable function T of at most polynomial growth.
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2 Simurations

2.1 Example 1

O&FN

dX¢ =

du§
X5

v§

(u+ Bof)dt + c(vf) i dw,
—0(v§ — a)dt + €(vf) T diby
Zo

vo

ZIT, 0,80, ciIER, W= pw+1-plw*, plXEK,w & w AL
D a—wEFra—AXrray (Z5=Xs (T=1),T(z)=(z—-K))

Ge = exp(~ [T vidt) LT B, OB, ATV arTTA ARKORMER ;

PG4(X4 — K)4] ~ P8 + eP[@M)] + ..

3 = cOT(Z®), oM = G(O)aT(Z(O))Z(l) +GNT(ZO).

T T
720 =x3, ZW =Dy, GO =exp (—»/; v?dt) , GO = —-G(O)/O oM.

T2, Dy o= (8)oX¢ T, WD SDE 2 HET 5:

dD;
Dy

*7-.

= poMdt+ %c(v?)"évfl)dwc
= 0

¢
oM = (B)ovs = /0 0= (u0) 2 dii,

OvETalb—ya BB (u=05,8=04,c=25,0=10.0,a=0.5zo= 5v9=0.1, p=0.5)

K=4.5 K=5.0

P 0.1 0.3 0.5 € 0.1 0.3 0.5
(1) MC 0.896015 0.892005  0.885187 (1) MC 0.673349  0.670767  0.664272
21 0.900821  0.900821  0.900821 )1 0.677206  0.677206  0.677206
Difference -0.004806 -0.008815 -0.015633 Difference -0.003857 -0.006439 -0.012933
Diff rate % -0.536 -0.989 177 Diff.rate % -0.57 -0.96 -1.95
(3) II 0.897841  0.895269  0.885920 @) 11 0.674840  0.670108  0.665377
Difference -0.001826 -0.003263 -0.000733 Difference -0.001419  -0.000659 -0.001105
Diff.rate % -0.204 0.366  -0.0828 Diff.rate % -0.22 -0.09 -0.166

MC=Maonte Caro 10000000 [}

I=First order,II=Second order,JII=Third order

MC=Monte Caro 10000000 [&]

I=First order,lI=Second order,I1I=Third order
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K=5.5

€ 0.1 0.3 0.5

(1) MC 0.485223 0.481410 0.479382
(2) 1 0.487615  0.487615  0.487615
Difference -0.002392 -0.006206 -0.008233
Diff.rate % -0.49 -1.29 -1.72
(3) 11 0486000  0.482797  0.486698
Difference -0.000786 -0.001387 -0.007317
Diff.rate % -0.16 -0.29 -1.53

MC=Monte Caro 1000000 [=]
I=First order,II=Second order,III=Third order

T
® TRL—Va—nAdFay (2= % / Xedt (T =1),T(z) = (=~ K)..)
G - LT B, ’

T
Pl(% / Xidt — K)3] ~ PO + eP[@®)] + 2 PP + ...
0
50 = 9T(29), 30 = oT(Z2™)ZV, 3D = oT(2 )2 4+ %azT( ZOy(ZWy2,

7 — l/TXOdt Z(‘)—l/TDdt Z® = l/TEdt
TT Sy Tt Ty T T
DI, Byi=(02)pX¢ . K SDE ¥R T 5:

{ dB, = Bo®dt+ (Je(w?) 1ol — 1e(u)} (")) dw,
g 0

il

¥7,
t
v := (8F)ovf = / e (w)) " 2o di,
0

OUsalb—2a iR (u=050=04,c=250=20a=15z0=10,v9=20, K =15,p=0.5)

€ 0.3 0.7 1.0
(1) MC 1.162432 1.184568 1.201118
21 1.145018 1.145018 1.145018
Difference 0.017414 0.039550 0.056100
Diff.rate % 1.5 3.3 4.7
(3) 11 1.161007 1.182536 1.198616
Difference 0.001335 0.002032 0.002502
Diff.rate % 0.11 0.17 0.20
(4) TII 1.160806 1.180949 1.195375
Difference 0.001626 0.003619 0.005743
Diff.rate % 0.13 0.30 0.47

MC=Monte Caro 10000000
I=First order,II=Second order,III=Third order
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2.2 Example 2

OEFIIN
((dX = (u + Brof) de + oy () dwl)
1
dXP = (g + Bovf) dt + ¢z (v)? dw?
i
dvf = ~0(vf—a)dt+e(vf)? dw®
Y xWe _ L0
0 = Ty
XéZ),e _ zgz)
L v = .

ZIT B, (i=1,2),0,c ZEK. wl) w® w6 FXEVICHNIA Wiener i@,
~A 77 BESKAS, (,}, JExMarv kT xEede - K)+ THEXBNBA TV a v kLD, Hb,

1 (T . 1 (T
Z¢ = —/ Xf)"dt,—/ XPdt), Tz, z)=(xnVzn-K),
T Jo T Jo
O, G II—RETREIDF TS a DT TA XIROBHEEE :

P[T(2%)] ~ P[®©) 4+ P[3P)] + ...

8]
[y
A

1
0) _ ) (2 __ 51 (0) (2) iy ] (0) (112
2 =T(21), 8% = 8'T(2'7)2®) + ' T(2)[2Y)

1 T 1 T 1 T 1 T
) _ 1.0 (2),0 1 _ (1) (2)
Z (T/o Xe 7 dt, _T,/o X, dt) A (—-T/; D, dt’T/; D;%dt ),

7 = 1/TE(l)dt ! TE“’dt
- T A t ,T 0 t »

DP ED (i =1,2) XN ENLUTFD SDE £ RT3,

dDf? = BowMdt+ fei(vf) hvduwf?
. - . - 2 i
P = ol (5607509 - 5 ()7 (47)7) auf

Df = o
EY =0

¥k,

t
oY = (Be)ov = /0 M CHLL I
t
¥ o= @ovt = [ ) oD

Ovzal—iavgR
(b1 =0.5,01 =0.4,¢; = 15,25 = 10,40 = 1,8 =0.8,c; = 1,z§? = 10,0 = 1.5, & = 5.5, v = 10)
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2.3 Example 3

OEFNV

K=15

€ 0.5 0.7 0.9
(1) MC 0.387683 0.391336 0.397614
(21 0.381100 0.381100 0.381100
Difference 0.006583 0.010236 0.016514
Diff.rate % 1.69 2.62 4.15
(3) I 0.385292 0.389316 (0.394682
Difference 0.002391 0.002020 0.002932
Diff.rate % 0.61 0.51 0.73

MC=Monte Caro 10000000 &l

I=First order,II=Second order,III=Third order

dx (-
X(gl),e

ZIT, w0 XEXK. DMK

Qa—pEFra—AFrvay (2¢=Xs (T=1),T(z) = (z - K),)
G R—ELT2,

Dy 13 @ SDE 22T 5 ;

Zo

pXedt 4+ o XM (L + (X)) dw?

P[(X5 — K)4] ~ P[2O] + eP[®W] + + -

3@ = aT(2®), 3" = oT(Z2() 2V,

20 =x2, zM=Dyp

dD, = pD.dt+o(D;+ XPL(X?))dw"
{ Do = 0
Ovzalb—variR
B(z) =z~ },pu=0.05,0=0.5,50=K=10, €=03,p=0.1,0=03,z0=K =5,
€ 0.1 0.3 0.5 %(z) exp(—z) ! T3
(1) MC 2.374804 2.490895 2.616581 (1) MC 0.925646  1.331432  1.006538
(2)1 2.290992 2.200992 2.290992  (2)I 0.924703  0.924703  0.924703
Difference 0.073902 0.199903 0.325589  Difference 0.000943  0.406729  0.081835
Diff.rate% 3.1 8.0 12.4 Diff.rate % 0.09 30.6 8.24
(3) 11 2.352858 2.476691 2.600323  (3) 1L 0.926075 1.333830  1.005026
Difference 0.012036 0.014304 0.016258  Difference -0.000429  -0.002379  0.001512
Diff.rate % 0.50 0.57 0.62 Diff rate % -0.04 -0.32 0.15

MC=Monte Caro 1000000 [&]
=First order,[I=Second order ITI=Third order

MC=Monte Caro 1000000 [&]

I=First order,]I=Second order,III=Third order
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BREERL-BHERBL—YOREROBEETIL
BAHL K Bk

1 [FLE®»IC

WEIERLEIN TV L—F—DOFERIZONTELD, ZERELBTTABICHEN N ONTNS
FE, HREIZFET D L — & —OHELR (KHEHA) BB THD L5 Z L &FRICLTWS (K
REHROSIAXEEBIR), UL, ERICIEEADEGEOICFELTWART TH Y, ZIEROMT
., MBI ZIDOZ EE2BRICANTRINDIRETH S,

TEOHIFTIE, Whwd TTEMREE] I &S THEOLEBRITHOID 2 ENE W, FD7-
B, TOBBEIZOWTH, BN, BEMICELAL LEBRIZ. cNETENTI Ao, X%
It ELAUL RIS FTET B LWV O BEICH s B A BROFIHD L LT, L HRLEOSEK
EENLL, TOHHIZOWTHARDIZEZENHE LTS,

2 WEDEZAFIZLDHRIEBEDK

UT OB T, BREOMBEIE DN SHII0 L —F — 23R ET5, ZOL—F—DR{EH s(1)
i,

w3

. B2 T
o) = exp {2mi(fot+ $12)} , -T<it<
0 . Zofh,
THEAOND, ZIT, fo, B, T HENEIGEHEREKE, BEMINIE, /A8 LT, &1L —§F—
CEAOMICE S, W, BREOETERAICLS L. BEW s() AT AR EOHBH y 16
DR s (t,y) H.

sAtmz{‘MwmpPM{EU—T@»+%“_ﬂwa , ~I<ti-ry) <t
| 0 , EOfh,

2725, ZTIZ T, A(y) iX y CORBELERL, 1(y) = 2Vy2 + h2/c BB LR LoL y &0
EMERTEETH D, c=3x 108 (In/s] ITHET, h 1T L —F— 2l LIBTEOHRN & DO &
Thd (RHEIEFNE), Ay) I, —RRIZIT S OBFEBEIZ/L 5,

PERIT, BELRBENICBEOICTFET 2 EWHIEREDOL & T, ZEROUEBATHOATE T
D, DFEY, BAMBAOBIELLIX y1,y2,..., THDE L, FEHELERD SO, s.(t,yp) FAFNITHL
TEMHFLRRAE TR > TV D,

3 BREBEARREHR
TIT, MA TR E NS RERIE, BELRA L — ¥ —REIENIC RS EEL TV 5%, E0
RAIEEAL LIRKO L S RRATGOARE H(t) #BAFN L) MERRIU 2B,
(t-+T)

H{p) = /w) se(t,y) dy

= ASH%qwume{ha_ﬂwy+?a_dwyﬂdy

t+T

B
- A@m»wppm{humﬂwy+T@—ﬂmfﬂdﬂwwu (1)
t
TSl BRI > 20/cTH D, £(u) =77 (u) LBVWTWSD, T, 0L, €0 REMKTH S,
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4 BREROELUXICEALT

HiaH), BEMIZIE, EROZERIT (1) THEXONDLARTONRARTHDIN, TOXETIEH(L)
DOEFP L B2V, FIT, ZOEUKES 2T, ZIZ T, FEH H(t) O BER T
EDRBOTALERT y 12OV TOBEK A(y) ICEKF L TERFER DTN D, 2 Z TR H)
ELTROZIIFERN T2,

Lﬁﬂ%ﬁwﬁ@%gmmzltLtﬁé&&%&Hm@n>%f
[ @) -+ 1)

H(§)=F _27I'Lf
EEBTED, £, FOMORER,

7 Qlﬁﬁ{m( ) _l_}

)~ A| < T {e@ (141 1) -6 (- 1)

0

LM TE D, TIT, F(t) REMRL OB THY, KRR —FED L Z A0 6 DZERITMIFE

TRWI ENRHND,
2. AT RBFHBEIEATDIBE A(y) BHRE LEDODHD A yo £HIC L THHNEBIR(LTIHEEE

2D,
1, v < 1o,
Mm={ y <o
P ?/>y0
BLOSp<1ET D, ZORUFOTTE, ZEBEHEA) 3t —T <t <tg DEET
H(t) ~ G()

1
2mi fo

LEENRTA D, KB, T OMOBEBIIROL > IKFHETE 5.
[H(t) - Gl

Sﬁ;ﬁ[&mo+&gﬁﬁd_%)ﬁm@—%ﬂ

S R

(1 = p){(to —t) fo — [(to — ¢) fo]} + ERYAT) [(to = t) fo]
7 F o5 e (o0 )

ZIT. o Fa0BERYLLTHS,
G(t) DIEL Y, RERPELETIHETIIEREREZ LTV IEF» L OEIEHE>TL 58

3D
REUA TIIMEOE S EICH L TEMLHRBEE 525,

{5(1) (t)— peW (¢t + T)} 27r1f g(‘ (to)exp {2mifo(t — to)}

&E XH

(1] C. J. Oliver Synthetic-aperture radar imaging. Applied Physics 22, 871-891, 1989
(2] fRiR = (B1E) AMBIRL—FNU N7y 2, SIAEE | 1998

(3] JERS-1 DATA USERS HANDBOOK. Remote Sensing Technology Center of Japan (RESTEC),
1994
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A parametric model for forecasting time varying spectral density function
of the sea surface motion in the wave developing process

Tsukasa Hokimoto(Graduate School of Fisheries Sciences, Hokkaido University)

1. Introduction

In physics, natural science, economics and the other various fields, the study on the statis-
tical inference of the spectral density function of the nonstationary periodic motion has been
progressed until now. In this paper, we focus on the natural phenomena, among them, on the
sea surface motion when the sea condition is becoming stormy, and then propose a statistical
method for forecasting time-varying spectral density function. The phenomena on the wind
wave (i.e. the sea surface motion developing by the kinetic energy from wind) have become
important subjects for study from various standpoints, such as physics, navigation safety etc,
because their studies might contribute to the inference on flude dynamics of the sea surface
movement. Our goal in this paper is to explain the complicated relationship among the move-
ments of sea surface, wind direction and wind speed from the statistical standpoint, and then
to develop a statistical model for forecasting the change of spectral density function in the case
of developing wind wave.

In this paper, we analyse the time series data on the changes of sea surface and wind, which
have been observed in Funka-Bay, Hokkaido, Japan. These series have been measured by using
a microwave waveheight meter in our research ship. The purpose of the above measurement
is to research the limit of the sea condition for the fishing vessels to keep on working safely.
Figure 1 shows the measured time series data. Measured items are relative sea surface level(m),
wind direction(deg.) and wind speed(m/sec). They have been obtained by a measurement for
90 minutes, at sampling time 0.2 seconds and the sample size is 27000. Here, the origin of the
sea surface movement is the mean level of the sea surface movement in the past 10 minutes.
Also, the origin of the wind direction means north and the positive values means the deviation
to east from north. We can see from Figure 1 that the amplitude of the sea surface movement
develops gradually over time. On the other hand, it may look that wind speed becomes higher
and then slightly lower, and wind direction changes slowly in the range roughly from -100 deg.
to 0 deg. (i.e. from north-west to north).

The study on the estimation and forecasting problem of spectral density function of nonsta-
tionary time series has been progressed from both of nonparametric and parametric approaches.
For our problem, it may be neccesssary for effective forecasting to take into account of the
wind's effects as well as the sea surface movement. To include the information of exogenous
time series into the change of spectra, it might be better to construct a parametric model to
explain the statistical effect to the change. From the above reason, in this paper, we approach
this problem from the parametric standpoint.
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The outlines of this paper is as follows. In the next section, we analyze the statistical struc-
ture on the sea surface movement in the wave developing process. In Section 3, we propose
a nonstationary statistical model for forecasting the time-varying spectral density function in
the above situation. To exaimine the availability of the presented method, we evaluate the
forecasting performance by numerical experiments. The results and their analyses are shown in
Section 4.

2. Statistical structure on the sea surface movement in developing wind wave and the estima-
tion of the spectral density function

In this section, we show the motivation of our method for forecasting spectral density function
in the wave depeloping process. In the followings, let ¢ be a discrete parameter on sampling time
point, {Z,} be the stochastic process which the sea surface movement follows and Z,, ..., Zy be
T samples from {Z;}. When we estimate the spectral density function of the sea surface motion
practically, the nonparametric methods such as Periodgram and Blackman-Tukey's method are
frequently used. For example, the estimator of spectral density function based on Blackman-
Tukey's method is given by

P = 3 wk)C(k)e ™, (1)

and

T T
CH) = 7 X (Z-D(Zx-2), Z=23 72,
t=k+1 t=1

where X is frequency and w(k) is a window function for smoothing the raw spectrum. It is well-
known that if {Z,} has stationarity, then the estimator of the above type has the consistency
as T becomes sufficiently large. It means that the estimator has an advantage in the sense
that it can estimate spectral density function without assuming any models to time series data.
However, when it is necessary to develop the method for forecasting dynamic changes of the
spectral density function, it might be more effective to consider the method which is based on
a parametric model, because the forecasting performance may be expected to be improved by
taking account of the information of physical factors such as wind direction and wind speed.
From this reason, in the followings, we focus on a parametric model to forecast the spectral
changes.

Here, let us look at the statistical structure of the sea surface movement to develop a
parametric model. First, we investigate the short-term movement. Figure 2 displays an example
of the time series on the sea surface motion for 200 seconds (sample size is 1000). Here, the
vertical axis means the relative sea surface level(m) and its origin means the mean level in
the past 10 minutes. It may look that the average level and the amplitude of the sea surface
motion does not change over time. Now we regard the above series to be stationary and
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then obtain the autocorrelation function and partial autocorrelation function, which are well-
known as the preliminary analysis for model identification proposed by Box and Jenkins(1970).
Their results are shown in Figures 3(a) and 3(b), respectively. The former result shows that
it decays slowly as time lag increses and the latter dumps rapidly. When it is necessary to
assume a statistical model to the sea surface data in Figure 2, we may think of various time
series models. According to the identification procedure proposed by Box and Jenkins(1970),
the above features on autocorrelation function and partial autocorrelation function may suggest
the possibility that this time series follows an autoregressive model

q
Zt =th+ZaQZt_] +(5£ (2)

j=1
where mZ is the mean of {Z,}, g is the order of the model, {a;;j = 1,...,¢} are unknown

parameters and {4,} is a random variable which follows a white noise process, say WN(0,0?).
If {Z,} follows (2), the theoretical spectral density function, f() is given by

02

T ¥ ae 2 ¢ £ gge-am |2

e (3)
Hence, if the assumption that (2) is reasonable as a statistical model of the sea surface move-
ment is correct, then the estimator of (3) is reasonable as a spectral estimator. But, we do
not know the true model of the movement, and therefore, it is necessary to examine whether
‘this estimator is really reasonable as a spectral estimator for the sea surface movement. Figure
4 shows the simultaneous plot of the spectral density functions estimated by using Blackman-
Tukey's method (1) and (3). The solid line means the spectral estimates obtained by (1) and
the dotted line means the one by (3). It looks that the spectral estimates obtained by (3) can
approximate the estimates by nonparametric estimator (1) fairly well, which suggest that we
can regard (3) as a basis of our model.

Now we look at the long-term movement of the sea surface movement in the wave developing
process. The important point is that it is necessary to examine whether the sea surface move-
ment in the wave developing process keeps stationary statistical structure; (2) is reasonable if
the movement has stationarity, but it is not clear whether or not the sea surface movement in
the wave developing process always keeps the stationarity. Figure 5 shows the estimation results
of the spectral density functions obtained by (1) and (3), using time series data in the past 300
seconds (sample size is 1500). From the comparison between Figures 4 and 5, we see that the
characteristics of the spectral estimates differs depending on the time interval of the time series
used for the estimation. It suggests that the statistical structure of the sea surface motion in
the wave developing process has nonstationarity. But clearly, the degree of the nonstationarity
of the sea surface movement is not so drastic; it might be natural to suppose that the structural
change of the above spectrum to be slow. From the above reasons, when we need to forecast
the spectral density function in the wave developing process, it is reasonable to approach from
the statistical structure that the spectrum of (3), which has been estimated regarding the sea
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surface movement to be locally stationary, changes gradually over time. Also, it means that we
can assume to the sea sea surface movement in this situation the statistical structure such that
each parameter and noise variance of (2) changes gradually over time.

3. A model for spectral forecasting based on the locally stationary autoregressive model

As stated before, we can regard the stochastic process of the sea surface movement as
a nonstationary process which changes slowly its statistical structure. From the results in the
previous section, instead of (2), we assume the following time-varying coefficients autoregressive

model,

P
Xo=mi+ Y BiuXij +eq g, ~WN(0,0%) (4)
j=1

to the sea surface movement in the wave developing process, where m, is the mean of {X,},
{Bije; i =1,...,p} are unknown autoregressive coefficients which might change with t. Here,
we focus on the structural changes for every certain unknown time interval, say A, because
the speed of changing statistical structure of the sea surface movement is slow. Now let
n be a new time parameter which takes positive integer and then define each time point
n=k(k=1,...,N) corresponds to t = kM. In the followings, we focus on the change with
respect to m. Here, it is necessary to estimate the value of M using the samples from {X,},
because it is unknown. Also, the model order p is assumed to be unknown and to be constant
with n. The method for choosing M and p will be shown later. Now from (4), the theoretical

spectral density at the time parameter n, say f(A,n), is given by

0_2

f(/\’ n) - I]- + ﬂ]‘ne—ﬂm\ + n -+ ﬁp,ne_igpﬂ)\lz (5)

Note here that we use M samples at the sample time point ¢ € [(n — 1)AM + 1, nM] for the
estimation of the parameters ({0 n,...,0pn},02). For long-term forecasting of f(\,n) with

respect to the time parameter n, it is necessary to obtain forecasted values on the parameters

2
n

{Bin;7 =1,...,p} and the innovation variance o

Here, let us investigate the statistical features on the behaviors of the estimates of parameters.
Figure 6 shows an example on behaviors of the estimates of 3 ,, and a,ﬁ with respect to n, when
we fit an autoregressive model (2) under the order ¢ = 2. To obtain the above series, we fixed
the total sample size as 500 and, by updating every 200 samples(40 seconds), an autoregressive
model under the constant order was fitted sequentially to the newly updated data. From the
above results, we might find out the followings. First, the change of the estimate of o2 has
the tendency to increase with n, and in this sense it has nonstationary statistical structure.
From (5), it may be possible to regard o2 as the parameter which give impacts on "magnitude”
of the spectrum. From physical standpoint, this increase of the magnitude of spectrum may

cause by the supply of the wind's energy. Therefore, for forecasting the future values of o2, it
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may be reasonable to take the changes on wind's direction and speed into consideration. On
the other hand, it looks that each behavior of {f;,} also exhibits nonstationarity, because its
trend changes clearly with n. The parameter {f;,} affects the dominant frequency (i.e. the
frequency maximizing the spectral density function). Physically, this change is also caused by
the wave development. Hence, for forecasting the changes of {£;,}. it will be effective to
take into account of the changes of wind direction and speed. In addition, from the above
relationship on wind effect, 02 and {8;,} are not independent with each other. Hence, we also
take into account of the change on wind's direction and speed, say WD(n) and WS(n), as well
as time histories of 02 and {; .}, to construct a model for forecasting 2 and {8;,}. Figure
7 shows an example on the behaviors of the differenced series Vo2, {VBin}, VWD(n) and
VWS (n), where Vo2 = 0% — 02 _, and so forth. It looks from their behaviors that their means
and variances are constant to some extent and therefore we might regard the above series as
stationary processes. Hence, it might be natural to suppose that the simultaneous changes
on the parameters ({f;n},02) and parameters on motion of wind (WD(n), WS(n)) follow a
multivariate autoregressive model,

0, =A10n1+ A8 2+ ...+ An0u_in + by, (G)

where
O = (VWDn, VWS0, {VBjnij =1,...,p}, Voy)' (7)
m is the model order, {A;;i = 1,...,m} are unknown coefficient matrices, and &, is a white

noise vector satisfying E(d,) = 0, E(8,6,) = (o) and E(5,15;,) =0 (n#n"). The
method to choose m will be described later. For identifying this model, the above matrices are
estimated using the least squares method(for example, see Kitagawa(1993)) under m is chosen.
To forecast the future values 8,4, (I = 1,..., L), we use the linear predictor én+,, which is
defined by

6n+l = Alzn+l—1 + A~2zn+l—2 +...+ A~7nzn+l—m (8)

where 2y m = Onyir (1 < k) and Zppiom = Onipik (I > k). Also, {]11} are the estimates
of the coefficient matrices. From forecasting results on the L steps ahead on 8, using (8), the
forecasted values on 2, and {ﬁj_n_H} are obtained. Thus, the forecasts on spectral density
function at [ steps ahead can be obtained by

~2

ag
An+l) = _ : ntl : o
f( ) ll + ﬁl,n-}—[e”zzn’\ + -+ ﬁp,n+le_12p7r)‘lz ( )

Finally, we show the method to choose the time interval M and optimal orders of the models
(4) and (6). The choices of the orders p, m and the time interval M affect to the forecasting
accuacy of én+z. because the number of parameters to be estimated and the samples to use for
estimation differs depending on their values and then it may give bad effects on the estimation
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accuracy of each parameter in coefficients matrices {A4;;¢ = 1,...m}. It might be natural to
select these values so that the forecasted spectrum gives the best agreement with the locally
stationary spectrum estimated using real data, viz. we choose their values such that the sum
of squared forecasting errors over all frequencies, which has been obtained at every time point
in the period [1,n — 1],

S(e(1),m z / £ M) = FO 530, mO), M)A

is minimized for every forecast step .
4. Statistical evaluation on the forecasting accuracy

To show the validity of the model proposed in the previous section, it is necessary to evaluate
the forecasting accuracy to the actual changes of the spectral density function. But it is diffi-
cult to prove the validity from the theoretical standpoint. So in this section, we investigate the
statistical features on forecasting by applying the proposed model to observed sea surface data.
In the followings, first, we show an example on long-term forecasting of the change of spectral
density function in the wave developing process. And next, we show the numerical results on
evaluation of the forecasting performance.

4.1 Example of the application to the observed time series in the wave developing process

Let us look at an example on the change of spectral density function, which has been fore-
casted by using the proposed model. First, we show an example of a bird's-eye view in Figure
8. Here, top of the figure shows the change of the spectral estimates obtained by using actual
observations, and the bottom shows the forecasting result using presented model. Note here
that these results were obtained under n = 119 (about 79 minutes) and L = 10 (400 seconds).
It looks that both results have the similar tendency; the maximum value of the spectral density
increases gradually with the forecast step. It might be explained physically that the energy by
the wave motion increases rapidly in the wave developing process.

Next, the simultaneous plots of several spectra of Figure 8 is shown in Figure 9. Here, the
top shows a simultaneous plot of the estimates obtained at n+1 (40 seconds later), n+5 (200
seconds later) and n+9 (360 seconds later), and the bottom is a simultaneous plot of the
corresponding forecasts. It looks that both of these results have the following tendencies;

(1) the maximum value of the spectrum becomes larger over time. From physical standpoint,

this phenomenon will be explained that the wave energy increases in the wave developing pro-
cess by the supply of wind energy.
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(2) the dominant frequency becomes lower. Physically, it will be explained that the wave period
gets longer as wave develops, because it needs long period for the periodic motion with large
amplitudes to oscillate.

4.2 Evaluation on forecasting accuracies from numerical experiments

Now we examine forecasting performances of the proposed model by means of the numerical
experiments. When we forecast the spectral changes in the wave developing proéess, the fore-
casting features may change depending on the time point to start forecasting, because of the
nonstationarity of the sea surface movement in the above situation. It is necessary, therefore,
to examine whether the presented model can give good forecasting performances at any time
point. We examine this point by numerical experiments. In our experiment, we examine the ef-
fectiveness of forecasting using our model by numerical comparisons of forecasting performances
among the other several methods which are expected to give reasonable forecasting.

Our method of numerical experiment is the following way. First, by changing the time point
to start forecasting n, we forecast the future change on spectral density function up to 10 steps
ahead, and then evaluate the forecasting performance. Here, we also used three predictors,
fan+10), fs(An+1) and fe(\n+ 1), to compare the forecasting performance. The
details of these predictors are the followings;

(A) fa(h,n+1) = fL(\,n), where fi(\,n) is the estimates at the time point n using data
in the time interval which is regarded to be locally stationary (See Appendix). If the statistical
structure of the sea surface movement in the forecasting period does not change over time, this
predictor's performance will give the best.

(B) The proposed predictor which does not include the information on wind direction and wind
speed. Our intention of introducing this predictor is to examine whether or not the information
of wind is really effective for the improvement of forecasting performances. This predictor is
constructed by replacing (7) with 8,, = ({VB;n;7 = 1,...,p}, Vo2)"

(C) It may also be possible that the changes of coefficients 3;,(j = 1,...,p) with respect
to n do not necessarily follow a multivariate autoregressive model. To examine that our con-
struction of the multivariate autoregressive model is reasonable, we also forecast spectra from
the values which have been obtained by forecasting {(;.+:} for every j, using an univariate
statistical model. Here, as shown before, their changes exhibit nonstationarity, so we construct -
two predictors using the following models.

(C01) ARIMA(P,1,0)(Autoregressive Integrated Moving Average) model (for example, Box and
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Jenkins(1970))

P
Yin = Z ZrYjn—r T+ Cj.n; Yin = .B] n ﬁj,n—l
r=1
(C02) Time varying coefficients autoregressive model (for example, Kitagawa and Gersch(1985))
R ¢
Z /‘Cr,n,@j,n~r + Ej,n: éj,n ~ WN(O, 052)
Krn = Krn—1 = Urpn, r=1,..., 1t

(Vims -+ URR)E ~ N(O, diag(t?,...,7%))

where 2, is unknown coefficient, (j, and £;, are random variables which follow white noise
processes. For compuation of (C02), it is necessary to estimate the unknown variances of white
noise variance 052 and system noise 72. In this experiment, we used the methodology shown in
Kitagawa(1993).

Now we define the evaluation criterions of the forecasting performances. It is not easy to
evaluate "the goodness on forecasting spectral density function” using single statistics, because
there are several aspects to evaluate. One of basic evaluation criterions may be the sum
of squared errors between estimates and forecasts of the spectrum. We define the following
statistics,

SSE(l / (f“c Antl) - f(“(/\,n+z)>2d»\

where [ is the forecast step(l = 1,...,10), k{k = 1,...,K) is the experimental times,
A,(Jk)()\,n + 1) is the estimates of spectral density at n + [ of the kth experiment using the
nonparametric estimator (1), f*)(\,n + 1) is the corresponding forecasts, using each method
stated above (i.e. f (k)(/\ n+ 1), ka)(A n + 1) and fék)(/\,n +1)). Here for estimation of
”I(Jk)()\,n + 1), we used the time series data in the time interval which is regarded to be locally
stationary. The methodolgy to determine this time interval is shown in Appendix. Also, the
reason why we used the nonparametric estimator for fék)(/\,n + 1) is to examine whether or
not our assumption that the model (2) is practically reasonable as a statistical model of the sea
surface is true. SSE(l) evaluates the degree of spectral form's agreement between f}f")(/\, n+l)
and f®) (X, n 4 1). But it may not be guaranteed that the maximum value and the dominant
frequency of the forecasts of spectral density, which minimizes SSE(l), are optimized. So,
we also define SFE(l) and SME(l) to examine the degree of agreement between extreme
values of f(A\,n+1) and f®(\,n+1); SFE(l) and SME(I) are defined to examine the
degree of accordance with the dominant frequency and maximum value of the spectral density,
respectively.

1 1( . 2
SFE() = (Af,ﬁw (n+1) -+ z))
k=l
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1 1( . “(L) 2
SME() = — Z(mfxx( FEO,n+0) = max(F7 (0, n+ 1) ))
k=1

= arg max, f*)(\,n + 1) and ;\sz,m = arg maxj fg:)()\, n + 1), respectively. We
can evaluate as the best predictor when both of the above statistics take the smallest value.

where 5\57’:()”

LStcp‘ (A) (B) (C01) (C02) Our Method |

1 110.4 42.6  219.7  90.5 36.1
2 212.9 712 334.5 149.0 58.7
3 248.3 799 357.0 122.8 67.7
4 265.9 942 339.5 108.0 75.0
5 329.6 123.2 373.6 120.3 96.3
6 342.9 137.3 4273 1378 112.1
7 340.8 143.8 507.2 131.5 115.9
8 412.0 194.2 681.1 1826 166.1
9 595.7 337.3 1012.0 425.8 259.1
10 764.1 480.0 1364.0 639.6 317.7

Table 1(a). Numerical Results on SSE(l)

| Step (A) (B) (C01)  (C02) Our Method ]

1 0.00024 0.00012 0.00035 0.00025 0.00009
0.00048 0.00027 0.00381 0.00088 0.00083
0.00063 0.00025 0.01140 0.00113 0.00052
0.00074 0.00028 0.01333 0.00116 0.00018
0.00081 0.00041 0.01267 0.00057 0.00027
0.00074 0.00042 0.01236 0.00075 0.00029
0.00061 0.00037 0.01836 0.00084 0.00023
0.00055 0.00034 0.02604 0.00058 0.00024
0.00052 0.00030 0.03265 0.00042 0.00024
10 0.00049 0.00088 0.04064 0.00057 0.00019

OO0 3| S| U x| OO

Table 1(b). Numerical Results on SFE(l)

[Step  (A) (B) (C01) (C02) Our Method |

1 14.9 5.1 28.3 10.2 3.7
2 27.6 6.8 43.2 16.3 6.2
3 34.4 7.4 44.9 13.8 6.9
4 34.4 8.9 41.3 10.6 8.8
5 49.3 133 46.2 12.1 11.4
6 52.4 15.7 585.9 15.0 14.2
7 56.3 19.3 73.8 16.2 15.9
8 83.8 36.5 12569 329 31.7
9 1562.3 89.6 250.9 113.1 59.5
10 234.7 149.6 3924 1953 84.8

Table 1(c). Numerical Results on SME(l)
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We show the numerical results in the followings. Tables 1(a)~1(c) show the numerical results
on SSE(l), SFE(l) and SME(l), respectively. Here “Step" shows the forecast step [, where
1 step corresponds to 40 seconds. Also, the experimental times K is 1350.

First, we focus on the result of SSE(I) in Table 1(a). The predictors (B),(C02) and our
predictor take smaller values than (A) at any forecast step, which suggests that constructing
time-varying statistical structures are essentially effective for the improvement of forecasting
performances. Also, from the comparison between (B) and (CO1), it suggests that it is effec-
tive to construct the multivariate autoregressive model to (B, ..., Bpn). This becomes more
evident when we compare the results between the pairs of predictors (C01,C02) and (B,our
predictor); both of COl and CO2 take larger values than (B) and our predictor. Moreover,
the comparison between (B) and our predictor shows that wind's motion give good effects
for forecasting especially for long-term forecasting. We see similar tendencies on SFE(l) and
SME(l) in Tables 1(b) and 1(c), although (C02) becomes worse than (A) in SFE(l). Our
predictor gives the best forecasting performances among 5 predictors and we can say from our
experiments that this predictor is practically available for forecasting the tendencies of forms,
dominant frequency and maximum value of time varying spectral density. We can find out
the similar tendency on the results of SFE(l) and SME(!) in Tables 1(b) and 1(c). These
results show that our model also give good forecasting performances on the maximum value
and dominant frequency.

5. Concluding Remarks

The numerical results shown in the previous section suggests that our predictor is practically
reasonable for forecasting future changes on the time-varying spectral density function in the
wave developing process.

Appendix

In this paper, we estimate the spectral density function based on a locally stationary au-
toregressive model at the time point ¢t = nM in the following way. First, it is necessary to
estimate the time interval, My, in which we can regard the movement {X,} in the time interval
[nM — ML +1,nM] as a stationary time series. We choose the value of it, say M}, such that
the sum of squared residual errors of X, when the autoregressive model (2) is fitted,

1 nM "
SSRMp)=— S (X:-X)*
My t=nM—Mp+1

is minimized with repect to M, where, X, is estimated model from the data in [nA — My, +

1,nM]. Next, using the data in the time interval [nM ~ M} +1,nM], we obtain the estimates

of each parameter of (2), das; 1, ..., Gar: g and the innovation variance, 63,.. Here, we used
L

—572—



AIC (Akaike Information Criterion) for order determination. Hence, from the above estimates,
we obtain the spectral estimates,

52
o3
M

|1+ Gnrp €72 4 Gy e 20mA|2

fo) =
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Fig. 9 (right) Simultaneous plots on time-varying spectra ((top) estimates,

Fig. 8 (left) Bird's-eye views on time-varying spectra ((top) estimates
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K-Asymptotics Associated with Deterministic Trends in the
Integrated and Near-Integrated Processes

—RERFREEEFEFOIER B BA

Wh W L BAARREIL, BRIIF—FI285INL LY M AnidIEEE A
RUPIEENL TR TEDDTH B, FOHE, MEIN VN EEEMN L VNG
F—= IO WTHEICXGITE L Z EMFRE R o TV, ARLTIE, ZDT45H
HDNIESN 22 2 & ) AR EREL T, £ BU AN RENEs Z28T 5.

F0/zHIZ, DGP & LTIEMERM L F 2T (1) A%

Yo = Y1 T U, yo =0, t=1,..., 1),

u =y g, 9.jlayl<oo, a=)a;#0,
j=0 3=0 =0
RHEETH. TIT, {&} ~iid(0,0%) THYH, HEEERE (v} FEASE

EHOLDET D, F72, BMSH o HIELT, MHISE V() ® o2 L BT
St D, S5, HBp(>2) KHLT, E(lef)<coThoETE.
PEDOBEDS ET, ¥, {y) £ —KMI% K BEhbi b SHMNE o 75

FERNLVER ¢y, -, dx NERL 2 ERR

ié é (t) + 4, = B(K)'$(K, t/T) +
t = = Uy = ) Ut
Y P k Pk T

RExXDH. ZOLE, KEXDDLET (T —o00), MFNOHEM K 2KELTHLE
(K-asymptotics) DIFTEDEMIZDOWTRO T E25E D LD,

(a) ( ) W(K)/VT = N(0,08), le(E)ll=1, 05 =0} A/ ((n-1/2)*x?),
(b) T, 42 /T? = 0,(1/K),

(c) t c(K)'b( K)/\/_ o (\/_)

(d) R? - 1 in probability,

() T x DW = O,(K).

EROEMENTRRT A i, BROBESLSEELTHETSH Y, RERKD 1
I E V) EIKRT, MERMLV Y RPN Y FTTRICERASI AL WS T L
Tdhb. tbb, K-asymptotics ICBWTIE, HERINLV UV FEFEEN L ¥ IR
T&RW, L2d, FODIELRIEEN L Y FiE, £FTL b LHNUES 2 wv
ZEMIREND.
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Ko, RUBREICHEDLRZET N, T2bb, BEMLV Y FOMIZ () 0I5B
& [7 B4R

K " ) ) . )
ytzﬁyz~x+zbk¢k (T)'{‘ut:pyt—l”*‘b(K) oK, t/Ty+ 14, (t=2, ..., T).
k=1

*EZAHE, 0O K-asymptotics & L TROERENEOLN S,

K 1K
ADF, = N(——{ﬂ-g—),
mvK 7
ADF, = N(-— : ﬁ)
K 2
1 2772 Ck
VTN K) Jos = N(O,er ;m(2k_1)2),
taryby = Op(VK).

ZZTC, ADF, 3 HAARIRE D728 O Dickey-Fuller (REMEIRTH b, ADF, 13 t—
METETH 2. LLEX D, K-asymptotics i BWTid, HAABMREHKETEIZ ER A
IZHEH T, DGP LR EFh L WRHEE NV  FIEIERICEMEINTY, #1613
AETDHY, L2d, 77EBORBOBEET—FEHEL o TWEI LA b1 b,

PlEDERIZ, #iz I(1) 7220 Tid 2 <, RPN I(1) (near-integrated pro-

cesses) (25t DGP
Yo = pYe—1 + Uy, Y% =0, p=1-(c/T), t=1, ..., T),
IZ2oWTYh, FRRICIEY IDZ EATRENS,

R%iZ, K-asymptotics iZ3317 5 BT E, BAARBIC L Tl Eshic 7
HIENRENL, TOEEL, BUBRBRERITEDBIIRED b & TOHAIL,
TORDBID &) ICIHRESFEEDLLRVWHALTH B,

HIRIREREAE T(5— 1) OH% (BRY 11X = 400, BE = 20)

0.03 0.03 A

p=1 p = 0.95

.02 A 0.02

.01 - 0.01 -

-160 -120 -80 -0 -1680 -120 -80 -0
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KRIGING 317 X 2 F{E S 0 3t 4
WK 1FHE T L 7%
RZ RIK BEHRET) s uz

2 ) ¥ 7 (Kriging) SARERSGH O OMEMOBRNE T, MRGS$ T i
Fill

HIERAEET2# (geostatistics) O L T4

MET I OLE 0 b id, B/hEREIC X BT

e T HE TS e @ TINYT YA NYFTTA
e TE 4 e Y S o

ERR—) T F= PLHAXEUOELEFEL REL 2F 8
= L. BRFR, R, WEREE, JKRFEES (O TER

J. Besag DE5R: [ZMIKET# DS { DML EEHT ! ]
= Geman O BEEBTER AT EHE - |ET — 5 DEITICICH

W (WM FEOFRIEEBTOFEZNELL ? ]
= ZUF IR EEETOER L LTHA !

BRI R BRHEEEZDO B CHIERLERD
BAREEEE = b & ORBRERIZ Y TRl (E{EHHE)

R UF 2 AT [ERES] OMELARES
FEMOEEE  EB{Z(=z)-2Z(y)}=0

E{Z(z) - Z(y)}? Lz —y 12T OB
semivariogram y(h) = BE{Z(z + h) — Z(x)}?/2
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RKFEWELIN) F T LAEFLOER:

i
Ho AT
HOWE{g I = R? LoExg

TATVINER T = ZP LOMEHERSE
KBROER K = JEKF-EEIZ 1/n i
CEIRAPAST - Rl S/

M5 S W2 BAICHEBULK = ¥4 7 REiZ
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MBI L DYk

TV A 7 RILKEE
FRI L EEEE O

BE DY 4 XIZED TR T, B & DUBHAE CRE B,
T, R, DROBR (T v V)

FERE T =B E
=>semivariogram ¥* X F D iZ5 25
=>cross validation 12 & B/%5 2 — % A
=ZMEDH (KE ¥ 7)

M | = moving kriging(JBRTRY 7% X HI4 12 F i)
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EERITHEA L Eig:

75 BEAAE J
# 4 Xt 258 x 258

HOHEE J L +0mMEER J 0BMHoRE

= ERFEOBEDBRETFY (MSE)

(1/3)2 \CM5 |- B K %
32 fEICBAICILR LA E &

X Y
1 -
MSE =233 V(=) - Je v (XY REROY1X)

z=1y=1

v T ¥ o
o 5 i 15
h

A MEGOERE I NV F T A
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R R TR 7y xRl
6o(F47 v FEHR) 156 446 565
6, 1.13 x 103 809 689
6, 3.90 11.2 5.40
B0 + 6, (¥ V) 1.29 x 103 1.26 x 10 1.26 x 103
WRSS 913 321 x 108 2.99 x 103

Table 1: BEFINVDINT A — & DHESEE & DD WRSS

BN ATTAETNVERE 7 VX VNI E HEEHHM

PR EINYFTT A RELINNFTIT A HoAREINY 7T 4
BEZVFYZ (MSE 320) @B V¥ (MSE 445) #ME 2 V¥ (MSE 550)

cross validation 12X 2 I NV F 7T A ) :
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Y D IEHER

BRI AT I A
+BE 2V F¥ 7 (MSE = 277)

EREEI N AT T4
+ B2 ) ¥ (MSE = 257)

HYARIE IN) AT T 4
+@EZ ¥ (MSE = 229)

—584—



¥R kriging AV 7CER = Kl (EROBIIHEE B % W)

fBDITEE DILE (kriging 1EH%) ?)

bicubic(MSE = 237)

cubic B-spline (MSE = 342)

cross val. + gauss (MSE = 229)
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Discriminant Analysis for Locally Stationary Processes

KENJI SAKIYAMA® and MasaNOoBU TANIGUCHI®

Department of Mathematical Science, Osaka University

1 Introduction

There has been a series of works on discriminant analysis for stationary processes.
For the problems of discriminanting two Gaussian processes by linear filtering, Shumway
and Unger (1974) gave certain spectral approximations of Kullback-Leibler discrimination
information rate, J-divergence rate and detection probabilities. They introduced linear
discriminant filters maximizing these approximations and applied them to seismic records
from selected earthquakes and nuclear explosions. Shumway (1982) gave an extensive
review of various discriminant problems in time series. Using an approximation of the
Gaussian likelihood ratio (GLR), Zhang and Taniguchi (1994) disscussed the parametric
discriminant problems for non-Gaussian vector linear processes. They showed that the
classification statistic based on a Gaussian likelihood ratio has some good properties, for
example, asymptotic normality and non-Gaussian robustness. For discrimination between
such non-Gaussian multivariate time series, Kakizawa, Shumway and Taniguchi (1998)
have introduced a disparity measure, which includes the Kullback-Leibler discrimination
infomation and the Chernoff information measure, and given applications to the problems
of classifying earthquakes and mining explosions (see also Shumway and Stoffer (2000),
Taniguchi and Kakizawa (2000)).

Dahlhaus (1997) has introduced a class of locally stationary processes (non-stationary
processes), and established the asymptotic theory of statistical inference. In this paper
we investigate the problems of classifying a multivariate non-Gaussian locally stationary

process {Xt,T = (Xf}}, o ,Xt(,‘éz)’} into one of two categories described by two hypotheses:

m ¢ f(u,A), ma : g(u,A), where f(u,\) and g(u, ) are time varying spectral density
matrices. - It is well known that the classification by the likelihood ratio (LR) gives the
optimal classification (see Anderson (1984)). However, in time series situation, if the
sample size T is large, LR is intractable even if we assume Gaussianity and stationarity of
the process. Dahlhaus (1997) gave an approximation of the log-likelihood by

11 Mg .
Z%'M‘J.Z/_,, [log £ (u, M) + tr { In (1w, A)f ™ (, \)}] d.

=1

where M a.nd N satisty T'= NM, |f(u, )| is the determinant of f(u, \), and Iy(u, )) is a
sort of periodgram of {X,r}. Although we do not assume Gaussianity of the process, we

¢ e-mail:sakiyama@sigmath.es.osaka-u.ac.jp
® e-mail:taniguti@sigmath.es.osaka-u.ac.jp
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use the following approximated Gaussian LR

D(f : g) Z/ { {]Ij’f ’J’)/&I}}+tr[1N(uj,,\){g—l(uj,A)~f—1(uj,/\)}” dX

as a classification statistics for our problem. That is, if D(f : g) > 0 we choose category
7. Otherwise we choose category ms.

This paper is organized as follows. In Section 2 we provide a limit theorem for an in-
tegral functional of Iy(u, A), which is useful to describe the asymptotics of D(f : g) under
71 and m,.

In Section 3, by using the result in Section 2, we show that the classification statistic
D(f : g) gives a consistent classification rule. We also evaluate the misclassification proba-
bilities of D(f : g) when g(u, A) is contiguous to f(u, A). Then the problem of non-Gaussian
robustness is addressed.

In Section 4, some numerical studies for the misclassification probabilities are given.

Throughout this paper we write N = {1,2,...}, and denote Kronecker’s delta by 4(-, -).

2 A limit theorem for multivariate locally stationary
processes

Dahlhaus(1997) developed asymptotic theory for univariate locally stationary processes.
Since we discuss the discriminant analysis for maltivariate locally stationary processes, we
‘extend some of his results to the case when the process concerned is multivariate.

We start with the following definition.

Definition 1 A sequence of multivariate stochastic processes X;r = (Xt('lqz, . ,Xt("f})’ (t=
1,...,T) is called locally stationary with transfer function matriz Ayp(A) = {Ar(MNap : a, b
=1,...,d} and mean O if there exists a representation

Xor = / exp(irt) A, p(N)dE(N) (1)
-7

where the following holds.

(i) €)= (ED(N), ..., €D (X)) is a complex valued vector process on [—m, 7] with & (N) =
E(—A), E&; =0 and

cum {dgo.; (Al), ey déak(/\k = (Z/\ ) day,....ax /\1, ey )\k——l)d)\l; . ,dAk

where cum{---} denotes the cumlant of k-th order, go(A) = 0, gap(A) = d(a,b),
901,90, (A15 -+ 3 A1) < C(k) (C(k) s constant) for all ay,...,ax € {1,...,d} and
nA\) =YR 5()\ + 27l) is the period 2r extension of the Dzmc delta functwn
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(ii) There exsits a constant K and a 2r-preiodic matriz valued function A(u, A) = {A(u, A)as
a,b=1,...,d}:[0,1] x R — C*% with A(u, \) = A(u, =) and

< KT!

t
Acr(N)ap - A (*,A>
sup 7 (Map %)
for alla,b € {1,...,d} and T € N, where A(u, \) is assumed to be continuous in u.

We call f(u, ) = A, )\)A(u, A)’ the time varying spectral density matrix of {X;r}.
Letting

(a) .{\: X[(sﬂ)"]—N/2+s+1,T exp(—ids) , (2)
s=0
we introduce the periodogram matrix In(u,A) = {In(u,A)ap : a,b=1,...,d} over a seg-

ment of length N with midpoint [uT], where

1

o Nd(“)(u Ad® (u, =) . (3)

IN (’lL, A)a,b

The shift from segments to segment is denoted by N. In(uj, A) is calculated over segments
with midpoints w;T =t; = N(j — 1/2),(j =1,...,M) where T = NM.
For ¢ : [0,1] x [=m, 1] — C**¢, define

-—-2/ tr {@(uj, \In (1, \)} dA (4)
and Lo
E/O /_”tr{gb(u,/\)f(u, A} dud . (5)

We set down the following assumption.

Assumption 1 (1) The functions A(u, A) and ¢;(u, ), (j =1,...,k) are 2r-periodic
i A and the periodic extensions are differentiable in u and A with uniformly bounded
derivative E%%A(u, A) and Bau 3‘9,\ @i(u, A) . The fourth-order cumulant spectral density
Jay,a2,03,a4 (A1, A2, A3) 18 continuous with respect to A\, A2 and As.

(i2) All the eigenvalues of A(u, A\)A(u, N) are bounded from below by some C > 0 uni-
formly in u and \. ,

(iii) The parameters N and T fulfill the relations T** <« N < TV/?/InT.
The following lemma is a multivariate version of Theorem A.2 of Dahlhaus (1997).

Lemma 1 Suppose Assumpton I holds. Then,
(i) EJr(¢) = J(#) +0(T"H)
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(i) Tcov{Jr(¢:), Jr(¢;)} = Vi j + o(1), where
s = 1 [zm [ o {8 0, N, 2) £, N} A
o 5 e Vel Bl

a1,a82,03,64=1
d

X Z A(u> )‘)az,blA(u) —)‘)al.bzA(u’ "/J')ambaA(uu lu')aa,b-t
by,ba2,b3,bg=1

X Gby,b2,b3,bg ()\: "_)‘a _u)d)‘dﬂ du.

(iii) The quantities
\/T—[JT(qu) - ‘](¢])] yJ=1..., kt

have, asymptoticaly, a normal distribution with zero mean vector and covariance ma-
tricV={V;;:4,7=1,...,k}.

We have placed the proofs of Lemmas and Theorems in Section 4.

3 Discriminant analysis for multivariate locally sta-
tionary processes

In this section we study the problems of classifying a multivariate locally stationary
process {X;r} into one of two categories described by two hypotheses:

f(u':)\) ' '”2:.9(“)/\)

where f(u, ) and g(u, A) are d X d time varying spectral density matrices. For this dis-
criminant problem, we use

lg( 'R )l -1 -1
(f g 4 M Z/ [log{lf J,/\)I +tr [IN(Uj,/\) {g (uj: ,\) - f (Uj,/\)}} d)\
(6)
as a classification statistic. That is, if D(f : g) > 0 we choose category m;. Otherwise we

choose category mo. We set down the following further assumption.

Assumption 2 There ezists C > 0 such that the minimum eigenvalues of f(u, ) and
g(u, \) are greater than C for all u and A.

The following theorem describes the asymptotics of D(f : g) under 7; and .

Theorem 1 Suppose that Assumptions 1 and 2 hold. Then, as T — oo, under m

VTD(f : g) = E{D(f : g)lm}] = N {0,0%(f,9)} (7)
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and under my

VT[D(f : 9) = E{D(f : g)lma}] = N {0,0%(g, f)} (8)

where

2,0 = [ [ [ e ngwn - 1)

-1

1 ™ T d
+ = / / >
8 S Jom by,b2,b3,b4=1

X [A(u, n)* {9_1(7% w = f ”)} Alw, u)]ba,bq

X Gy bababe (X —A, —p)d/\dp} du,

Al N {57 wA) — £ (N ) Al A)]

ba,by

[Map is the (a,b) element of matriz M, Iy is the identity malriz, and * denotes complez-
conjugate transpose.

If we use D(f : g) as a classification criterion, the misclassification probabilitics are
P(2|1) = P{D(f :g) <0lm} , P(1]2) = P{D(f: g) > Olm}.
The following theorem shows that our classification statistic is asymptotically consistent.

Theorem 2 Under Assumptions 1 and 2,
lim P(2|]1) =0, lim P(1]2) =0.
T—o0 T—o0

To evaluate the goodness of D(f : g) we assume that g(u, A) is contiguous to f(u, A).
Now we set the spectral densities as

Tyt f(u5 ’\) = fO(u” A) y M2t g(u) )‘) = f0+h/ﬁ(u) )‘) (9)

where # € © C R? and h = (hy,..., hy)".

Assumption 3 (i) We observe the realization Xir,...,Xrr of a d-dimensional lo-
cally stationary process with mean O and transfer function matriz A, v(A\). The time

varying spectral density matriz is fo(u, \) = Ap(u, A)Ap(u, A), 0 € © C RY, where ©
15 compact.

(11) All the eigenvalues of fa(u, ) are bounded from below by some constant C > 0 uni-
formly in 8, u and A.

(i) The components of fo(u, ), Vfo(u,A) and V2fs(u, ) are continuous on © x [0, 1] x
[—7, 7] (V denotes the gradient with respect to ).

(iv) N and T fulfill the relations T4 <« N < TY?/InT.
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Theorem 3 Under (9), we suppose Assumption 8. If we use D(f : g) as a classification
criterton, then
—3F(6) }

{F(6) + D(6)}3

where ®(-) is the cumulative distribution function of the standard normal distribution,

Jlim P(2[1) = Jim P(1]2) = @[ (10)

1 i q 2
F(8) = é /0 /_ ] tr{ghivifg(u, N, )\)} dud),

O = o [ Sk [T [ Al A5 Vol 05 ()} Aol )

b1,by,b3,ba=1 i=1 b2,61

x 3 Aolan 1 {15 0 S, 115 09} Ao )]

J—l blhl"i

X by by babe (N —A, —~p)d>\du} du.
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Prediction problems for square-transformed
stationary processes

By IN-BONG CHOI ano MASANOBU TANIGUCHI

Depariment of Mathematical Science, Osaka University , Toyonaka, 560, Japan
choi@sigmath.es.osaka-u.ac.jp taniguli@sigmath.es.osaka-u.ac.jp

SUMMARY

This paper discusses the prediction problems for square-transformed process, Y, =
X?, where {X,} ia a stationary process with spectral density g(A). First, we evaluate
the mean square prediction error for square-transformed process when the predictor
is constructed from the true spectral density g(A). However, actually, it is often
that the true structure g(\) is not completely specified. Hence, we consider the
problem of misspecified prediction when a conjectured spectral density fy(A), 0 € ©,
is fitted to g(\). Then, constructing the best linear predictor based on fy(}), we can
evaluate the prediction error for square-transformed process. Also, we consider a bias
adjusted prediction problem for the above two cases. Furthermore, for non-Gaussian
process we evaluate the mean square prediction errors when the best linear predictor
is constructed by the true spectral density g(A) and the conjectured spectral density
fo()), respectively. Since @ is usually unknown we estimate it by a quasi-MLE
5Q. The second-order asymptotic approximations of the mean square errors of the
predictors based on g(A) and f3,(X) are given. Finally we provide some numerical
examples, which show some unexpected features.

Some key words: Transformation; Stationary process; Misspecified prediction; Spectral density; Conjectured spectral

density; Best linear predictor; Quasi-MLE.
1. INTRODUCTION

There has been much discussion, in recent years, in the statistical prediction of
time series analysis. IHowever, there are many unsolved problems. Suppose that
{X,} is a stationary process with zero mean and spectral density g(A). However,
it is often that the true structure g(A) is not completely specified. If we fit an
autoregressive model to a set of data by using some information criterion, the true
order of the model is often incorrectly estimated, hence it is likely to be misspecified.
This leads us to a misspecified prediction problem when a conjectured structure
f(X) is fitted to g(A). It is Grenander & Rosenblatt(1957) that first evaluated the
prediction error of the best linear predictor X, which is computed on the basis of a
conjectured spectral density f(A) although the true one is g(A). Then they showed
E|\X, — X,[z < [T -Q%%d)\. To recognize importance of the misspecified prediction
problem, suppose that g(A) = (27)7!1 — 0.5¢*|?, and f(A) = (2m)~*|1 — (0.5 +
0)e™ +0.50e% |2, 0] < 1. In this case [ = [ 24X = 21 hence I — oo if 0]

: ) LT ST T 1= .
1. Therefore investigation of the misspecified prediction problem seems important.
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Choi & Taniguchi(2000) evaluated the asymptotic mean squared prediction error
for the regression model with linear long-memory residual process in the case of
misspecified prediction.

In this paper, we are concerned with the mean square error of the misspecified
prediction for square-transformed process, Y; = X}. Here, the square transform
problem is very important to predict the volatility for autoregressive heteroscedas-
ticity(ARCH) and generalized ARCH(GARCH) models which introduced by En-
gle(1982). So our problem is not special. Regarding general polynomial transforma-
tions Hannan(1970) evaluated the autocovariance function for Hermite polynomials
of a Gaussian process. Granger & Newbold(1976)(for short G-N) addressed the
problems of prediction for a class of nonlinear transformations 7' = T'(-) of a Gaus-
sian process. It is assumed that T' can be approximated by Hermite polynomials.
This excellent paper provided the mean square prediction errors of various predic-
tors. Here we note the distinction between G-N and ours. G-N deals with more
general transformation, but is restricted to Gaussian processes. Our paper is re-
stricted to the case of square-transformation. But we do not assume Gaussianity of
the process concerned, and consider the misspecified prediction problems.

This paper is organized as follows. In Section 2, under the assumption that {X,}
is a first order autogressive process we evaluate the mean square prediction error for
transformed process, Y; = X?, using a naive predictor i.e., (the best linear predictor
of X;)? and the best linear predictor of ¥; in terms of Y;_;, Y, 5, .... Also, in the naive
prediction, we consider a bias adjusted prediction problem. Futhermore, we give the
mean square prediction error and the bias adjusted mean square prediction error for
transformed scalar linear processes when the best linear predictors are constructed
by the true spectral density and a conjectured spectral density, respectively. In
Section 3, for non-Gaussian linear process we evaluate the mean square prediction
error when the best linear predictors are constructed by the true spectral density and
a conjectured spectral density, respectively. In Section 4, we derive the asymptotic
mean squared prediction error for transformed linear processes when the predictor is
constructed by a parametric spectral density model. Here the parameter is estimated
by the quasi-MLE. Section 5 illuminates some unexpected aspects of our prediction
problems nurmerically.

2. TRANSFORMED PREDICTION PROBLEM FOR GAUSSIAN SCALAR PROCESSES

Suppose that {X;} is generated by
X =0X) + e (1)

where |6] < 1 and the innovation process ¢, is independent identically distributed
€ ~ N(0,1 — 6%). We now consider a naive prediction for the transformation of the
form Y; = X?2. As the naive predictor of Y; we use (0.X;-,)%. Then the mean square
prediction error is evaluated as follows.

E{Y, =Y} = E{(0Xi-1 + ) — (6Xier)'}?)
A EIXZ ]2 + Bld) = (1 - 0)(3 4 0%) = B, (say). (2)

il
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It is seen that E(Y;) =1, E{(Y; — 1)(Yiys — 1)} = 6%, and that 6*(Y;_, — 1) is
the best linear predictor of ¥; — 1 based on Y;_;,Y;_,.... Hence the mean square
prediction error(MSPE) is given by

E{Yi=1-0*(Yer =)}l = E[{X/-1-0%X.,-1)}]
= 2(1 —6*) = E,, (say). (3)

Therefore, since By, — E; = (02~ 1)? > 0, this implies that the predictor 0?(Y;_, —1)
is better than the naive predictor.

Next we consider the bias adjusted prediction problem in (2). Note that E[X?] =1
and E[(0X;-1)?] = 0*. Then the mean square prediction error is

E{X? = 1= (0Xi1)" + 0°}7] = 2(1 - 0%) = Es, (say). (4)

Therefore, from the above result, we see that £y = E3 < E).
Now we discuss the prediction problem in more general setting. Let {X,} be a
Gaussian stationary process with zero mean, FX? = 1 and spectral density

900) = 5olele™ P, () = o )

We write the spectral representation of {X,} as
X, = / e dz()\). (6)
-
Then we can construct the best linear predictor X, based on g()) as

X, = /_1r e‘.uc(e—_i/\)—_———c—(g)-dz()\). (7)

c(e)
The mean square prediction error of the naive predictor X? for X? is then

ProposITION 1.

BXI - X)) = 407 [ g(0)dr—o*

-

= MSPE,;, (say).

We place the proofs of Propositions of this paper in the Appendix.

Next we consider the bias adjusted prediction problem in Proposition 1. Solving
E[X?] — b = 0 with respect to b, we have b = [T _g(A)dA — 0. The mean square
prediction error is

ProprosiTION 2.
E[{X? —1 — X? 4 b}*] = MSPE, ~ (1 — b)*> = MSPE,, (say).

Since the true spectral density g()) is often unknown or misspecified, it is impor-
tant to see what happens when a predictor is computed on the basis of a conjectured
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spectral density f()). Now we assume that the conjectured spectral density f(\)

satisfies .
[log f(A)]dA < o0.

Writing
1) = 5o lele )P, (®
2m
we can construct the best linear predictor of X, based on f(A) as
; " ne(e™) - ¢(0)
X = L”et _(T(Fr*dz()\) (9)
Another condition necessary to give integral (9) meaning is

" g(A)
IO )d/\<

The mean square prediction error of X? for X? is then

ProposiTION 3.
s -xy) = S [T ol 2l )

™ g(A) S50 = 9(A)
_ _J(_A)dx{%—z/_ (eN)e(0) Ty

vz [ T -2 [ gy}

= MSPE,, (say).

Next we consider the bias adjusted misspecified prediction problem in Proposition
3. Let E[X}] —b=0, then

b = F [/:; e{‘Af%i):j;{'@dz(A) /:; 6“"&;(2:‘:‘:7)6‘(92d2(ﬂ)}

= / N d) — _.._/ e=Ye(0) :\\;d)\ _ .;; /_ c(e“")c(O)%%d/\ (10)
o g(A)

METH 6N

Then the mean square prediction error is given by the following proposition.

=LdA.

ProrosiTION 4.
E[{X?~1— X?+b}*] = MSPE, — (1 — b)? = MSPE,, (say).

Let {X.} be a Gaussian process with spectral density g(\). We next consider
the misspecified prediction for the transformation Y; = X2 — 1. Write the spectral
representation of Y} as

Y= [ é%dw()).

-
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It is seen that the spectral density of {Y;} is given by A()\) = 2¢*2())(see Han-
nan(1970, p. 83)). Denote a conjectured spectral density for g(A) by

g = 5o

Based on q()) we can construct the best linear predictor of ¥; by

. LN e~ — a(0
Yt=/_we* ( a(e)_a)( ) do(2).

Then the mean square error of the prediction is

By - 197 = £ [al0) [ P su)

_c h(A)
- 271'/ (/\)dA'

3. TRANSFORMED PREDICTION PROBLEM FOR NON-GAUSSIAN SCALAR PROCESSES

Untill now, we restricted to the case when the process concerned is Gaussian. In
this section, we consider the case where {X,} is a non-Gaussian process. Let {X,}
be a non-Gaussian stationary process with spectral density

1 —i
g(’\) = é—lcy(e /\),27 |Cy(0)l2 = 023 (11)
™
and spectral representation
X, = / e dz(\). (12)

Also, we assume that the process {X;} has the fourth-order cumulant spectral den-
sity g4()\1, Az, As). For the fundamental properties of the cumulant, see Brillinger(1975).
First we construct the best linear predictor X, based on g(A) by

N . c,(e?) —¢
K= [T e 5 cy(z_u)g(o)dz()\). (13)

Then we have the following proposition.

ProrosITION 5.

. oo 0) 2¢,(e™2) —¢,(0) ¢,(0)
PIUXE _ X212 — PF Cg(» 9 — % A
E[{ t ‘Xl} ] M3 El +/—7\' 4/_1\' /;'rr cg(e-—l)\:) Cg(e——i)\n) Cg(e-—z)\s)
20, (e0r+3203)) — ¢, (0)
¢, (elCuthatia))
= MSPEs, (say).

94(>\1 N )\2, )\3)(1)\1 dAZdAJ
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Next we consider the misspecified prediction problem when { X} is non-Gaussian.
Denote a conjectured spectral density for g(A) by

F0) = 5-les(e NP (14)

The best linear predictor of X, based on f(A) is given by

N Cao I )
X=[ ey ) (15)

The mean square prediction error of X? for X2 is then

Prorosition 6.

E[{X?- X}? = MSPE; +/:; /_: /:; CIZ(_(QI)?CJ(C_“’) —c7(0) c4(0)

cr(e=) cr(e=)
2c;(eMithaths)) — ¢ (0)
o (€0 t)) 94(A1, Az, Aa)dA1dAzd

= MSPEg, (say).

4. PREDICTION PROBLEMS FOR ESTIMATED PREDICTOR
In actual situation we fit a parametric spectral density f; for the process con-
cerned, where 0 ia an unknown parameter. Then we estimate 6 by some estimator

0. In this section we discuss the prediction problems for the predictors constructed
from f;. Let {X.} be a general linear process generated by

Xi = ZG(j)ef-—_h te J) (16)
=0

where {e;} is a sequence of independent identically distributed random variables
with E(e;) = 0 and var(e;) = o2 and G(j)’s satisfy

Then the process {X,} has the spectral density
s N\ LiA7 |2
g(A) = 2512 GG (17)
J=0

For g(A), we fit a parametric specteal density fy(A), 0 = (6,,...,0,) € © C RY,
where 0 is an innovation-free parameter. Write the spectral representation of {X,}
as

Xi= [ " é%dz(N), (18)

—598—



Now we assume that the conjectured spectral density fy()) satisfies

/_’; |log fo(A)dA < co.

Writing
Fo0) = 5l (19)
[/ o ] )
we can construct the best linear predictor of X; based on fg(A) by
—iA
o [™ ince(e™) = c(0)
X, = /_ NI (), (20)

The following assumption is imposed.

Assumption 1. (i) The parameter 6 is innovation-free.
(ii) fg is continuously three times differentiable with respect to 8 € ©.

In Proposition 3, denote the mean square prediction error of Y = X? — 1 by
MSPE;(fe) if the conjectured spectral density f is fs. Suppose that we have an
observed stretch X7{,..., X7 which has the same probability structure as {X,} and
is independent of {X;}. The unknown parameter § is estimated by a quasi-MLE
8g = (0n1,...,0,,) which minimizes

{logfo(A)+-’T() fo(\)71}dA,

with respect to 8 € ©, where

XI ith2
27TTIZ .
Then the estimated predictor is given by
5 o5 (e7) —¢; (0
X, = /_ e %9 - ()e_u)""( )dz()\), (21)
Q
~ 2

and the mean square prediction error of X, is
42
E{X}-X,}= MSPE:;(fe‘Q).
Expanding MSPEg(féQ) at § = 0 in a Taylor series we obtain
MSPEs(féo)

= MSPE;(fo) + 2 MSPEs(£2)(0q - 6)

1{, 4 52
+ 5 {(OQ 9 aoag,MSPEg(fg)(GQ — 0)} + lower order terms, (22)
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where § = arg mingeg [, [log fa(A)+{g(A)fe(A)~*}dA. To evaluate the second term
of the right hand side of (22), we make the following assumption.

Assumption 2. Fora=1,...,p

ENT(Bpe —02)] = T7120u% 4 o(TY), (23)

where p*’s are constants.

This assumption is reasonable. To see this, let {X; : ¢t = 0,£1,42,---} be a
Gaussian autoregressive moving average(ARMA) process with spectral density fo()
which depends on an unknown parameter § € R'. Then it is known that

B(9) J(())+K(0)+ (1 )
IOWT  2{I(6)}*VT vT)'

10 =4[ {%bgfa()\)}z d

B(6) =

Eo[VT(fg — 0)] = -

where

:fl' f { f"(’\)}bo(/\){fa(/\)}'zd)\,
= él— i Inly(n)e™, with y(n) = EsX,Xisn,

0= {agfe(f\)}a{fo@)} vt [ { R0 { S0 ) o,

K@) =5-[" { —hi(> )} s},
(see Taniguchi(1983)).

Furthermore, Taniguchi and Watanabe(1994) evaluated E[v/T(6, o —6,)] in the form
of (23) for generalized curved probability densities. To describe the asymptotics of
0qg we need the following regularity conditions.

Assumption 3. (A.1) The spectral density g()\) is square-integrable;
(A.2) g(A) € Lip(a), a>1/2;
(A.3) The fourth-order moment of e, exists;

(A4) 8 is exists uniquely and § € IntQ;
(A.5)The matrix

M —/” O )60 + <2 10g o) ax
1= |- |30agr 1?9 g toe o]

is nonsingular.
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By means of (22) we evaluate F{MSPE3(féq)} where E{-} is the expectation with
respect to the asymptotic distribution of \/7‘_(552 - 0).

ProposiTioN 7. Under the Assumptions 1, 2 and 3,

B(MSPEs(/3,)} = MSPEs(f)+ 13 s°{ - MSPE(/s)

1 0? 1 g -
+——tr{agaOIMSPEg(fg_)MjIVMII}-l—o(T H,

where )

= [ |70 + g o 500
v = an [ i) A0 &,m(x} ],
e 5 [ {Z00 5100

rtuv=1

X Qrtuu( )\1, /\2, ‘—/\Q)d/\ldl\z

Next, assuming that {X;} is a Gaussian process with spectral density h()), we
consider the misspecified prediction for the transformation Y¥; = X2 — 1. We write
the spectral representation of Y; as

vi=[ " @ duw(A). (24)

The spectral density of {Y;} is given by g(A) = 2A*?()). Denote a conjectured

spectral density by |
foN) = 5-las(e ) (25)

Based on fy(A) we can construct the best linear predictor of ¥; by

~ T .y G e”i’\ — g
Y= /_"e"*‘ ( ao(i_u) © o). (26)

Then the mean square error of the prediction is

E [a(O) [ (el_a)dw(A)

-7

E[{Y, - Y;}]

I

21 Jon fo(N)
= MSPE(f,), (say). (27)

Here 8 is actually an unknown parameter. Suppose that we have an observed stretch
Y{,..., Y7 which has the same probability structure as {Y¥;} and is independent of

{Y.}. Then 0 is estimated by a quasi-MLE 0 which minimizes
™ {log fo(3) + (M) fs (1)},
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with respect to § € O, where
L &g
A) = Y/ e .
1) = gl Ve

Then the estimated predictor is given by

- « az (e7*) —a; (0)
Y,= / eitr 9 = i dw()), (28)
G
fq
and the prediction error is
BI{Y: - ¥.}?] = MSPE(f; ). (29)

Expanding MSPE(faq) at 8§ = @ in a Taylor series we obtain

1 d* s 2 ,
MSPE(f; ) = MSPE(fy) + 5t {WMSPEUQ)(GQ ~0)(be - 0) }
+ lower order terms. (30)
Here it should be noted that
i9—MSPE(," )| =0
60 é , — Y%

because 8 is an innovation-free parameter.

Proposition 8. Under the Assumptions 1 and 2,

— 1 o? -
E‘{MSPE(féq)} = MSPE(fp) + -Q—T—tr{agag,MSPE(fg)M,‘IVMfl} + o(T7Y).
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Third-Order Asymptotic Expansions of the Power of Test Statistics
for Mixing Processes with Applications to Diffusion Models

R A HE—
ZHBRAFLHFWEH

Abstract

In the case where the observation is a mixing process with a continuous time parameter, we will obtain
asymptotic expansions of the local power for test statistics included in a large class in the multi-parameter
setting. Its application to the diffusion process will be also presented.

1 Mixing process with a Markovian property

Let © be an open convex subset in R?, and for any 8, let Y? = (Y?(t))cer , bean R4-valued cadlag process
defined on a probability space (£, &, P). Suppose that for any T' > 0, the probability measure induced by
Yi=(Y*¢ (t)tepo,7) has a positive density pr, with respect to some reference measure. For an unknown
¥ € O, the observation is assumed to be a realization of Y. In this article, we will consider asymptotic
expansions of test statistics, based on the log-likelihood L’T(B; YZ) = log pre(Y$), for the hypothesis J = 9,
against ¥ # Jg. For simplicity, we will often omit J from the function of 6 evaluated at § = ¥, e.g,,
Y(t) = Y?(t). We will also omit the phrase "for any 9” if there is no confusion.

Let us describe the probabilistic structure of the observation Y and the log-likelihood function £7(8; Y7).
Fix ¢ > 0. Suppose that for any ¥ € ©,

[A1] there exists a positive constant a such that
B |BLs 190l - B < 17 sup ()

for any s, t € Ry, s < t, and for any bounded function f € f@tm), where BY = o(Y(t): t € I) for
any interval I C Ry, and #F & denote the total of mesurable functxons with respect to % for any sub
o-field &.

Such a process Y is referred to as a (geometric) mixing process. In addition, Y is supposed to have a
Markovian property as follows. Let X = (X(t))ter, be an R"-valued ca.dlé.g process with independent

increments, i.e., QD o] 18 independent of Q[t o) for any ¢t € Ry, where 33 =o(X(t),Y(t): t € I) and

BX = g(X(t) ~ X(s) : t,s € I). Note that if X depends on 6, then it is supposed to be evaluated at
@ = J. Suppose that Y is an e-Markov process driven by X, i.e. Y(z) € F (.93[,_ e V .@(. ) for any s > 0

and t > 0 with € < s < t. Moreover, assume that for any ¢t > 0, the log-likelihood funcuon (£(6; Y1) )ier,
has all of the third-order derivatives with respect to §, and for any 8 € © let 2% = (Z°(t))ier, be a
Rp+p(p+1)/2+p(p+1)(P+2)/6_yalued stochastic process defined by

Za (t) = (Zt,n (91 )lt)) et,ab (e; },t)a zt‘abc(e; },t))a,b,z::l,... P

where € o = 6a8y, €iap = 6a08ds, & abe = 8a058cLy, 8o = 0/00° for any a = 1,...,p. For this process Z?,
suppose that Z9(¢) — Z(s) € y@;‘,{ly for any 6 € © and 0 < s < t, where 93'”‘ Y = o(X(t) - X(s),Y(2) :
s,t € I) and that Z°(0) € & '%[o] 'Such a process Z is called additive functional of X and Y.

For example, X is the the standard Wiener process w = (w(t)).er, and Y is the stationary diffusion
process satisfying

dY () = Vo (Y (t), 0)dt + V(Y (t))duw(t), (1.1)

for some functions Vp : R¥x© — R? and V : R? =+ R*®R". It is clear that for any 8 € ©, Y? is an e-Markov
process with € = 0, and for the geometric mixing property of the diffusion process we can use the sufficient
conditions given by Strook(1994), Roberts-Tweedie(1996) and Kusuoka-Yoshida(2000). Furthermore, under

*Fax:81-52-789-3724. E-mail: yuji@na.cse.nagoya-u.ac.jp
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some regularity condition (the Novikov condition), the probability measure induced of Y2 has a density and
the log-likelihood function is given by

00; Yy) = log-(—j—(Y / VIV LY (2),0)dY (1) — / ViVVY WY (), 0 (12)

where V' is the transpose of V, and vy is the probability measure of the stationary distribution. Therefore,
the additivity of the derivatives of the log-likelihood function is obvious.
Another example is a non-linear time series Y? = (¥}f),= 5, .. defined by

_fn( n—-1»- -'$f/ne~k;0)+£n

for an R"-valued i.i.d. sequence £ = (£,) and some function f, : R*¥¥ x @ —+ R%. Obviously, it is an e-Markov
process with ¢ = k — 1, and under some conditions it has a geometric mixing property(see Tweedie(1983),
Tong(1990)). The Markovian property leads to the additivity of the derivatives of the log-likelihood. These
processes Y and £ are those with discrete time parameter, but they can be embedded into continuous-time-
parameter process Y and X satisfying the above properties.

Under these settings, the asymptotic expansions of estimators were given by Kusuoka-Yoshida(2000) and
Sakamoto-Yoshida(1999), and the information criteria was discussed by Uchida-Yoshida(1999).

2 A class of test statistics

In this section, we will introduce a large class of test statistics, based on the log-likelihood, for the hypothesis
¥ = 19 against 0 # Jg.

In order to define the class, let us prepare some notations. For any a, b = 1,...,p, and any index sets
A, Ay, ..., Aj whose elements run from 1 to p,
70 =2 8;Yr) — Ellr 4(6; Y7))),
A \/ZF( T,4(0; Y1) — E[tr 4(6; YT)])
1
9ab(6) = 'fE[ZTa(e Yr)er.(8; Yr))
1 _ 1
7A(0) = =7 Eltr,a(6;,YT)], a,,...4;08) = TE[eT,Al(e;YT)"‘ZT,Aj(g;YT)]

As mentioned before, Z4, gas and 7y, ,...,a; denote Z5, gap(9) and 74,,... 4, (9), respectively. Note that Z,
¢ and 7 depend on T, but we will hereafter write them without T'. Suppose that 17,, = O foranya=1,...,p
and that gq is non-singular for sufficiently large T. Let (g%®) = (gap)~! and g*B = gu1br...g%3b for
any index sets A = a;---a; and B = by ---b;. The orthogonalized random vanables Z, and Z4 for any

index set A whose length is greater than 2 is defined by Ze=20,24=24— Tang ba Z.. The contravariant
representations of 7,, . a,, 24 and Z4 are denoted by pAt-+45 = gAnBi... g4 Bi pg g ZA = gABZ
and Z4 = g4BZg.

By using these notations, we define a class & as the total of test statistics V7 admitting a stochastic
expansion Vr = St + Ry, where

>a iy 1 a 7 7 > crr 7
St =ga2°Z° + Nid (alf’cdz,,z,,zcd +ag zaz,,zc)

T(b“”Z Zy 4050y o f ZaZy 202 + 0522, 20 2 20 + 5%, 2,2, 2. 2%

bed b b abede f
for some constants a?, ,, ag*, bg®, 4055, . ;, b3°°4, b3l b5, /. bg

, and R is a random variable satisfying
Pso{|R7| > CTH+9/2} = o(T71)

for some C' > 0 and ¢ > 0. This class & includes many statistics, e.g. the likelihood-ratio, the Wald, the
modified Wald, and the Rao’s score statistic as is shown below.
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Note that in the case where the observation is a time series and the dimension p of the parameter space
O is one, this class was introduced by Rao-Mukerjee(1997), while its origin was given in Taniguchi(1991).
They obtained formal asymptotic expansions for the class, made some comparisons of the local powers, and
gave some applications to i.i.d. observations and linear time series.

Example 1.(Modified Wald statistic) Suppose that there exists the maximum likelihood estimator dr for

9. Then the modified Wald statistic MWr is defined by gas (97 — 90)° (19T —15)?. Under some condition for
smoothness of log-likelihood function ¢, it is easy to show that it has the stochastic expansion

(5% 4 25°0%) 2,2 Z + 2 g ae 20 2)

vT

v+ l (_l_gabcd + gﬂabcgcfgfcd + 4Dabcg¢fi)fr:,d + l—,—abc,d + 317“‘69417”"1) Z-aZchZd

MW =g“bZaZ-bV +

T 3
abc de ~ab,c ch' ZZZ iab cd cjz" ZZZ
(4V + 67 g)adbcc+ngg acelbldly

; abgedgel 7 ZveZaZ; + Rawa,

where Rarw,3 is some remainder term. When sup, Eoolz “|P < oo for some p > 1, we can estimate the rate
of convergence of Rpyw 3, and then we see that MW belongs to the class above. If the Fisher information

9as(8) is smooth, the Wald statistic gas )@t - 90)% (97 — 9)® can be expanded in the same form, and it
turns out that the Wald statistic also belongs to the class Z under the moment condition for Z4(6).

Example 2.(Likelihood Ratio statistic) Suppose that there exists the maximum likelihood estimator dr for

¥. Then the likelihood ratio statistics LR is defined by 2(£T(19T; Yr) — €r(d0; YT)). If the Bartlett identity
Dap + Pep = 0 holds true, it is easy to show that under some condition for smoothness of log-likelihood

function ¢, it can be expanded as follows.

i 1 . . . L
LRy =¢*Z.Zyv + 3 ﬁ((u““ +35°%) 2,242 + 39°%9°2 2, 2. Z4)
v+ ﬁ(a“““‘ + 30t g, pfed 4 120%0 g, 5704 4 1200 g, I 4 4D Z, 2,22,

. . . - 1 - a . -
+%gab(i}cde +2DCd'e)ZachZdze+‘j—,“gabgcc‘gefzaczbczdzj+"3"15-.’9“6 cd ¢fzachbZde +RLR3,

where Ry g 3 is some remainder term. It also belongs to the class of test statistics under the moment condition
of Z5.

3 Asymptotic expansion of the local power

For any constant ¢ € RP, we consider the test based on V7 for the null-hypothesis ¢ = Jy against 9 = 9,.(:=
do+¢/ \/T) In order to obtain the asymptotic expansion, we assume the moment condition of the process

AR VAIONE

[A2] For any 6 € © and A > 0, sup,cg, o<nca B|Z%(t+h) — Z°(t)|" < oo for any p > 1, and E[Z°(t +
A)] = E[Z°(t)]. Moreover, E|Z°(0)|? < oo for any p> 1 and E[Z%(0)] =0

In addition, we assume the regularity condition [A3] in Kusuoka-Yoshida(2000) and Sakamoto-Yoshida(1999).

It ensures the regularity (or continuity) of the distribution of (Z(t)), and is the crucial one for the validity

of the asymptotic expansion, but we here omit to state it because it is necessary to prepare many notations

in terms of the Malliavin calculous.

For the representatlon of the asymptotic expansion, the following notatlons are necessary. Let Kgp, =
E[Z.2yZc], K"b” = g% g% 0° Kanrer, Jave = ElZabZc, Jo0¢ = g2 g% g5 Joy oo Mapea = EZavZed),
Mobied = gaa’ b’ goc’ gdd’ pp arbr,crdry MO0 = Mobed_ Jobeg  Jhed N, ed = E[ZabZ Zd] Lave,d = E|Zabc 24,
Na'b'Cd = N% byed JCd fg fKabc, Habcd = Cum[Za,Zb, Zc, Zd], and H“de = g g g gdd H a'b’c'd - More-

over, let

(E) a' a' .
= E s 1...£%-3 Cn
Yo\ an,j 9aia} """ Jak_3ja}_,,;€ € Y Janajp10k-2j43 " " Jax_rans
(81,0ee48k=27,0k—25418k=35+21- ¢ 1Qk~18k)
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- S €
gl(li)'"dk,j = z (l)(—l)lgz(n)“-uu,n

stl=j
0<iSs<(k/2)

(k/2]
HE S, o(3) = Z gﬁi)...a,‘,jxp+2k—2j,6($),
vt

and
2(k/2)
A28 @) = 3 59, ixpraec2is(),
Jj=0

where § = gqp€®€®, Xp,s(z) is the non-central x? distribution function of degree p with non-central parameter

J.
By using these notations, we obtain the valid asymptotic expansion of the power function for any test

statistics Vr in the class 7.

Theorem 1.

1 1 2 1 1
Po,[Vr < 2] = xp4(2) + —=U1(2) + (U5 (@) - .U (a) - 0.Uf (=) + 382U1a)) + ()
where
1 rre 1 ab_cd ) 1— abc abc
Ui(z) = gKabcHaz’i,p(x) + 5 JabeE Pg*H Y () + g Zabe€ b xps(z) — a5 8 HLS (x)

1 abed ryE, 1 abc ef e, 1 abc , de ry Te
Uz(l)(“’) = —HH 2, (z) + 77‘2‘K oK fH:bg:de],p(x) + EK beg Efg‘]fg-c(H:l'g:d,p(z) + 39aaH,% (z))

2% abed,p
+ 3—16-1( *begted pae HEl () + -i--"? S Gacgre Hef (<)
+ é‘%eade(:}Mab,chp,& (%) + 4Labe,dXp+2,6(T) + DabeaXp,s(T) + 3Jab e ch.fg",g”'H:}f:,p(x))
+ ;1-2'17abc6““d°f (6Jde,rXp+2,6(T) + Pde f Xp,5(2))
UP(2) = a8 K (B ey () — 39es B () + JaibalVo4 (HEL, (2) = 0es HES, (=)
+ 0800 M HED () 4 3085 Tepar g™ e HED, () + 208 iaese™ HEL (@)
U (z) = BF HEE, (2) + b3 o M4 HES (2) + 05 HEE, () + 03 HEE . ()
US(2) = aft, a5, o =Y <V HES, () +03* i HEL,, ().

4 Diffusion process

Let Y = (Y (t))ier, be a d-dimensional stationary diffusion process defined by (1.1) with Vo = (V§)i=1,... 4
€ CP(RY x O;R?), V = (V])iz1,... dj=1,...,r € CP(RER? @ R™). Assume that

(i) for any # € © vy has a density with respect to the Lebesgue measure, and Y7 also has the density
pro(Yr) = e!¥T)  where £(6; Yr) is given by (1.2), with respect to some reference measure.

(ii) for any p> and t € Ry, E|Y ()] <o
(iii) Y has a geometric strong mixing property[Al];
(iv) (Z(t)) =atisfy the condition[C3] in Kusuoka-Yoshida(2000).

Let b = V'(VV')"1V, and ba,...ap = 0a, - - 6a, b, where &, = 8/86°. For functions f satisfying v(f) = 0,

denote by G the Green function such that
AGy =,

—607—



where Vp = (V§), V = (V) and

A= ZVOB i 2ZZV" "623:1

i=1 1,J k=1
The R™-valued function [f] is defined by
(f]=-V'VG/uip),
where ¥ = (3/3g",... ,8/0z%). For index sets A =ay--a;, B=by---b, C =¢; -, D =dy ---dm, let
Fap=v(bs-bp), Fla,p.c =v([ba - b8]bc),
Fuamcip = v(([ba-b8])-bc) - bp), Flasyc,p) = v([ba-bs]-[bc - bp))-

[15] .
Moreover, let pas = Fup, () = (pat)™, Pabcd = E(ab cd) PabPed, pabcdef Z(ab cdef) PabPedPess Ji ¢
= Igp,e — F[a,b},c) Jrabe = o pbb pcc Jt; be

1)
K.abc _pua pbb pcc Z F‘[a’,b’],cﬁ K = E panCdpef z ‘F(a,b]\c Z ‘F‘[d-‘]n/
(a’b’,c’) (ab,cd,ef) (ab,c) (de,f)

M-ab.cd .—paa pbb pcc pdd (-F[a'b’,c’d’] — F‘[a’,b’],c’d’ — Ir{cl‘dlllalbl + F‘[a’,b’],[c',d']) s

(3]
Nrabied - joa’ b ec’ jdd ( Z Flar p),erd = Fijer ana)bt = Flietar) b0t — F[a’,b'],[c’,d'])z
(nlbl,{cldl})
Mnnb,cd =M-ab.cd _ Jtab,epcfjaf,cd’ Nua Bbied = N*:b: ,byed J“d ]p K‘Onbt

and

g fo o
Z pab cd( Z (F'{[a,b],c],d+l?[[u.b],d].c)+ E F[n,b]:[cy‘{]).

(ab,cd) (ab,c,d) (ab,cd)

Using these notations, we can obtain the asymptotic expansion of the local power for the diffusion process
Y. For simplicity, we here present the asymptotic expansion under the null-hypothesis (¢ = 0).

Theorem 2.
PVr <z]= / gr,2(z)dz + o(T’l), (4.1)
0

where qr2(2) = gp(z) + T} }:‘:':0 C{ 9p+2i(2), and

cs 214H‘ K+ 1a1 b o py — _(bab b2, BT,
+ ;al,cjal d M.ef,g).plagw
Cl =~ TIEH ‘ EZK T %‘11 te s T4 (pabpea + plea) + -a°"°K " DesPagea
+ %(b Pab + b2 -ed C/M'Cd cfp b~ badepEbcd) +3 (aabcaczupgbsc}dcf 2“1 cfal M"Mh E!}cd)
o :iH‘ _ —-K“ 3 11 ach-def(3padepcf +pumcf) 41 aab (freed, efpgab]m
(bade Eb]cd babadd Exlbsr:]dcf) + 8( 20““0""053&, ] +a1.¢j“1 M ul'ghPEz}cd )

+ laabc def (18]

. 1 abe prdef [15] labcdcf 15
C; = K~ —afc°K 1+§be Lac}def g% 02 Pabedes

1 2 Pabcde
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Example 3(Mean reverse Ornstein- Uhlenbeck process) Consider the stationary diffusion process Y satisfying
dY (t) = (8, - 8,Y (£))dt + odw(t), |

where 8, are 8, are unknown parameter, but ¢ is supposed to be known. If 8, > 0, then all of the conditions
are fulfilled automatically. Furthermore, the stationary distribution is the normal distribution with mean
8, /6, and variance 0% /(26,) and the basic elements F’s for the coefficients of the asymptotic expansion have
explicit representation as follows:

1 91 1 0'2 92
== Flo=—-——— F,=—(-—4-1
Fl,l o2’ 1,2 0202) 2,2 o2 (202 + 0%)
. 6,
f,02° Fug)e = 9257

Foyr=Fu1,2=0, Fugu=-

201 1 02 92
Faon = .0302’ Fage = " 8,02 (292 * 2%)’

1 2 6
e Puaca=-gag
20 20’ 92

Finlet) =0, a,b=12, Fyan,2 =

1 (o 8

A =\ tig
[2,2],(2.2] 252 (202 + 63 ) ’

1

Fuae = Fuae =0, ¢,b=1,2, Fgaa = Fpaae = 83

302’
1 6 1 6,
Fu2.2.2 = gz = ~9.7 6, Fliz,9),2)1 = —3'9'?70—2,

1 (o 6%
Fliz.2)2),2 = 6252 (E * 35;5)

From these, we can obtain the representaion of the asymptotic expansion.
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