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Collapse of the charge gap in random Mott insulators
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~Received 30 June 1998!

Effects of randomness on interacting fermionic systems in one dimension are investigated by quantum
Monte Carlo techniques. At first, interacting spinless fermions are studied whose ground state shows charge
ordering. Quantum phase transition due to randomness is observed associated with the collapse of the charge
ordering. We also treat random Hubbard model focusing on the Mott gap. Although the randomness closes the
Mott gap and low-lying states are created, which is observed in the charge compressibility, no~quasi-!Fermi-
surface singularity is formed. It implies localized nature of the low-lying states.@S0163-1829~98!00748-6#
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Effects of Coulomb interaction and randomness in ferm
onic systems have been studied separately for a long t
Their combined effects, however, remain unsolved es
cially in the strong-coupling regime. The strong Coulom
interaction can cause the Mott transition and lead the me
lic system to the Mott insulator. Also, the randomness c
make the electrons localized, which is the Anderson loc
ization. Although both are metal-insulator transitions, t
physical characters are quite different. For example, in
Mott insulator, the ground state has a finite charge gap du
the Coulomb interaction. On the other hand, the insulator
to the Anderson localization does not necessarily hav
charge gap. Therefore, the competition between the Coul
interaction and the randomness is interesting from a theo
ical point of view1–4 and it may shed new light on some re
materials. In this paper, we systematically investigate o
dimensional fermionic systems with both Coulomb intera
tion and randomness by quantum Monte Carlo~QMC!
techniques.5–7 Although the conventional wisdom is tha
there is no quantum-phase transition driven by randomn
in one and two dimensions,8 we confirmed the existence o
quantum-phase transitions due to combined effect of C
lomb interaction and randomness. In this paper, at first,
focus on the charge-density-wave~CDW! ordering in inter-
acting spinless fermions with randomness. Next, in orde
understand low-lying excitations of the random Mott insu
tor, we study the charge compressibility of the random H
bard model in the half-filled sector. Also, the one-partic
Green’s function is investigated to discuss nature of the lo
lying excitations.

Random spinless fermions

To begin with, we focus on CDW structure factorOCDW
of interacting spinless fermions with randomness in one
mension. The Hamiltonian is given by

Hs f5Hv1Hw , ~1!

Hv52t(
^ i , j &

~ci
†cj1cj

†ci !1V(
^ i , j &

ninj , ~2!

Hw5(
i

wini , ~3!
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whereci
† (ci) creates~annihilates! a spinless fermion at the

i th site, ni5ci
†ci and ^ i , j & is a nearest-neighbor link.Hw

denotes site randomness wherewi ’s are chosen fromW or
2W at random. We sett51 as an energy unit and use ope
boundary conditions.9 In the following, the system is set to
be half-filled, i.e.,Ne5L/2, whereNe is number of the elec-
trons andL is the system size. The pure system witho
randomness is one of the typical examples that sh
quantum-critical phenomena. When the interaction is we
(0<V/t<2), the system is metallic and it belongs to a un
versality class of the Tomonaga-Luttinger liquid. A meta
insulator transition accompanied with a charge ordering
curs atV/t52. For strong interaction (V/t.2), the charge
degree of freedom becomes frozen and the energy gap op
We focus on the charge-ordered phase (V/t.2) where the
charge gap is finite due to the nearest-neighbor interact
and study the effect of randomness.

In order to study the charge ordering when the rando
ness is included, we calculate the CDW structure factor w
momentump defined by

OCDW~T!5
1

NB
(

i , j PB
~21! u i 2 j u^~ni21/2!~nj21/2!&,

~4!

whereB is set to be a subset of the lattice to avoid a bou
ary effect,B5@L/4,3L/4# and NB is number of sites inB.
Without randomness,OCDW is strongly enhanced and diverg
ing toward zero temperature, which corresponds to cha
ordering in the ground state due to Coulomb interact
(V/t.2). On the other hand, when sufficiently strong ra
domness is included, the charge ordering is expected to
lapse and the diverging behavior ofOCDW to vanish. In order
to obtain theOCDW for each realization of randomnes
world-line QMC method is employed.5 In Fig. 1, temperature
dependence of theOCDW is shown for several strength o
randomness where simulations are performed in the h
filled sector with typical system sizeL5128 andV/t53.
Without randomness, since the charge ordering occur
zero temperature, the structure factor shows diverging beh
ior toward zero temperature. For weak randomness,
structure factor still has similar behavior down to the te
perature we studied. It means~quasi-!long-range order in the
ground state or long localization length beyond the availa
15 314 ©1998 The American Physical Society
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system size. On the other hand, when sufficiently strong
domness is included, the temperature dependence of
OCDW shows qualitatively different behavior. The rapid e
hancement at low temperature vanishes. It implies that
charge ordering completely fades out due to randomnes
order to investigate the detailed nature of the transition,
study how the structure factor depends on the randomne
T50.2t. As shown in the inset of Fig. 1, sudden decrease
OCDW at finite strength of randomness is observed. It impl
that the collapse of the charge gap occurs at finite strengt
randomness, which is the order of the charge gap, altho
we can not exclude a possibility that the transition is
Kosterlitz-Thouless~KT! type at infinitesimally weak ran
domness.

Random Hubbard model

Next, in order to study effect of randomness on the M
insulator, let us consider the half-filled sector of on
dimensional random Hubbard model. The Hamiltonian
given by

H5Hu1Hw , ~5!

Hu52t (
^ i , j &s

~cis
† cj s1cj s

† cis!1U(
i

ni↑ni↓ , ~6!

Hw5(
is

winis , ~7!

wheret is the nearest-neighbor hopping amplitude andU is
the on-site Coulomb interaction.Hw denotes random poten
tials andwi ’s are taken from the interval@2w,w# at random.
We treat the system in a grand canonical ensemble with

FIG. 1. The CDW structure factor as a function of temperat
(T/t) for a particular realization of randomness (L5128 andV/t
53!. For weak randomness (W/t50.1), the structure factor show
diverging behavior down to the temperature we studied. On
other hand, for strong randomness (W/t53), the divergence van
ishes. The inset shows how the structure factor atT/t50.2 depends
on the strength of randomness (W/t), whereL564, V/t53, and
average over 30–40 realizations of randomness is performed.
line is a guide for the eyes.
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chemical potentialm. The boundary condition is periodic. I
the absence of randomness, an infinitesimal interactionU
causes a charge gap~Mott gap! Eg at half filling (m
5U/2). The charge gapEg is exponentially small in the
weak-coupling region (U/t!1) and linear in U in the
strong-coupling region (U/t@1), for example, estimated
Eg.1.3t for U/t54.10 Here we shall discuss effects of ran
domness on the Mott insulator~see also Ref. 11!.

To obtain approximation-free results, we use the fini
temperature auxiliary-field QMC method.6,7 Since we use the
grand canonical ensemble, there is a finite-charge fluctua
that is crucial for the knowledge of low-lying excitation
Although the random potential breaks the particle-hole sy
metry for each realization of randomness, a half-filling co
dition is recovered after averaging over different realizatio
of randomness. Our simulations are performed with the s
tem sizeL536 at U/t54. Severe finite-size effect due t
energy discretization is observed in the low-temperature
gion ~lower thanT;0.2t for L536! and the data for tha
region are not shown. Moreover, since the particle-hole sy
metry is broken for each realization of randomness,
negative-sign problem occurs in general. However, in
parameter region we investigated, it is not serious and
data are obtained with sufficient accuracy. To investigate
change of low-lying excitations due to randomness, we c
culate the charge compressibilityk defined by

k~T!5
1

L

]Ne

]m
5

b

L
~^N̂e

2&2^N̂e&
2!. ~8!

It measures fluctuation in the charge sector and sh
thermally activated behavior when the system has a fi
charge gap. On the other hand, in the absence of the ch
gap, the charge compressibility is expected to be finite du
the low-lying excitations. For example, in the noninteracti
case,k(T50) is equal to the density of states at the Fer
energy. Figure 2 shows temperature dependence of

e

e

he

FIG. 2. Temperature dependence of the charge compressibilk
for a particular realization of randomness (L536 and U/t54!.
Without randomness,k shows thermally activated behavior and d
creases toward zero at low temperature indicating the existence
charge gap. With weak randomness,w,wc (wc /t;1.5), k still
shows thermally activated behavior. On the other hand, for str
randomness,w.wc , k does not decrease down to the temperat
we studied.
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charge compressibilityk for different strength of random
ness. Although a snapshot for a particular realization of r
domness is shown in Fig. 2, the simulations for other re
izations were also performed and we confirmed that
global feature does not depend on each realization. With
randomness,k decreases toward zero and shows therm
activated behavior as the temperature is lowered indica
the existence of a charge gap. This is a typical feature of
Mott insulator. As randomness is turned on, the enhancem
in k is observed for all temperature. For weak randomne
w/t&1.5, althoughk is enhanced, it still seems to show
thermally activated behavior as in the pure case. On the o
hand, with strong randomnessw/t*1.5, there is no tendenc
for k to decrease down to the lowest temperature we stu
and it seems thatk is finite atT50. It suggests the collaps
of the charge gap. These behaviors imply that sufficien
strong randomness, which is the order of the charge g
takes the system away from the Mott insulator.3,4 This is a
quantum-phase transition of the Mott insulator driven by r
domness. Although it has been confirmed that low-lying
citations are created in the Mott gap with sufficiently stro
randomness, the nature of the low-lying excitations is cru
to understand the phase transition. In order to study the l
lying excitations, we calculate the one-particle Green’s fu
tion Gi j s5^cis

† cj s&. The feature ofGi j s in metallic states is
clear in the momentum space representation, which is
momentum distribution functionns(k). Metallic nature of
the system is reflected by the singularity ofns(k) at k
5kF . For example, it is a step function in the Fermi liqu
~Fermi surface! and, even in the Tomonaga-Luttinger liqu
~doped Hubbard chain!, the derivative ofns(k) is diverging
at k5kF ~quasi-Fermi surface!. On the other hand, in the
Mott insulator ~half-filled Hubbard chain!, the derivative is
finite. We may summarize that the formation
~quasi-!Fermi surface, as temperature is lowered, impl
metallic nature of the system. Figure 3 shows moment
distribution functionns(k) at T50.2t for several random-
ness strength. By performing calculations with different te
peratures, we confirmed that the temperature is sufficie
low that the results reflect the ground-state properties.
though the charge gap is closed forw/t*1.5 as discussed
above, the momentum distribution function is almost u
m
. T
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changed and no singularity appears atkF even for w/t
52.0. It is in contrast to the transition from the Mott ins
lator to the Luttinger liquid in the pure Hubbard model wh
the system is doped. It suggests that the low-lying excitati
created by randomness are localized.

In summary, we have studied effects of randomness in
interacting fermionic system with charge gap~Mott gap!.
The strong randomness closes the charge gap and low-l
states are created, while~quasi-!Fermi surface is not formed
It implies that the transition is an insulator to an insula
transition. The transition point may be continuously co
nected to the metal-insulator transition point in the pure s
tem, then it gives a new example of quantum-phase tra
tions in low-dimensional random fermionic systems. The
phenomena may give a clue for the understanding of sev
aspects in quantum-phase transitions in low-dimensional
dom systems.
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FIG. 3. The momentum distribution function (L536 andU/t
54!. Average over about 10 realizations of randomness is p
formed. There is no singularity atk5kF even forw/t52.0 where
the charge gap is closed as shown in the charge compressibili
v. D
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