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We show that if one uses a multisheet configuration space for a system of identical particles, then frac-
tional quantum statistics in two dimensions can be geometrically characterized as a topological quantum
number for going from one sheet to the next. Furthermore, the spectrum of such a g-sheet system is
shown to consist of the spectra of all species of anyons obeying different fractional statistics 6=2mp /q

(p=0,1,..

.,q —1) with the same denominator gq. A lattice computation has been done to verify this.

Various aspects of the multisheet formalism are discussed.

Geometrization of physics (together with unification)
has been one of the main trends in contemporary physics
since Einstein’s general relativity! and the Kaluza-Klein
theory.? The recent success of Yang-Mills gauge theory
for unifying all nongravitational interactions represents a
strategic triumph of the mainstream.® And this trend be-
comes even more intensive in recent attempts of unified
string theories.* However, quantum statistics, which is
known to play a crucial role in quantum physics, is tradi-
tionally considered as something nongeometrical. In re-
cent years it has become clear that quantum statistics is
closely related to the topology of the many-body
configuration space“——namely, statistics can be charac-
terized by a one-dimensional unitary representation of
the first homotopy group of the many-body configuration
space. In this paper, as an attempt towards more direct
geometrization of statistics, we describe a simple
geometric characterization for fractional statistics in
two-dimensional quantum mechanics as a topological
quantum number associated with a multisheet
configuration space.

It is well known that in two dimensions exotic statistics
other than normal bosons and fermions are allowed.” !°
They are described by an angular parameter 8. We will
show that when 6/27 is fractional, a simple geometric
characterization can be given to 6 with the use of a mul-
tisheet configuration space for a system of identical parti-
cles. More concretely, if one considers a system with a
g-sheet configuration space, then a fractional statistics
parameter 6=27p/q can be viewed as a topological
quantum number associated with going from one sheet to
the next. In particular, one may use the wave function of
such a g-sheet system to give a unifying treatment for all
species of anyons obeying different statistics with the
same denominator g, in the sense that the spectrum of the
system consists of spectra of anyons with different
0=2mp/q(p=0,1,...,g—1).

Let us start with the braid-group formalism for frac-
tional statistics.® Consider anyons in a planar system.
The many-body configuration space for the identical par-
ticles is

C=(R?2XR*X -+ XR*—D)/Py

where D consists of configurations with two or more par-
ticles sitting on the same position and Py, is the permuta-
tion group for particle labels. The many-body wave func-
tion for anyons is known to form a one-dimensional rep-
resentation of the first homctopy group (or the funda-
mental group) of C, which is the well-known braid group
By(R?). The generators of the latter consist of the pair-
exchange operators o; (i=1,...,N —1), which inter-
changes the ith and (i +1)th particles along a counter-
clockwise loop without enclosing any other particles.
These generators satisfy the defining relations
o,0;=0;0; (iFjtl)

(1)

0;0;4+10;=0;410,0;4; -

The one-dimensional representations of o;’s are labeled
by an angular statistics parameter 6 (0<6 <2#). In this
paper we use the convention that the quantum-
mechanical anyon Hamiltonian is the same as the classi-
cal Hamiltonian and the statistics are represented by the
boundary conditions satisfied by the anyon wave func-
tions. As shown in Ref. 9, for a generic 6 the boundary
conditions are such that the wave function is single
valued on the universal covering C of C, which is related
to the latter by C=C/By(R?). Since By(R?) is an
infinite non-Abelian group, the universal covering C has
infinitely many sheets.

However, a great simplification occurs when 6/27 is
fractional. To describe anyons with 6 /27=p /q (p,q pos-
itive integers), one may use a g-sheet wave function on
the many-body configuration space C, or, more precisely,
a single-valued wave function on the g-fold covering C,
of C defined as follows: Any element of By(R?) is a prod-
uct of the generators o; (i =1,2,...,N —1) and their in-
verse. We call the sum of the powers of the generators in
the product modulo g as the index of the element. It is
easy to see that the subgroup consisting of all elements
with index O, which we denote as B N, q(]Rz), is a normal
subgroup of By(R?). And
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By(R*) /By ,(R*)=1Z, ,

the cyclic group of order g. The quotient space
C /By ,(R?) is a g-sheet covering of C, which we define as
Cq. It is a bundle based on C with a discrete fiber Zq, and
its fundamental group is known to be B N,q(IRZ). Thus one
can easily see that the boundary conditions for anyons
with 8=2mp /q are such that the wave function is always
single valued on C,: Each generator o; gives rise to the
same phase e!0=¢2™/4 thys every element in BN’q(]Rz)
gives rise to a factor of unity. The action of the braid-
group generator o; in C, is the same as the action of the
generator of Z, on a fiber—namely, o; moves one point
in C, from one sheet to the corresponding point in the
next sheet on the same fiber; in particular, the action of
(0;)? on C, is effectively the same as the identity. Thus
the anyon wave function can be viewed as the eigenfunc-
tion of these sheet-shifting operators o; in C, with eigen-
value e/2™/9, This is the desired geometric characteriza-
tion of fractional statistics as the quantum number relat-
ed to sheet-shifting operators in the g-sheet configuration
space C,.

More explicitly, we may introduce a multicomponent
many-body wave function W(r,r,,...,ry;a) in the
configuration space C, where r,,r,,...,ry are anyon
coordinates and «a is the sheet index taking values in the
set (0,1,...,g —1), i.e,, the set of non-negative integers
modulo g. We require that this wave function be totally
symmetric in r,7,,..., and ry, but its sheet index is
shifted by 1 (a—a+1) when r; exchanges with r; along a
counterclockwise loop without enclosing other particles.
Denote by T the unitary operator that shifts a by 1. Ob-
viously, T satisfies (7)?=1. Furthermore, the many-body
wave function is required to be an eigenfunction of the
operator T with eigenvalue e ™79, then it describes a sys-
tem of anyons with 6=27p /q.

Since the exchange operation o; is realized by the
sheet-shifting operator T in this formalism, the consisten-
cy requires that the many-body wave function
W(ry,ry, ..., ry;a) should go to zero whenever any two
coordinates tend to coincide. (This is the same condition
for the Hamiltonian to have a self-adjoint extension.)
Physically, the wave function can be thought of as a g¢-
component wave function for hard-core bosons.

What is more interesting is that this formalism will
give a unifying treatment of anyons with different statis-
tics, if we do not require ¥ to be an eigenstate with a
definite eigenvalue of 7. In this case, we actually have a
g-dimensional representation of the braid group By(R?)
with all o;’s realized by the one and same operator 7,
given by the following matrix (acting on the sheet index
a):

01 0
P 0

T=|, s @)
10 0

which satisfies (7)?7=1. Obviously, the braid-group rela-
tions (1) are satisfied. It is easy to see that T commutes
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with the classical Hamiltonian (without statistical vector
potentials), which is symmetric in ,7,, ..., and ry and
does not contain any sheet index. So T must be con-
served and its eigenvalues are of the form e'2™/4
(p=0,1,...,9 —1). Notably, T gives rise to superselec-
tion rules. Any physical observable A4 that is symmetric
in ry,r;,...,ry and does not involve the sheet index
must commute with T} it cannot have nonvanishing ma-
trix elements between two states |p) and |p’) having
different eigenvalues of T:

(p'lAlp)=(p'|T ' 4TIp)
:e—iZﬂ'(p'—P)/q(p:| A|p>=0 , (3)

unless p =p'. So the Hilbert space is divided into sub-
spaces belonging to different eigenvalues of T which satis-
fy the superselection rule (3). The eigenvalues of T should
be interpreted as the statistics parameter of the particles.
Thus, if we diagonalize the Hamiltonian for such a sys-
tem, the energy spectrum consists of all possible levels of
N identical anyons with all different 6=2mwp/q
(p=0,1,...,g —1). The superselection rule (3) guaran-
tees that there is no mixing between states of different
statistics.

Analytically, it is hard to work with the appropriate
boundary conditions (or strength-free vector potentials)
for W(ry,ry,...,ry;a) with N >2 that realize the local
exchanges o; by the matrix 7, but is easy to realize them
on a square lattice for exact diagonalization by computer.
To do this, we just attache a string to each anyon in the
usual way (see Fig. 1): Every string starts from, say, the
lower-right plaquette of the anyon site and runs horizon-
tally in parallel to each other to the right until hitting the
boundary of the lattice. But the rule for anyon hopping
across the string is unusual: Instead of giving a phase,

a—a-+1 for hopping upward across a string . (4)

More precisely, when an anyon hops upwards across the
string of another anyon from below (or downwards from
above), the sheet index of many-body wave function
changes by +1 (or —1) without any extra statistical
phase factor. Our previous conclusion asserts that by di-
agonalizing a Hamiltonian with such a hopping rule (4),
one will obtain a spectrum composed of all levels of N
identical anyons with all possible statistics

60=0,2m/q,...,2m(q —1)/q .

W

FIG. 1. A string configuration representing anyons.
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TABLE I. Twenty-five lowest energies of a three-anyon sys-
tem on a 4 X 3 lattice with five sheets.

Energy p (mod q)
E, —7.4529 0
E, —17.1072 1,4
E, —7.1072 1,4
E, —6.6113 2,3
E; —6.6113 2,3
E, —6.2875 0
E, —6.2298 2,3
E, —6.2298 2,3
E, —6.1391 1,4
Ep —6.1391 1,4
E, —5.8507 1,4
E, —5.8507 1,4
Ep —5.8390 0
E. —5.8175 1,4
Eis —5.8175 1,4
E —5.6658 2,3
E\; —5.6658 2,3
E —5.5494 0
o —5.5395 1,4
Eq —5.5395 1,4
E,, —5.4892 0
Ey —5.4506 2,3
E,, —5.4506 2,3
E,, —5.2129 2,3
Es —5.2129 2,3
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TABLE III. Twenty-five lowest energies of a three-anyon
system on a 4X3 lattice with five sheets in a uniform external
magnetic field with flux ¢, =27 /50 per plaquette.

Energy p (mod q)
E, —17.4407 0
E, —7.1974 1
E; —6.9946 4
E, —6.6477 3
E; —6.5514 2
Eq —6.3857 2
E, —6.2876 0
Es —6.2286 4
E, —6.1122 1
Ey, —6.0727 3
E, —5.8634 4
E, —5.8221 0
E; —5.8100 4
E. —5.8083 1
E,s —5.7530 1
Elﬁ _5.6835 2
Ey; —5.6502 0
EIS - 5.6439 3
Ey —5.5930 1
Es —5.4808 3
E, —5.4507 4
E, —5.4144 2
E, —5.3774 0
Ey —5.3264 0
E,s —5.2385 2

We have done a lattice computation to verify the above
results. We have taken g =35 sheets and N =3 free
anyons on a 4X3 square lattice and have computed all
energy levels by using the above rules. The results agree
with what we predicted before. For the purpose of illus-
tration, we list the lowest 25 levels in column 1 of Table 1.
To identify the corresponding statistics parameters, we
also did the usual (one-sheet) computations for anyons
with fixed 6=2w/5, 4w/5, 6mw/5, 8w/5, and 107w/5
(hard-core boson), respectively. The results are shown in
Table II. It is clear that the energy levels coincide exact-
ly with those obtained from the five-sheet calculation;
this gives the identification of 8 for the five-sheet levels,
shown in the second column in Table I. In this way, we
have explicitly verified that with one calculation using g
sheets, one really obtains the energy levels for all species
of anyons with different fractional values of 8 of the same
denominator g. We note the unlike usual one-sheet cal-
culations for anyons, which inevitably deal with complex

hopping matrix elements, all matrix elements involved in
the g-sheet calculation are real.

One may note the double degeneracies in the five-sheet
case, which arise from the symmetry of free anyons under
6—(—0). This symmetry can be broken by imposing an
external uniform magnetic field on the lattice. Taking the
flux per plaquette to be ®z=27/50, we have repeated
the above five-sheet and one-sheet computations and ob-
tain the levels and identifications in Table III and IV.
The double degeneracies between 6=2mp/5 and
6=—2mp/5 (p7#0,5) in the multisheet treatment have
disappeared.

We emphasize that the sheet index a is assigned to the
many-body state, but not to each individual anyon. It is
easy to see that the assignment of a sheet index a; to each
anyon would not give us fractional statistics, even if the
wave function is required to depend only on the sum of
all sheet indices «;.

We also note that our g-sheet treatment is valid with

TABLE II. Five lowest energies of a three-anyon system on a 4 X 3 lattice with fixed 0=27%/5, 47 /5,

61 /5, 81 /5, 107 /5 (hard-core boson), respectively.

Statistics 1-2w/5 2-27/5 327/5 4-27/5 0-27/5
E, —17.1072 —6.6113 —6.6113 —17.1072 —7.4529
E, —6.1391 —6.2298 —6.2298 —6.1391 —6.2875
E, —5.8507 —5.6658 —5.6658 —5.8507 —5.8390
E, —5.8175 —5.4506 —5.4506 —5.8175 —5.5494
Es —5.5395 —5.2129 —5.2129 —5.5395 —5.4892
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TABLE 1IV. Five lowest energies of a three-anyon system on a 4X 3 lattice with one-sheet in a uni-
form external magnetic field with flux ¢, =27 /50 per plaquette, with fixed 6=27/S5, 4 /5, 6m/5, 87 /5,

1077 /5 (hard-core boson), respectively.

Statistics 1-27/5 2-27/5 3-2w/5 4-27/5 0-27/5
E, —17.1974 —6.5514 —6.6477 —6.9946 —7.4407
E, —6.1122 —6.3857 —6.0727 —6.2286 —6.2876
E, —5.8083 —5.6835 —5.6439 —5.8634 —5.8221
E, —5.7530 —5.4144 —5.4808 —5.8100 —5.6502
Es —5.5930 —5.2385 —5.2112 —5.4507 —5.3774

an arbitrary classical interacting Hamiltonian that is
symmetric in r,7,, ..., and ry (without statistical vec-
tor potentials). In particular, our hopping rule (4) for
putting g sheets on a lattice can be used in combination
with other lattice rules'!”!* for putting anyons on a
periodic lattice appropriate for a cylinder or a torus with
or without Aharanov-Bohm flux through the holes.

The typical feature of the above g-sheet treatment is
the use of a multicomponent wave function correspond-
ing to a higher-dimensional braid-group representation.
The use of such multicomponent wave functions has been
made previously in a number of topologically nontrivial
situations, such as anyons on a torus'®!>13 or fractionally
charged quasiparticles on a cylinder.!® For anyons on a
plane, our multicomponent wave function corresponds to
a reducible braid-group representation and can be inter-
preted as the use of a multivalued wave function. One is
naturally concerned about whether it is legitimate to use
a multivalued wave function. Certainly an arbitrary mul-
tivaluedness would violate the probability interpretation.
However, path-integral formalism on a multiply connect-
ed configuration space®!'®!7 tells us that multivalued
wave functions be properly used, if and only if the wave
function provides a representation of the fundamental
group of the configuration space. In other words, the
multivaluedness should be available as holonomies'® of a
flat connection (i.e., gauge potential with zero field
strength) in the configuration space.!® In short, the al-
lowed multivaluedness of a wave function in C must be
such that it can be eliminated by introducing a flat con-
nection in C, or it is equivalent to a single-valued wave
function on a covering of C.

We also note the formal similarity of the multisheet in-
terpretation of 0 statistics to that of the vacuum 6 param-
eter in QCD.2?>2! There in the temporal gauge 4,=0,
the configuration space of QCD is the orbit space
A3 /G, where G'* is the group of gauge transforma-
tions in three-space and 4‘* is the space of all gauge po-
tentials in three-space, which is nothing but the universal
covering of the gauge-orbit space. The wave functional is
always single valued in 4>, but may be multivalued in
the orbit space, and the multivaluedness is characterized
by the vacuum 6 parameter, which also satisfies a super-
selection rule?®?! similar to our Eq. (3).

We stress that our discussion of g-sheet (or g-
component) wave functions is not purely academic; they

may well be related to realistic planar systems. Recently
it has been argued that both fractionally quantized Hall
conductance?> % and fractional charge of quasiparti-
cles'® in a cylindrical fractional quantum Hall system re-
quire the existence of a set of low-lying states which flow
into each other as the magnetic flux threading through
the hole varies. It seems plausible that these states on a
cylinder may have counterparts in certain two-
dimensional planar systems of topological order,?¢ in the
sense that it is more appropriate to describe these planar
states in terms of a g-component wave function as we did
for the cylinder case.!® The number g of the components
is presumably determined by (or closely related to) the to-
pological order. It is well known that if one introduces
axions?”?® in QCD, then the 6 parameter becomes a
dynamically determined parameter. The above-
mentioned analogy between the 6 parameter and 8 statis-
tics suggests the interesting possibility that in certain
cases the statistics parameter may be dynamically deter-
mined to be some preferred value in a way similar to the
preferred value 6=0 in QCD with axions. Our above g-
sheet formalism using the 7 matrix (2) for local ex-
changes would be particularly suitable for such a situa-
tion.

In conclusion, we have given fractional quantum statis-
tics a geometric characterization by using a multisheet
configuration space. Namely, fractional statistics can be
viewed as a topological quantum number associated with
the sheet-shifting operator. Theoretically, this point of
view may be useful for the geometrization of physics. In
practice, it may be useful to unify all anyons with
different fractional statistics or to determine dynamically
the preferred value of the statistics parameter of quasi-
particles. The multisheet formalism is generalizable to
vortex like quasiparticles in three-dimensional systems.
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