PHYSICAL REVIEW B, VOLUME 65, 033301

Singular density of states of disordered Dirac fermions in chiral models
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The Dirac fermion in the random chiral models is studied, which includes the random gauge field model and
the random hopping model. We focus on a connection between continuum and lattice models to give a clear
perspective for the random chiral models. Two distinct structures of density of states around zero energy, one
is a power-law dependence on energy in the intermediate energy range and the other is a peak at zero energy,
are revealed by an extensive numerical study for large systems up 02580 For the random hopping
model, the above findings reconcile previous inconsistencies between the lattice and the continuum models.
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Dimensionalities and symmetries play central roles for Chiral models in a continuum space have also been inves-
universalities in the Anderson localization problem. Moretigated extensively. Especially, models that include the Dirac
than two decades ago, Abrahams, Anderson, Licciardelldiermions have attracted interest. The Dirac fermion is a qua-
and Ramakrishndmpresented the well-known scaling theory, siparticle that appears in several interesting situations in con-
predicting that electron wave functions always localize indensed matter physics such dsvave superconductivity,
one and two dimensions and metal-insulator transition occurgraphite sheets, gap-closing transitions in the quantum Hall
in three dimensions. However, even in two dimensions, deeffect® the Chalker-Coddington network modeknd the
localized states are also marginally allowed to appear whemean field theory of the-J model? Effects of randomness
systems possess some special symmetries. For symmetriesi¢ also of fundamental interest in these contexts. Since
is often convenient to borrow terminologies from the randommany analytic approaches such as a field theoretic one are
matrix theory which was first introduced by Wigner and applicable for th_e Dirac fermion, several interestin_g re_sults
Dyson. Recently, Altland and Zirbaddrave reported seven have been obtained so far. Among them, there exist simple

new symmetry classes in connection with a mathematicginodels that allow us to construct an explicit zero-mode wave

classification scheme of the Riemannian symmetric spacesiunction for any realization of disordémue to this advan-

Amongst these new symmetry classes, chiral models havg&ge: it has been revealed that the zero-mode wave functions

attracted much attention as a novel exception for the scalingre not localized and exhibit a multifractal behavior. More-

theorv. Compared to the conventional models where randon2Ve" there exists a transition in the multifractal spectim
Y- P : e - : and the density-density correlatidras the disorder strength
ness enters as an on-site potential, it residebnds (i.e., as

fielin chiral models. This type of rand varied.
a gauge fielflin chiral models. This type of randomness may Although the delocalized multifractal nature of the exact

play important roles for the composite fermion theory of ;¢4 energy states has been well established now, our knowl-
fractional quantum Hall effects and vortex states of dirtygqge for finite energy states, especially for DOS around zero-
superconductors. In view of the localization problem, modelssnergy, is still in confusion. For example, a continuum model
with this randomness have a special symmetry, referred aghere the Dirac fermions feel random gauge fields was stud-
chiral symmetry, and thereby belong to a new universalityied in Refs. 9 and 12, and it was found that DOS exhibits a
class’ This symmetry is expected to affect localization prop- power-law dependence on energy. On the other hand, a simi-
erties of the systems drastically. lar model with species doubling was studied in Ref. 13 and a
Several chiral models on a lattice, which are convenientliverging DOS was found. From the lattice point of view, the
for numerics, have been studied and interesting physicsorresponding model including Dirac fermions has not been
around zero-energy has been revealed. The density of statetidied so far. However, the random flux model, a lattice
(DOS) of these models shows singularities at zero energynodel where flux is randomly distributed for each plaquette,
and the corresponding wave functions exhibit a delocalizedhows diverging DO$? A clear link between them is miss-
multifractal behavior. Examples of these include the Gade'sng.
model? the random flux modél,and thew-flux model with Another example is the case where the Dirac fermion is
link disorders These models, defined on a two-dimensionalsubject to imaginary vector potentials. For this case, there
square lattice, have the chiral symmetry which is conveeven exist inconsistent results between lattice and continuum
niently stated as{H,y}=0, where y is a matrix which models. Field theoretic studi€s® predict diverging DOS at
changes the sign of wave functions on one of the sublatticegero energy for any randomness strength. However, a nu-
Consequently, for any realization of disorder, the energymerical result for the random-flux model, where a random
spectrum is invariant under the transformati@-—E.  hopping amplitude act as an imaginary vector potential,
Therefore, given an eigenstafewith energyE, y¢ is also  shows that the DOS behaves as a power law with its expo-
an eigenstate with energyE. This symmetry is responsible nent dependent on the disorder strength for weak
for the existence of delocalized states at zero energy. randomness.
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In this paper, we make an attempt to clarify the relation- For strong enough randomness, this model is naturally
ship between lattice models and continuum Dirac fermionsrelated to another lattice model, the random flux mo¢#y.
reconcile some inconsistent results in the previous studieshe random flux model, we mean the model discussed
and thereby give a whole perspective for the localizationn Refs. 4 and 14 which does not include Dirac fermions,
problem of the two-dimensional2D) chiral models. For while we simply call the model with Dirac fermions defined
these purposes, we consider lattice models that recover trabove as the random gauge field mod&b see this, note
random Dirac fermions in the continuum limit. We focus onthat the spatial correlation of flux per plaquette
DOS, especially around zero energy where quantum interferp; :=aA;®; is expressed as(¢i¢j>=a4AiAjG(|i —ijl),
ence plays an important role and fully quantum mechanicalvhereG(|i —j|):=(®;®;) is a lattice Green’s function fob
treatments are necessary. We use the transfer-matrix methadd A; is lattice Laplacian at a site Taking a continuum
developed in Ref. 16. It allows us to handle large enoughimit a—0, we find (¢;¢;)=0 for finite a|i—j|, i.e., the
systems up to 250250, which is indispensable to give reli- spatial correlation of flux is short ranged. Moreover, for

able results for localization problems. strong enough randomness, lattice fermions do not “remem-
We realize Dirac fermions on a 2D square lattice via theber” the original flux = anymore, and we expect this model
7-flux model to exhibit a similar behavior to the random flux model where
the flux for each plaquette is an independent random vari-
Howe= 2 CHP%;+ H.c, aple. - _ .
pure <.EJ> e An effective sigma model via supersymmet(@USY)

ure A ure L technique was studied in Ref. 13, predicting diverging DOS
where tjp+§<,j:(_l)Jxv tjp+§/,j:1’ and flux piercing @ ¢4 5 whole range of randomness strength. A similar model
plaquette is 7. The energy spectrum is given by without species doubling{=fd*x¥[o-p+o-A]V¥ has
E=*2\/coska+coska, wherek belongs to the magnetic also been studiéd? and power-law DOS with a disorder-
Brillouin zone (- w/a,m/a]x(0,m/a] anda s a lattice con-  dependent exponent was proposed. On the other hand, the
stant. In the continuum limia— 0, this includes the doubled random flux model, which is expected to be the strong ran-
massless Dirac fermions around=(w/2a,m/2a) and  domness limit of the present case, shows diverging BOS.

(— ml2a,/2a). This realization is a minimum model for our e also consider the case where fermions on a 2D square

purposes. lattice with 7 flux per plaquette feel random hopping ampli-
In the following, we will consider two types of disorder tydes

which live on a link: the random gauge field and the random
hopping. We implement the random gauge field as tirjh:tgjureq_ 8t (3)

rg __ 4pure : . . . .

Gy =t exdiaA;]. @ \where dt; is a real random variable. As for a probability
Taking a Coulomb gauge, we determine the random gaug@istribution of 6t, we consider a Gaussian distribution
field A; via a scalar potentiakb on a dual lattice as P[ot]=exd—(a)%2g%]. _ o
Al = (@1 = Pis e @A 15 = = (Pt gy _ In this case, AAy) in Eq. (2) |s_pure_ly imaginary, and
_(I)j_(;(_gl)/z)/a’ where ® is random]y chosen from a Dirac Termlons are SUbjeCt to an Imaginary randpm gauge
simple Gaussian distributioP[CD]xexq—(a2/29)2<ij>(cbi potential. Note that the total four-component Hamiltonian is
—®))%a?. In the continuum limit, this reduces tB[®] Hermitian. Unlike the random gauge field model, time-
< ex] —(1/2g) [d?x(VP)?], a natural choice for effective field eversal symmetry is not broken for this model since we can
theoretic treatments. As stated above, this Hamiltonian pogake all matrix elements to be real in the real space. _
sesses the chiral symmet{§,y} =0 due to the special na- As is the case of the random gauge field model, this
ture of randomness. Note also that time-reversal invariance #§10del is connected to another lattice model for sufficiently

In the continuum limit, the Hamiltonian is expresse@'ds One expects that fermions no longer “remember” the original
flux and show a similar behavior to that of the random hop-

0 ping model without Dirac fermions.
Hcont:j de‘I’T( ot oY 2 Fukui™® studied the corresponding continuum model by a
replica nonlinears model with a large number of fermion
where D:=—idso—idyo,+A(X)ox+Ay(X)o,+M(X)o, flavors and proposed that DOS at zero energy diverges and

+V(X)1, giyy,, are the 2<2 Pauli matrices, ant is a  delocalized states exist at the band center for any random-
four-component spinor. The coefficiens, A,, M, andV  ness strength. A one-loop renormalization gr¢R®) study

are arbitrary complex fields. This is the most general chirawith SUSY method was also applied for this model in Ref.
symmetric form of a Dirac Hamiltonian in a continuum 13, predicting diverging DOS at zero energy p$E)
space. The chiral symmetry is, in the present basis, expressed(Eg/E)e™ ®V"=r'®) whereEg is a constant and depends

as {H,0,01}=0. For the random gauge field model, on randomness. A conjectural RG flow beyond one-loop or-
(Ax,Ay) is real and serves as the random gauge field. Theler was presented in Ref. 17 and similar results were ob-
other coefficientsM andV, do not appear at the first order in tained. The random hopping model without Dirac fermions,
the lattice constang, but they are nonzero for the lattice which we expect to be the strong randomness limit of the
models in general. present model, also shows diverging D®®n the other
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FIG. 1. Density of states for the-flux model with a random FIG. 2. Same as Fig. 1 on a 1R@00 lattice forg=0.1-1.8,

gauge field on a 5850 lattice forg=0.2—1.6(from bottom to top  and §=0.005, averaged over 40 samples. Inset: same as Fig. 1 on a
at E=0). The small imaginary part of energyis 0.01. Quenched 250x 250 lattice forg=0.4,0.45,0.5, and=0.0005, averaged over
averaging is taken over 30 samples. 50 samples.

hand, according to a numerical study for the correspondingliverging DOS for the random flux model. The numerical
lattice model, vanishing DOS(E) ~|E|* was observed with  results found here are consistent with thenodel study via

a disorder-dependent exponent-0 for weakrandomness. the SUSY technique in Ref. 13, where the divergence of
We reexamine this problem by the transfer-matrix method. DOS is predicted.

A quantity of interest we investigate numerically is the ~ Now let us go on to ther-flux model with random hop-
random averaged DOSp(E)):=((1/L?)Z;8(E;—E)). For  ping amplitudegEqg. (3)]. Calculated DOS for systems up to
the purew-flux model, the DOS vanishes linearly around 250x 250 are shown in Figs. 3 and 4. Again, one recognizes
zero energy due to the relativistic dispersion of Dirac fermi-two different structures as in the random gauge field model.
ons. Since for strong enough disorder, the present models afvay from zero energy, the DOS exhibits a power-law be-
expected to exhibit similar properties to the random fluxhavior with a disorder-dependent exponent, as in Ref. 5. The
model or the random hopping model without Dirac fermions,whole DOS profile becomes divergent as the disorder
both of which exhibit divergent DOS at zero enefdf,a  Strength increased, which is natural since the present model
natural question is how the vanishing DOS at zero energys expected to show similar behavior to that of Gade’s model.
becomes divergent as we increase the disorder strgngth  On the other hand, as is the case with the random gauge field
should be contrasted to the cases without Dirac fermionghodel studied above, within a very narrow range near zero
where the DOS of pure systems are already divergent at ze®nergy, there exists another structure. As the disorder
energy due to the van Hove singularities of a cosine bangtrength increased, a sharp peak at zero energy developed
E=2(coska+cosk,a).

First, we discuss the random gauge field model, i.e., the 0.3
m-flux model with a random gauge field as in E@). In
Figs. 1 and 2, we present numerically calculated DOS for
severalg. In the transfer matrix method, the Green'’s function
for a given energyE is calculated atE+id. We chosed
~0.01-0.0005, which gives us enough resolution of energy.
We used a square geometry rather than a quasi one
dimensional one since we are mainly interested in purely =
two-dimensional properties. S

As shown, there exist two structures. For over the wide
range of the energy scale, the global feature of DOS change:
from V shaped to flat; the latter is characteristic of the ran-
dom flux model as expected. In addition, if we look more
precisely for the very small region around zero energy, there -6
exists another structure, i.e., a peak for sufficiently lagge Energy
Note that since we used a lattice with an even number of
sites and adopted a periodic boundary condition, there is N0 FIG. 3. Density of states for the random hopping model on a
exact zero-energy state, i.e., the peak found here is not @bx 50 lattice forg=0.3-0.7(from bottom to top aE=0). The
artifact by the special choice of boundary conditions. Thissmall imaginary part of energy is 0.01. Quenched averaging is
peak structure is expected to smoothly connect to the knowtaken over 30 samples.
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the underlying symmetry class is different in the random
matrix theory? For dirty d-wave superconductors, all quasi-
particle states are found to be localized, and a small energy
scale around zero energy appears where quantum interfer-
ence effects produce several critical DOS profiles depending
on the details of randomne¥§This energy scale is deter-
mined by the diffusion constant in the diffusive regime and
the localization length of quasiparticl&sFor the present
case, on the other hand, zero-energy states are delocalized
due to the chiral symmetry, and quantum interference effects
give rise to diverging DOS at zero energy. The emergence of
§=0.35, a=0.89 a power-law behavior away from zero energy is, from the
iy effective field theory point of view, well described by the
O o5 06 04 02 0 o2 o4 o8 os 1 intermediate regime of the RG floi.
In conclusion, we have investigated the DOS of the chiral
Energy models where the chiral symmetry plays crucial roles for the
FIG. 4. Same as Fig. 3 on a 1800 lattice forg=0.3-0.7, existence of the delocalized states at zero energy. We consid-
and 6=0.005, averaged over 50 samples. Away from zero energ red t.he IattICQ counterparts of contlnuum models including
(E>0.1) and for sufficiently weak randomness, data are fitted to he Dirac fermions, the random gauge field model and the

power lawp(E)«|E|2. Inset: same as Fig. 3 on a 28@50 lattice r_andom hOPpi”Q model, which have been _We" studied by
for g=0.5,0.51,0.52, ané=0.0005, averaged over 70 samples. field theoretic methods. Large-scale calculations by the trans-

fer matrix method up to 250250 lattices revealed the exis-

when g reached about the order of the bandwidth. This be_tence of the two distinct structures in the DOS: one is a

havior is independent of the global power-law profile aW(,jlypower—law behavior in the intermediate energy range and the

from the zero energy and before it turns divergent. Thesé‘)ther is a peak at zero energy. Quantum interference plays

findings are consistent with the field theoretic analyses, es(z.rUCIaI roles for these fine structures, which naive semiclas-

pecially with the SUSY approach where the divergence 01;Slcal treatments may miss. Our finding of the singular DOS

the DOS is predicted and a power-law behavior appears iral1t £Ero energy for the ran(_jom hopplng model reconciles in-
: : . : . onsistencies between lattice and continuum models and thus
the intermediate region of the RG flow. We also mvestlgatecf; . :
; : L ; establishes a clear connection between them.

the case wheret is uniformly distributed in[ —w/2,w/2].
The results for this case are qualitatively similar to a Gauss- We thank Y. Morita for fruitful discussions. The compu-
ian distribution. tation in this work has been partly done at the YITP Com-

We should compare the present case to diftyave su-  puting Facility and at the Supercomputing Center, ISSP, Uni-
perconductors, which also include Dirac fermions. Howeveryersity of Tokyo.
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