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Collapse of the charge gap in random Mott insulators
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Effects of randomness on interacting fermionic systems in one dimension are investigated by quantum
Monte Carlo techniques. At first, interacting spinless fermions are studied whose ground state shows charge
ordering. Quantum phase transition due to randomness is observed associated with the collapse of the charge
ordering. We also treat random Hubbard model focusing on the Mott gap. Although the randomness closes the
Mott gap and low-lying states are created, which is observed in the charge compressibildyasgFermi-
surface singularity is formed. It implies localized nature of the low-lying st4&3163-182608)00748-4

Effects of Coulomb interaction and randomness in fermi-wherec/ (c;) createsannihilate$ a spinless fermion at the
onic systems have been studied separately for a long timeth site, n;=c/c; and(i,j) is a nearest-neighbor link,,
Their combined effects, however, remain unsolved espedenotes site randomness whevgs are chosen fronw or
cially in the strong-coupling regime. The strong Coulomb — vy at random. We set=1 as an energy unit and use open
interaction can cause the Mott transition and lead the metaboundary conditiond.In the following, the system is set to

lic system to the Mott insulator. Also, the randomness carpe half-filled, i.e.No=L/2, whereN, is number of the elec-
make the electrons localized, which is the Anderson localiygns andL is the system size. The pure system without
ization. Although both are metal-insulator transitions, therandomness is one of the typical examples that show
physical characters are quite different. For example, in thgyuantum-critical phenomena. When the interaction is weak
Mott insulator, the ground state has a finite charge gap due {<V/t<2), the system is metallic and it belongs to a uni-
the Coulomb interaction. On the other hand, the insulator dU@ersaIity class of the Tomonaga-Luttinger liquid. A metal-
to the Anderson localization does not necessarily have ghsylator transition accompanied with a charge ordering oc-
charge gap. Therefore, the competition between the Coulom§rs atv/t=2. For strong interaction\(/t>2), the charge
interaction and the randomness is interesting from a theoregjegree of freedom becomes frozen and the energy gap opens.
ical point of V|ev_\iL‘4 and it may shed new light on some real \we focus on the charge-ordered phasétt2) where the
materials. In this paper, we systematically investigate onegharge gap is finite due to the nearest-neighbor interaction,
dimensional fermionic systems with both Coulomb interac-5ng study the effect of randomness.

tion and randomness by quantum Monte Caff@MC) In order to study the charge ordering when the random-

. —7 . . .
techniques:” Although the conventional wisdom is that ness is included, we calculate the CDW structure factor with
there is no quantum-phase transition driven by randomnesgomentuma defined by

in one and two dimensiorfswe confirmed the existence of

guantum-phase transitions due to combined effect of Cou- 1 o

lomb interaction and randomness. In this paper, at first, we ~ Ocow(T) =~ 2 (=)= 172)(n;— 1/2)),

focus on the charge-density-wa@DW) ordering in inter- BleB @)

acting spinless fermions with randomness. Next, in order to

understand low-lying excitations of the random Mott insula-whereB is set to be a subset of the lattice to avoid a bound-

tor, we study the charge compressibility of the random Hub-ary effect, B=[L/4,3L/4] and Ny is number of sites in3.

bard model in the half-filled sector. Also, the one-particlewithout randomness)cpy is strongly enhanced and diverg-

Green’s function is investigated to discuss nature of the lowing toward zero temperature, which corresponds to charge

lying excitations. ordering in the ground state due to Coulomb interaction

(V/t>2). On the other hand, when sufficiently strong ran-

Random spinless fermions domness is included, the charge ordering is expected to col-

L lapse and the diverging behavior 6y, to vanish. In order
To begin with, we focus on CDW structure factOcow 14" optain the Ocpw for each realization of randomness,

(;:elgg?gictjpr?esg;wrlrﬁﬁcs);g?ilsr;siv\év;]thb)r/andomness in-one dIK/vorld-line QMC method is employe?jln Fig. 1, temperature

dependence of th€qpy is shown for several strength of
Her=H,+ Hy, (1) randomness where simulations are performed in the half-
filled sector with typical system size=128 andV/t=3.
Without randomness, since the charge ordering occurs at
H,= —tE (cich +chci)+VE nin;, 2 zero temperature, the structure factor shows diverging behav-
(i.i) (Li ior toward zero temperature. For weak randomness, the
structure factor still has similar behavior down to the tem-
H,= E wn , 3) perature we studied. It mga@asi)long-range order in the
i ground state or long localization length beyond the available

0163-1829/98/5@3)/153143)/$15.00 PRB 58 15314 ©1998 The American Physical Society



PRB 58 BRIEF REPORTS 15315

T T e T T T T T
e 0.2
2} §|:z
£, >0.15"
- g =
2 0.8 ]
. ow/t=0.00
wLq.5¢ " £ 0.1t ow/t=0.50 -
2 0 0.51 ;I./: 2 2.53 E <>W/t=0.75
s W/t=0.1 o 2 wW/t=1.00
5 (8] vw/t=1.25
3 ow/t=1.50
= 0.05+ nw/t=2.00 -
»w 1L »w/t=3.00
aw/t=4.00
Wit=3 '
% v. Tem érature 5 2
0.5/ “*rradesasssania,] y
0 0'_2 0'_4 0:6 Ol.8 1 FIG. 2. Temperature dependence of the charge compressibility
Temperature for a particular realization of randomnesk =36 and U/t=4).

Without randomnesss shows thermally activated behavior and de-
FIG. 1. The CDW structure factor as a function of temperaturecreases toward zero at low temperature indicating the existence of a
(T/t) for a particular realization of randomneds=128 andV/t charge gap. With weak randomnesss<w,. (w./t~1.5), « still
=3). For weak randomness\({t=0.1), the structure factor shows shows thermally activated behavior. On the other hand, for strong
diverging behavior down to the temperature we studied. On theandomnessy>w,, « does not decrease down to the temperature
other hand, for strong randomnes#&/t=3), the divergence van- we studied.
ishes. The inset shows how the structure factdr/at 0.2 depends
on the strength of randomnesw/(t), whereL=64, V/t=3, and  chemical potentiak. The boundary condition is periodic. In
average over 30-40 realizations of randomness is performed. Thtie absence of randomness, an infinitesimal interadtion
line is a guide for the eyes. causes a charge gafMott gap E, at half filling (u
) o =U/2). The charge gajty is exponentially small in the
system size. On the other hand, when sufficiently strong raNyeak-coupling region Y/t<1) and linear inU in the
domness is included, the temperature dependence of “%‘%rong-coupling region Y/t>1), for example, estimated
Ocpw shows qualitatively different behavior. The rapid en- g —1 3 for U/t=4.19 Here we shall discuss effects of ran-
hancement at low temperature vanishes. It implies that thgomness on the Mott insulatésee also Ref. 11
charge ordering completely fades out due to randomness. In 14 optain approximation-free results, we use the finite-
order to investigate the detailed nature of the transition, Wemperature auxiliary-field QMC methdd.Since we use the
study how the structure factor depends on the randomness ?«‘and canonical ensemble, there is a finite-charge fluctuation
T=0.2. As shown in the inset of Fig. 1, sudden decrease ofhat is crucial for the knowledge of low-lying excitations.
Ocpw at finite strength of randomness is observed. It impliesa|though the random potential breaks the particle-hole sym-
that the collapse of the charge gap occurs at finite strength Ghetry for each realization of randomness, a half-filling con-
randomness, which is the order of the charge gap, althougition is recovered after averaging over different realizations
we can not exclude a possibility that the transition is thegf randomness. Our simulations are performed with the sys-
Kosterlitz-ThoulessKT) type at infinitesimally weak ran- tem sizel =36 at U/t=4. Severe finite-size effect due to
domness. energy discretization is observed in the low-temperature re-
gion (lower thanT~0.2 for L=36) and the data for that
Random Hubbard model region are not shown. Moreover, since the particle-hole sym-
Next, in order to study effect of randomness on the MottMetry is broken for each realization of randomness, a
insulator, let us consider the half-filled sector of one-Negative-sign problem occurs in general. However, in the
dimensional random Hubbard model. The Hamiltonian jsP@rameter region we investigated, it is not serious and the

given by data are obtained with sufficient accuracy. To investigate the
change of low-lying excitations due to randomness, we cal-
H="H,+Hy, (5) culate the charge compressibilikydefined by
10N, B . N
- T t - e_ 2 2
Hu——to%g(ciUcJ-U+cjaciU)+U2i NNy, (6 K(T)—E P —E(<Ne Y= (Ng)9). (8)

It measures fluctuation in the charge sector and shows
HWIE WiNig, (7 thermally activated behavior when the system has a finite
7 charge gap. On the other hand, in the absence of the charge
wheret is the nearest-neighbor hopping amplitude &his  gap, the charge compressibility is expected to be finite due to
the on-site Coulomb interactioftt,, denotes random poten- the low-lying excitations. For example, in the noninteracting
tials andw;’s are taken from the intervfi-w,w] at random. case,x(T=0) is equal to the density of states at the Fermi
We treat the system in a grand canonical ensemble with thenergy. Figure 2 shows temperature dependence of the
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charge compressibility for different strength of random-
ness. Although a snapshot for a particular realization of ran-
domness is shown in Fig. 2, the simulations for other real-
izations were also performed and we confirmed that the
global feature does not depend on each realization. Without
randomnessk decreases toward zero and shows thermally
activated behavior as the temperature is lowered indicating
the existence of a charge gap. This is a typical feature of the
Mott insulator. As randomness is turned on, the enhancement
in « is observed for all temperature. For weak randomness,
w/t=<1.5, althoughk is enhanced, it still seems to show a 09 ' - ' 2

thermally activated behavior as in the pure case. On the other Momentum

hand, with strong randomnegst=1.5, there is no tendency FIG. 3. The momentum distribution functiorh €36 andU/t

for « to decrease down to the lowest temperature we studied 4) average over about 10 realizations of randomness is per-

and it seems that is finite atT=0. It suggests the collapse formed. There is no singularity &=k even forw/t=2.0 where
of the charge gap. These behaviors imply that sufficientlfthe charge gap is closed as shown in the charge compressibility.
strong randomness, which is the order of the charge gap,

takes the system away ffomihe MOt.t insula%érjhis s changed and no singularity appears kat even for w/t
quantum-phase tran$|t|on of the Mott.msulator driven py faN"_5 0. It is in contrast to the transition from the Mott insu-
domness. Although it has been confirmed that low-lying x4, the Luttinger liquid in the pure Hubbard model when
citations are created in the Mott gap with sqfﬂgently strongyy, o system is doped. It suggests that the low-lying excitations
randomness, the nature of the low-lying excitations is crucial '

to understand the phase transition. In order to study the low_reated by randomness are localized.
. o P ) . y ; In summary, we have studied effects of randomness in the
lying excitations, we calculate the one-particle Green’s func-

) R . _ . Interacting fermionic system with charge géplott gap.

tllon G!J"_h<C‘<TCi”>' The feature of5;;, in metallic Str?te; s hThe strong randomness closes the charge gap and low-lying
clear in the momentum space representation, Which IS g, o5 are created, whilguasiyFermi surface is not formed.
momentum distribution functiom (k). Metallic nature of

; . ; It implies that the transition is an insulator to an insulator
the system is reflected by the singularity of(k) at k  yangjtion. The transition point may be continuously con-
=kg. For example, it is a step function in the Fermi liquid

; ) i 1YY nected to the metal-insulator transition point in the pure sys-
(Fermi surfacgand, even in the Tomonaga-Luttinger liquid tem, then it gives a new example of quantum-phase transi-

(doped Hubbard chainthe derivative of,(k) is diverging  {ions in Jow-dimensional random fermionic systems. These
at k=kg (quasi-Fermi surfage On the other hand, in the ,henomena may give a clue for the understanding of several

Mott insulator (half-filled Hubbard chaip the derivative is aspects in quantum-phase transitions in low-dimensional ran-
finte. We may summarize that the formation of y5, systems.

(quasiyFermi surface, as temperature is lowered, implies

metallic nature of the system. Figure 3 shows momentum We are grateful to S. Fujimoto, P. J. H. Denteneer, and
distribution functionn, (k) at T=0.2 for several random- R. A. Ramer for helpful correspondence. Y.H. was supported
ness strength. By performing calculations with different tem-in part by a Grant-in-Aid from the Ministry of Education,
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