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Coding Theorems on the Threshold Scheme
for a General Source

Hiroki Koga, Member, IEEE

Abstract—In this paper, coding theorems on the �����-threshold
scheme for a general source are discussed, where � means
the number of the shares and � means a threshold. The
�����-threshold scheme treated in this paper encrypts � source
outputs �� to � shares at once and is required to satisfy the two
conditions that 1) �� is reproduced from arbitrary � shares, and
2) almost no information of �� is revealed from any �� � shares.
It is shown that the �����-threshold scheme must satisfy certain
inequalities including the limit inferiors in probability. One of the
inequalities is closely related to the minimum length of the fair
random bits needed to a dealer for realizing the �����-threshold
scheme. In addition, it is shown that a certain variation of Shamir’s
threshold scheme meets the two conditions. The same approach
can be taken to the problems of Shannon’s cipher system with
the perfect secrecy and fixed-length source coding with vanishing
decoding error probability. It is shown that the same kind of
inequalities, which indicate the converse coding theorems, hold in
both two cases.

Index Terms—Fixed-length source coding, information-spec-
trum methods, secret sharing scheme, Shannon’s cipher system,
threshold scheme.

I. INTRODUCTION

Asecret sharing scheme, which was independently proposed
by Shamir [11] and Blakley [1] in 1979, provides a method

for keeping a secret information securely by encryption. In par-
ticular, the threshold scheme [11] is one of important secret
sharing schemes. In the threshold scheme with ( ) par-
ticipants, a dealer encrypts a secret information to shares

and distributes to the th participant for
. The threshold scheme has a remarkable prop-

erty that, letting be a threshold satisfying , is
reproduced from an arbitrary collection of shares while no in-
formation on is obtained from any less than shares. We call
the threshold scheme with participants and a threshold the

-threshold scheme.
In studies of secret sharing schemes the sizes of shares are

often analyzed. In particular, [8] gives a basic result on the
-threshold scheme that for all
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, where denotes the entropy. The sizes of shares
are also evaluated in secret sharing schemes with general ac-
cess structures (e.g., [3]). Randomness needed to a dealer for
realizing the -threshold scheme is discussed by Blundo et
al. [2]. It is shown in [2] that the randomness, which is defined
as the conditional entropy , is lower
bounded by , where is the alphabet of and
denotes its cardinality. On the other hand, from a Shannon-theo-
retic viewpoint, [15] treats a communication system which can
be regarded as the threshold scheme with two or three shares
in a certain case and gives an achievable region for the rates of
the shares. A generalization of the results in [15] is discussed in
[10]. The rate for the uniform random number that is available
to a dealer is also analyzed in [10] for the cases of and

.
In this paper, we unveil certain fundamental properties of the

-threshold scheme from a viewpoint of information-spec-
trum methods. Information-spectrum methods, which originate
from [7] and are described in detail in [6], provide methods to
treat coding of vast classes of sources and channels. In fact,
in information-spectrum methods, instead of the ordinary en-
tropy and mutual information, quantities defined by using the
limit inferior or superior in probability play key roles such as
the channel capacity [14]. In this paper we are interested in the
minimum rate of the uniform random number needed to a dealer
for realizing the -threshold scheme. We consider the situ-
ation where an -tuple of secrets is generated from a general
source and is encrypted to shares .
Here, the class of general sources includes all the classes of
sources such as stationary memoryless sources, stationary er-
godic sources, stationary sources and even nonstationary/non-
ergodic sources [6]. In addition, the size of the alphabet can
be countably infinite.

The -threshold scheme considered in this paper can
cause decoding error. That is, we consider the situation where
an arbitrary collection of shares
does not always reproduce . However, we require that
the probability of such decoding error vanishes as
for all . We introduce the
vanishing decoding error probability so that we can obtain
meaningful asymptotic results as . Recall that in
problems of two-terminal and multi-terminal source coding
we often introduce the vanishing decoding error probability
and obtain fundamental bounds on the rates of codes that are
asymptotically attainable and are described by using in terms
of information-theoretic quantities. As a byproduct, this setting
enables us to discuss construction of the -threshold
scheme for sources with a countably infinite alphabet.
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We impose a nonconventional security criterion on the
-threshold scheme. We require that -threshold

scheme must satisfy a security criterion such that almost no
information of is revealed from any collection of less than

shares. Usually, such a criterion is described in terms of
the mutual information, say .
However, the criterion considered in this paper is written as an
inequality including the limit superior in probability. Roughly
speaking, the criterion requires that with probability close to
one is almost independent of
provided that is sufficiently large.

We first prove that any sequence of encoders and decoders re-
alizing the -threshold scheme must satisfy certain inequal-
ities including the limit inferior in probability. The inequali-
ties are closely related to the rates of shares ( )
and the uniform random number needed to a dealer. In partic-
ular, it is shown that the rate of the uniform random number
is lower-bounded by in the asymptotic sense as

for the case of a stationary memoryless source with the
entropy .

Next, we give a construction of the -threshold scheme.
It is shown that a certain variation of Shamir’s threshold
scheme [11] meets the requirements as the -threshold
scheme under a certain assumption. We can also prove that the
construction satisfies as ,
where denotes the mutual information. Note that this
result does not conflict with [4] showing the nonexistence of the

-threshold scheme for a source with a countably infinite
alphabet. In fact, while [4] does not permit decoding error,
we permit negligible decoding error probability. Permitting
negligible decoding error probability enables us to realize the

-threshold scheme for sources with countably infinite
alphabets.

We can treat Shannon’s cipher system with the perfect
secrecy from the same viewpoint as the above -threshold
scheme [12], [16], [17]. We consider the following setting.
Given an -tuple of outputs from a general source, an
encoder encrypts to a cryptogram under a key . A
decoder, which shares a key with the encoder, decrypts the
cryptogram to under . The encoder and decoder
must satisfy the two condition that 1) the decoding error proba-
bility vanishes as , and 2) is almost independent of

. We give two fundamental inequalities including the limit
inferior in probability that Shannon’s cipher system with the
perfect secrecy must satisfy. It should be noted that the two
inequalities hold for the class of stochastic encoders. Since the
encoder using homophonic coding (e.g., [9]) is regarded as a
stochastic encoder, this kind of extension is meaningful. The
two inequalities suggest the converse theorem on the rates of
the cryptogram and the key as a byproduct.

We can take the same approach to the fixed-length coding
as well. We consider the following setting. Given an -tuple of
outputs from a general source, an encoder encodes to
a codeword . The encoder can be stochastic. On the other
hand, a decoder decodes the codeword to by using
a deterministic mapping. We require that the decoding error

probability vanishes as . Actually, the problem of the
fixed-length source coding is a special case of Shannon’s cipher
system where is a constant and we do not care the above
condition 2). In this case as well, we can obtain an inequality
including the limit inferior in probability that characterizes a
fundamental relationship between and . We also give a
general formula of the infimum-achievable coding rate for sto-
chastic encoders. The formula coincides with the formula in [7]
that treats only deterministic encoders.

The organization of this paper is as follows. In Section II
we formulate the problem of the -threshold scheme with
introducing notations. Section III is devoted to description of
results for the case of a stationary memoryless source with
a finite alphabet. Results in Section III is expressed in terms
of the entropy and the mutual information. Main results of
this paper are stated in Section IV. After formulating the

-threshold scheme by using terminologies of infor-
mation-spectrum methods, we give the inequalities that the

-threshold scheme must satisfy. In Section V we give
a construction of the -threshold scheme that meets the
conditions given in Section IV. Results on Shannon’s cipher
system and fixed-length source coding, which are obtained as
byproducts of the methods developed in Sections IV and V, are
given in Sections VI and VII, respectively.

II. PRELIMINARIES

Let be a finite or a countably infinite source alphabet. For
each denote by the th Cartesian product of . Let

be a random variable that takes values in , where
means source outputs. The probability distribution of is
denoted by . In addition, the probability that is gener-
ated from the source is denoted by . We express ,

, in the form of and call a gen-
eral source. The class of general sources includes all classes of
sources such as memoryless sources, stationary ergodic sources,
stationary sources, and even nonstationary/nonergodic sources.
In particular, if is stationary and memoryless, it holds that

for all and , where
and is a probability distribution on

,
For each let denote an output from a random

number generator taking values in a finite set . The set
may not be a Cartesian product, but is dependent on . If is
subject to the uniform distribution on , the probability distri-
bution of satisfies for all ,
where denotes the cardinality of the set. Assume that is
independent of for each .

Throughout the paper let be a set of
participants and a threshold satisfying . We assume
that and are fixed integers that do not depend on . For
each let be a finite set in which a share
distributed to participant takes values. We define an encoder as
a deterministic mapping .
A dealer generates shares by
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Fig. 1. Encoding and decoding in the �����-threshold scheme.

where means a share which is securely distributed
to participant (see Fig. 1). For the sake of notational conve-
nience, for any and , we use

and instead of and
, respectively. Here, means

an arbitrary subset of with elements satisfying
. In addition, restriction of to the th, , th

components is denoted by . That is

In the -threshold scheme, the source output is re-
produced from arbitrary shares . This means that we
need to consider decoders depending on
in general. We define a decoder for as a deterministic
mapping (see Fig. 1). If there is
no confusion, we use the term a decoder in the sense of the
collection of all .

We permit decoding error in the -threshold scheme. The
decoding error probability caused by the encoder and the
decoder is written as

Here, throughout this paper denotes the (joint) proba-
bility with respect to the random variable(s) contained between
the parentheses. In the ordinary setting (e.g., [8], [11]) of
the -threshold scheme, the decoding error probability
is assumed to be equal to zero. In this paper, however, we
mainly consider the case where as
for all . This requirement on the decoding
error probability makes the problem of the -threshold
scheme more Shannon-theoretic. We will investigate properties
of the -threshold scheme that have been unknown so
far, say the minimum sizes of shares and construction of the

-threshold scheme for sources with countably infinite
alphabet under this weekended requirement on the decoding
error probability.

We impose a condition on , , such that any collection
of less than shares reveals almost no information on . In
fact, we impose a condition that is almost independent of

for all . We will give two of
such conditions in Sections III and IV.

We define the entropy, the conditional entropy and the mutual
information in the ordinary sense [5]. All the logarithms are to
the base 2. We define the limit inferior and the limit superior

in probability according to [6]. That is, for a sequence of real-
valued random variables we define

(1)

(2)

In particular, given a general source , we define

(3)

(4)

which are called the spectral inf-entropy rate and the spec-
tral sup-entropy rate respectively. It is known that
has the operational meaning as the infimum achievable
fixed-length coding rate for the case that the decoding error
probability vanishes as [7]. On the other hand,

means the supremum achievable rate of the uniform
random number in the intrinsic randomness problem [13]. If

, then converges in
probability to . In particular, it follows from the law of
large numbers that for a stationary memory-
less source satisfying , where denotes the
entropy of the source. See [6] for more details.

It is known that for any sequences and
of real-valued random variables it holds that

(5)

(6)

(7)

[14]. As are clear from (5)–(7), the limit superior and inferior
in probability have properties similar to the ordinary limit su-
perior and inferior, respectively. Throughout this paper we use
the convention that the limit inferiors and superiors in proba-
bility are defined with respect to the (joint) probability of the
included random variable(s). For example, the limit inferior on
the left side of (6) is defined with respect to the joint probability
of and .

We also use the following two facts in the following sections.
Proofs of these facts are given in Appendix A for readers who
are not familiar to the limit superior and inferior in probability.

Fact 1: Let and be constants. Then

for any constant (8)
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for any constant (9)

Fact 2: Let be an arbitrary constant. If

, then . Similarly, if ,

then .

III. CONVERSE THEOREM FOR MEMORYLESS SOURCES

When we consider the -threshold scheme, the following
(A), (B), and (C) are implicitly assumed: (A) , (B) is
a finite alphabet, and (C) no decoding error occurs. In partic-
ular, if has the algebraic structure as a finite field, Shamir’s
threshold scheme realizes the -threshold scheme in the
following sense. That is, letting
be the random variables subject to the uniform distribu-
tion and be distinct nonzero elements of ,

generated according to

become shares of the -threshold scheme sat-
isfying for all and

for all , where

is a random polynomial of degree at most , denotes
the mutual information and all the subscripts 1 are omitted.
Note that means that is
independent of . Shamir’s threshold scheme guarantees that
the fair random bits of length are enough for
the dealer to realize the -threshold scheme. This result
coincides with the attainable lower bound of the dealer’s ran-
domness in [2, Th. 2.13], where the randomness is defined as

.
However, if we consider block coding of sufficiently large

blocklength and permit negligible decoding error proba-
bility, then the problem of finding the minimum length of
the fair random bits needed to the dealer for realizing the

-threshold scheme becomes more difficult. Suppose that
is a finite alphabet and is generated from a sta-

tionary memoryless source. If is embedded to a finite field,
say , and elements of are iden-
tified with elements in , then Shamir’s threshold scheme
realizes the -threshold scheme, where is the smallest
prime number satisfying . It is clear that this scheme
satisfies for all .
In this scheme, the length of the fair random bits required to the
dealer equals to .

On the other hand, this length of the fair random bits can be
decreased if we consider a scheme based on the typical set. Let

be an arbitrarily small constant and define the typical set
by

(10)

where denotes the entropy of the source. It is known that
as and for

all [5]. If we embed to a finite field and apply
Shamir’s threshold scheme, then we can obtain a scheme that
is close to the -threshold scheme with the vanishing de-
coding error probability. Here, is the smallest prime number
satisfying . In this scheme, the length of
the fair random bits needed to the dealer is roughly equal to

, which is smaller than . How-
ever, this scheme does not guarantee .
That is, we cannot know in what sense this scheme is “close” to
the -threshold scheme. In addition, we cannot say nothing
whether is the minimum length of the fair random
bits per source symbol or not.

The objective of this section is investigation of the length of
the fair random bits required to the dealer subject to the condi-
tion that the decoding error probability vanishes as . We
assume that is a stationary memoryless source with a finite
alphabet .

We begin with the definition of the -threshold scheme
in an extended sense.

Definition 1: Let a stationary memoryless source
be given. If a sequence of

encoders and decoders satisfies the following two conditions,
we say that realizes the -threshold scheme
for :

M1) For any

M2) For any

We have the following theorem that gives lower bounds on the
entropies , , and in the asymptotic
sense as .

Theorem 1: Let be an arbitrary sequence
of encoders and decoders of the -threshold scheme for
a stationary memoryless source satisfying
conditions M1) and M2). Then, for any and

it holds that

(11)

where denotes the entropy of the source. In addition, it
holds that

(12)

We prove Theorem 1 by using the following three lemmas.

Lemma 1: Let be an arbitrary sequence of en-
coders and decoders of the -threshold scheme for a sta-
tionary memoryless source satisfying conditions M1) and
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M2). Then, for any and it
holds that

where denotes the terms which goes to zero as and
the left side is interpreted as for the case of .

Proof: Fix arbitrarily. Then, for any
it follows that

(13)

where and the inequality fol-
lows because and conditioning does
not increase the entropy. By dividing both sides of (13) by and
using , we have

(14)

Note that the second term on the right side of (14) goes to zero
as from condition M2). In order to evaluate the third
term on the right side of (14), we use Fano’s inequality (e.g.,
[5]). Fano’s inequality tells us that

(15)

where denotes the binary entropy. Notice here that we
have

(16)

where the equality follows because is deterministic.
Hence, the combination of (15) and (16) leads to

which goes to zero as owing to condition M1). Thus,
we obtain the claim of this lemma.

Lemma 2: Let be an arbitrary sequence of en-
coders and decoders of the -threshold scheme for a sta-
tionary memoryless source satisfying conditions M1) and
M2). Then, for any it holds that

Proof: Fix arbitrarily. From the chain
rule of the entropy, we have

(17)

where the inequality follows because
. In addition, by the

definition of the mutual information, we have

(18)
The claim of the lemma follows from the combination of (17),
(18) and condition M2).

Lemma 3: Let be an arbitrary sequence of en-
coders and decoders of the -threshold scheme for a sta-
tionary memoryless source satisfying conditions (M1) and
(M2). Then, for any it holds that

Proof: Fix arbitrarily. Since is
deterministic, it holds that

(19)

where the last equality in (19) follows because is indepen-
dent of . On the other hand, by the chain rule of the entropy,
we have

(20)

where the inequality in (20) follows from
. Then, the claim of the

lemma follows from the combination of (19) and (20).

Proof of Theorem 1: Fix arbitrarily.
By the chain rule of the entropy and Lemma 1, for each

it holds that

(21)

which implies the first claim of Theorem 1.
Next, we prove the second claim of Theorem 1. It follows

from Lemmas 2 and 3 that

(22)
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where the last inequality follows from (21) with .
Clearly, (22) implies (12).

IV. CONVERSE THEOREM FOR GENERAL SOURCES

In the preceding section we have developed asymptotic
lower bounds of and in the

-threshold scheme for a stationary memoryless source
with a finite alphabet. Recall that Lemma 1 is proved by using

and Fano’s inequality, which cannot be
used without the assumptions on the source.

In this section, we consider the -threshold scheme for a
general source . Here, a class of general sources includes var-
ious classes of sources as mentioned in Section II. In addition,
the source alphabet of can be countably infinite. Chor and
Kushilevitz [4] show that there is no -threshold scheme if

is countably infinite. However, the -threshold scheme
with vanishing decoding error probability is out of the scope
in [4]. We will see that we can construct the -threshold
scheme in a certain sense even if is a countably infinite al-
phabet.

We begin with a new definition of the -threshold
scheme. We do not use the mutual information as a measure
of security of against less than shares. We do not use
the spectral sup-mutual information rate, which is a certain
generalization of the mutual information and is defined by
using the limit superior in probability [6], either. Instead, we
impose a criterion described as an inequality including the
limit superior in probability. Note that this kind of criterion
has never been discussed in the ordinary framework of infor-
mation-spectrum methods [6] so far. Under the new definition
of the -threshold scheme, we can obtain fundamental
inequalities that are closely related to the length of the fair
random bits required to the dealer.

Throughout this section we assume that is the uni-
formly distributed random variable on . We define the

-threshold scheme for a general source as follows:
Definition 2: If a sequence of encoders and

decoders satisfies the following two conditions G1) and G2),
we say that realizes the -threshold scheme
for a general source :

G1) For any

G2) For any

(23)

where denotes the conditional proba-

bility distribution of given .
Readers may feel strange to condition G2). However, the

meaning of condition G2) becomes clear by considering the
following condition:

G2’)For any and

(24)
Note that, if condition G2) is satisfied, then G2’) is also sat-

isfied owing to Fact 2 in Section II. Furthermore, since we can
easily prove

(25)
for any and similarly to [6, Lemma
3.2.1], G2’) actually means that

(26)

where

and is an arbitrarily small constant. Clearly, (26) implies
that, if is sufficiently large,

is arbitrarily close to , i.e., is almost in-
dependent of , on the set with probability arbitrarily close
to one. We can regard G2) as the stronger version of G2’) with

.
While Theorem 2 below holds under G1) and G2’), we can

construct the -threshold scheme satisfying G1) and G2) in
Section V. That is why we use G2) as a criterion on secrecy.

Remark 1: Note that G2) implies neither
nor

as , in general. In fact, is

defined as the expectation of

with respect to
, while condition G2) only imposes a

certain property on the distribution of .
This is the why characterizations of the -threshold
scheme under G2) are so successful. Readers can
easily check that (or even

) as does not hold only

from as . We
need some condition on the boundedness of
for (recall that can be a countably
infinite alphabet).

We have the following theorem under the new definition of
the -threshold scheme.

Theorem 2: Given a general source , let
be a sequence of encoders and decoders of the
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-threshold scheme for satisfying conditions G1) and
G2). Then, for any , and con-
stant it holds that

(27)

In addition, for any constant it holds that

(28)

Remark 2: In (27) and (28) can be replaced with any se-
quence , , satisfying and as .
We use for simplifying notations and facilitating comparison
to the ordinary case of .

We can prove Theorem 2 by using the following three
lemmas. The first lemma, which is proved in Appendix B,
characterizes a property of satisfying G1).

Lemma 4: Let be an arbitrary sequence of
encoders and decoders satisfying condition G1). Then, for any

it holds that

The following lemma characterizes an important property on
conditional distribution related to shares .

Lemma 5: Let be an arbitrary sequence
of encoders and decoders. Then, for any ,

and constant it holds that

for any , where .
The proof of Lemma 5 is essentially the same as the proof of

[6, Lemma 3.2.1]. However, we give the proof of Lemma 5 in
Appendix C for readers’ convenience.

We also use the following lemma in the proof of Theorem 2.
This lemma plays a role that is similar to the role of Lemma 1
in the proof of Theorem 1.

Lemma 6: Let be an arbitrary sequence of
encoders and decoders of the -threshold scheme satis-
fying conditions G1) and G2). Then, for any ,

and constant it holds that

where the denominator on the left side is interpreted as
for the case of .

Proof: Fix arbitrarily. Define by

For each we define and as follows:

where . Then, it follows from
Lemma 4 and Fact 2 that

(29)

In addition, condition G2) guarantees that

for all (30)

Furthermore, in view of Lemma 5 we obtain

for all (31)

Therefore, the combination of (29), (30) and (31) yields

for all (32)

It is important to notice that for an arbitrarily fixed
we have

for all (33)
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In fact, this inequality follows because the first term is greater
than or equal to from the definition of and the second
term is nonnegative. By using Bayes’ formula

we can rewrite (33) in the following form:

for all

which means that

for all (34)

Since can be arbitrarily small, (32) and (34) lead to the
claim of the lemma.

Proof of Theorem 2: Fix and
arbitrarily. First, we prove (27). Due to

the property (6) of the limit inferior in probability, the left side
of (27) is lower bounded by

(35)

Since Lemma 6 tells us that every term in (35) is nonnegative,
we have (27).

Next, we prove (28). Since the encoder is deterministic,
we have

for all satis-
fying . That is, if

, there exists at least one

satisfying . Recall here that
is uniformly distributed on . Thus, it holds that

for all satisfying
. Hence, letting

we have

for all (36)

and

(37)

Notice here that Bayes’ formula tells us that (36) can be written
as

for all (38)

Now, define

for an arbitrary constant . Then, owing to (27) with
it holds that

(39)

In addition, condition G2) tells us that we have

(40)

In view of (38) it easily follows that

for all (41)
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Since (37), (39) and (40) guarantee

(42)

and is arbitrary, (41) and (42) yield (28).
Theorem 2 yields the following corollary.

Corollary 1: Let be an arbitrary sequence of
encoders and decoders realizing the -threshold scheme for
a general source . Then, it holds that

where is the spectrum inf-entropy rate of defined in
(3).

Corollary 1 immediately follows from the combination of (5),
(7), (28) with and

It is known that, if is a stationary memoryless source with
the entropy , in (3) coincides with .
Hence, Corollary 1, together with , leads to the
same claim (11) in Theorem 1 under the different criterion G2)
on the secrecy of under arbitrary shares.

V. DIRECT THEOREM FOR GENERAL SOURCES

In the preceding section we have developed the inequality
(28) that characterizes in the -threshold scheme for a
general source. In this section we investigate construction of the

-threshold scheme for a general source satisfying condi-
tions G1) and G2) in Definition 2.

We have the following direct theorem that is valid for each
.

Theorem 3: Let a general source be given.
Suppose that an arbitrary sequence of prime numbers
satisfying for all and

(43)

for all is given, where

(44)

Define and let be the uniformly
distributed random variable on . Then, for each , there
exist an encoder and a decoder satisfying

for all (45)

for all (46)

and

for all (47)

In addition, the above encoder and decoder satisfy

for all (48)

Proof: Fix and a prime number satisfying
arbitrarily. Since for all , we

have by using the following argument:

(49)

Therefore, there exists a one-to-one mapping ,
where . We define additions, subtrac-
tions, multiplications and divisions of two elements of as
the respective operations under modulo . In addition, define

, as the uniformly distributed random
variables on and . Clearly,

is uniformly distributed on . Furthermore, we ar-
bitrarily choose distinct elements , , from

all of which are not equal to zero. We can choose such ,
, owing to the assumption of . We do

not explicitly write dependency of on for simplifying no-
tations. Set for all .

We use the following pair of an encoder and a decoder. Basic
idea is application of Shamir’s threshold scheme to the elements
of .

Encoder
Let is given.

1) If , the encoder outputs

where

is a random polynomial with the degree at most .
2) Otherwise, the encoder outputs

Decoder
Let and be given.
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1) If , the decoder computes by
solving the following system of linear equations:

...
...

...
. . .

...
...

Notice that the decoder can always compute because
the matrix on the right side is the Vandelmonde matrix
and are assumed to be distinct. Then, the
decoder outputs a unique satisfying

.
2) If , the decoder outputs an ele-

ment determined in advance.

Evaluation of the Decoding Error Probability:

From the above definition of and , if , is
correctly decoded from for any .
This fact guarantees (46). In addition, if , the en-
coder always outputs and therefore the decoder
always declares an error. Therefore, it holds that

, which establishes (48).

Evaluation of Security of Shares:

We first prove that

for all and (50)

Notice that, in view of the definition of the encoder, it holds that

for some . Then, since ,
, are assumed to be distinct nonzero elements in ,

such is determined as a unique solution to the following
system of linear equation:

...

...
...

. . .
...

...
(51)

Here, we have used the fact that the determinant
of the matrix on the right side of (51) is equal to

. Thus, we have
(50) due to the uniformity of .

Next, we evaluate for each

. Since

for all and , we
have

for all and (52)

Therefore, for all it holds that

(53)

where the second equality follows from (50) and (52) and the
third equality follows from (43).

We are ready to prove (47). We first note that (50) and (53)
guarantee

for all (54)

where the first equality in (54) follows from Bayes’ formula.
Notice that (54) holds for all and .
In addition, in view of the definition of the encoder,

if and only if . This argu-
ment establishes (47).

Theorem 3 immediately yields the following corollary that
corresponds to the direct counterpart of Theorem 2.

Corollary 2: Let a general source be given.
Assume that there exists a sequence of prime numbers
satisfying for all and

(55)

Define and let be the uniformly
distributed random variable on . If we construct and
in Theorem 3 for all , then the sequence
realizes the -threshold scheme for .

Proof: Notice that the assumption (55) of this corollary
guarantees that in (43) goes to one as . Hence, (48)
and (55) guarantee that in Theorem 3 satisfies
condition G1) in Definition 2. In addition, since implies

as , for any constant if
is sufficiently large. Hence, (47) and (55) guarantee that

as
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which implies that in Theorem 3 satisfies condi-
tion G2) in Definition 2

In Theorem 3, it is immediate from (43) that for each
, the greater we choose, the greater becomes. This fact

follows since

for any . However, both Theorem 3 and Corollary 2
do not suggest how should be large for meeting conditions
G1) and G2) in Definition 2. The following corollary gives an
intuition about the choice of .

Corollary 3: Let a general source be given.
Assume that there exists a sequence of prime numbers
satisfying as and .
Then, there exists a sequence of encoders and
decoders realizing the -threshold scheme satisfying

for all (56)

and

(57)

Proof: In the proof of Corollary 2, we have already seen
that (55) is a sufficient condition that in Theorem
3 realizes the -threshold scheme in the sense of Definition
2. Thus, we first establish (55) below.

By the assumption of the corollary, we can choose a constant
satisfying . Since

for all sufficiently large , we have for
all sufficiently large . It is also important to notice that we have

as

owing to the definition of . Therefore, it follows that

as

which is equivalent to (55).
To complete the proof, we must prove for all suffi-

ciently large because this property is not assumed in the state-
ment of the corollary. However, is trivial owing to the
assumption of this corollary because grows in exponentially
in while is a constant.

We can also evaluate the mutual information
of the encoding and decoding in the

proof of Theorem 3.

Corollary 4: The sequence in Corollary 2 sat-
isfies

for all and .

Proof: Since the chain rule of the mutual information tells
us that

for all , it suffices to prove that
as . Let be the set

defined in (44). We first note that can be
written in the following form:

(58)

where and we have
used the facts that

for all and and
for all .

We first evaluate the terms on the right side of (58) separately.
In view of (54), the first term on the right side of (58) is evaluated
in the following way:

(59)

where is defined in (43) and the second equality holds
because every is mapped to elements of with
probability 1. On the other hand, by using Bayes’ formula and

for all , the second term



KOGA: CODING THEOREMS ON THE THRESHOLD SCHEME FOR A GENERAL SOURCE 2669

on the right side of (58) can be evaluated as follows:

(60)

where the second and the third inequalities follow from
for all and

for all , respec-
tively.
Therefore, the combination of (58), (59) and (60) yields

(61)

Since (55) guarantees that as , we have the
claim of this corollary from (61).

So far, we have constructed the -threshold scheme sat-
isfying conditions G1) and G2) by using Theorem 3. However,
Theorem 3 is more involving. Instead of condition G1), we can
also consider the case where the decoding error probability does
not go to zero as but is asymptotically upper bounded
by some . We can expect that the sizes of shares are
reduced in such a case. We can obtain the following corollary
from Theorem 3 that is an extension of Corollary 2 and is re-
lated to -source coding in [6].

Corollary 5: Let a general source be given.
For an arbitrarily fixed assume that there exists a
sequence of prime numbers satisfying

(62)

Define and let be the uniformly
distributed random variable on . Then, we can construct a se-
quence of encoders and decoders satisfying (45)
and (46) for all and

for all (63)

for any constants and . In addition, such
satisfies

for all (64)

Proof: Equation (63) easily follows from (47) because
as and is bounded

away from zero for all sufficiently large owing to (62) and
. In addition, (64) immediately follows from (48) and

(62).

We conclude this section by giving a complete answer to the
question given at the beginning of Section IV.

Example 1: Consider the case where is a
stationary memoryless source with a countably infinite alphabet

. Recall that both and coincide with the entropy
of the source if . Hereafter, assume that

.
We can construct the -threshold scheme in the sense of

Definition 2 by using Theorem 3 and Corollary 2. Fix a small
constant arbitrarily and define the typical set by
(10), where we use instead of . Then, it holds that

as [5]. In addition, we have
for all and from the

definition of . In order to construct an encoder and a decoder
of the -threshold scheme, we arbitrarily choose a prime
number satisfying . Then, we have (55)
because it holds that

for all and as . Hence,
Corollary 2 guarantees that in Theorem 3 real-
izes the -threshold scheme. In particular, if we can choose

, satisfying as ,
Corollary 3 tells us that

for all

and

The right sides can be arbitrarily close to and
, respectively, because we can choose an ar-

bitrarily small .
We can give an impossibility result on the rate of by using

Theorem 2. We can actually prove that if

(65)

then there is no that realizes the -threshold
scheme satisfying conditions G1) and G2) in Definition 2. This
fact is proved by a contradiction argument. First, notice that (65)
guarantees the existence of a small constant and a subse-
quence such that
for all . Then, letting be the typical set in (10) with

, it holds that

for all and (66)
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In addition, we also have as . Thus,
we can conclude

because of the property of limit inferior in prob-
ability given in Fact 1. That is, we cannot prove

as for all
satisfying owing to (66).

Example 2: Next, let us consider the case where
is a mixed source [6]. For each

let be a random variable on and be i.i.d. copies of
. Denote by the probability distribution of . We call

a mixed source if is defined by

for all and , where is a constant.
We assume that the entropies of and satisfy

. It is known that and
for this mixed source [6].

Given a sequence of prime numbers we consider
the same sequence of encoders and decoders as
in Corollary 2. Assume that the limit of , , exists.
Letting denote the limit, we can obtain the following three
facts:
Case 1)

Corollary 3 guarantees that realizes
the -threshold scheme satisfying G1), G2),
(56) and (57).

Case 2)
Corollary 5 guarantees that satisfies
(46), (56), (57) and (63). Since the law of large num-
bers tells us that as ,
it holds that

for all (67)

where is defined in (44).
Case 3)

Since as for this
case, it holds that as for
all .

Notice that in Case 2), we can realize a scheme similar to the
-threshold scheme with smaller sizes of shares than the

scheme in Case 1) and the decoding error probability close to
. This kind of scheme can be better if is small enough and

small decoding error is permissible.

VI. APPLICATION TO SHANNON’S CIPHER SYSTEM

In this section we consider new coding theorems for
Shannon’s cipher system given in Fig. 2. In Fig. 2, for each

denotes outputs from a general source,
where is a finite or a countably infinite alphabet. Let

be a key shared by an encoder and a decoder in
advance. Assume that is independent of for each

. Given source outputs and a key , an en-
coder generates a cryptogram , where is a

Fig. 2. Block diagram of Shannon’s cipher system.

set of cryptograms. In this section, we consider stochastic
encoders. While a deterministic decoder is defined as a map-
ping , a stochastic encoder is identified
as a conditional probability distribution . That is,
given an , the stochastic encoder outputs
a cryptogram randomly subject to .
We can regard a deterministic encoder as one of sto-
chastic encoders that satisfies if

and otherwise
for each . Stochastic encoders are also
denoted by when there is no confusion. Throughout this
section, the term “encoder” means a stochastic encoder unless
we mention that an encoder is deterministic.

On the other hand, we consider only deterministic decoders.
A decoder is defined as a mapping .
When a cryptogram is transmitted, a decoder decrypts
to under a key . Given an encoder and a decoder

the decoding error probability is defined as

which can be written as

(68)

where

otherwise

and in (68) is determined by the encoder
.
A wiretapper, who observes the cryptogram but has no

information on , wants to know something about . We
should construct and so that the wiretapper can obtain
almost no information on from while a receiver can de-
crypt a cryptogram with negligible decoding error probability.

We define encoders and decoders with the perfect secrecy as
follows:

Definition 3: If a sequence of encoders
and decoders satisfies the following S1) and S2), we say that

realizes the perfect secrecy:
S1)

S2)
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Condition S1) requires that the decoding error probability
goes to zero as . On the other hand, condition S2) guar-
antees the security of the system. That is, S2) guarantees that

is almost independent on for all sufficiently large in
the same sense as G2) in Section IV.

We have the following converse theorem on Shannon’s cipher
system with the perfect secrecy. Notice in this theorem the uni-
formity of is not assumed.

Theorem 4: Given a general source , let
be any sequence of encoders and decoders real-

izing the perfect secrecy. Then, for any constant it holds
that

(69)

(70)

Proof: In the proof we use the same methods as in the proof
of Theorem 2. However, we give the proof of Theorem 4 here
for not only establishing the new result (70) but also clear un-
derstanding of the main contributions, Theorem 2 and Theorem
4, of this paper.

First, by using an argument similar to the proof of Lemma 4,
we can obtain

(71)

for any satisfying S1). See Appendix D for the
proof of (71). In addition, by applying the same method given
in the proof of Lemma 5, we can easily obtain

(72)

for any constant . Letting and be arbitrary
constants, define

Then, it follows from (71), (72) and Facts 1 and 2 that

as (73)

Since we have

for all (74)

by taking Bayes’ formula

and independence of and into consideration, it follows
from (74) that

for all

(75)
Since is arbitrary, (73) and (75) imply (69).

Next, we prove (70). Setting

in view of condition S2) and (73) it holds that

as (76)

In addition, since we can rewrite as

it holds that

for all (77)

Application of Bayes’ formula

to (77) leads to

for all

which implies

for all (78)

Now, (70) follows from the combination of (76) and (78).

We also have the direct theorem that corresponds to
Theorem 3. In case of Shannon’s cipher system the set

of cryptograms need not contain a finite field as its subset.
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Theorem 5: Let a general source be given.
For each let be an arbitrary positive integer satisfying

, where

(79)

Define and let be the random
variable subject to the uniform distribution on . Set

. Then, there exists a deterministic encoder and
a decoder satisfying and

(80)

Proof: This theorem is proved by combination of an ordi-
nary method (e.g., [16]) and the methods given in the proof of
Theorem 3. Define

Then, similarly to (49), we have . Therefore, there

exists a one-to-one mapping . We
define an encoder and a decoder in the following way:

Encoder
Given a source output and a key , the encoder out-
puts

if
otherwise

where denotes the addition of modulo . Note that this
encoder is deterministic.
Decoder
Given a cryptogram and a key , the decoder outputs

if
otherwise

where is an arbitrary fixed element of , denotes
the subtraction of modulo and means a
unique element satisfying .

Since the above encoder and decoder can cause the decoding
error if , it is immediate that .

Hereafter, we prove (80). From the definition of the encoder
, it holds that

for all (81)

In addition, since for all and
, we have

for all

(82)
where the second equality follows from (79) and the definition
of . Hence, the combination of (81) and (82) yields

for all (83)

where the first equality (83) follows from Bayes’ formula. Since
if and only if owing to the definition of

the encoder, it is obvious that

(84)

Thus, we obtain (80).

We have two corollaries to Theorem 5 that correspond to
Corollary 2 and Corollary 3, respectively.

Corollary 6: Assume that there exists a sequence of positive
integers satisfying

(85)

Define and let be the uniformly
distributed random variable on . If we construct and
in Theorem 5 for all , then the sequence
realizes the perfect secrecy.

Corollary 7: Assume that there exists a sequence
satisfying as and .
Then, there exists a sequence of encoders and
decoders realizing the perfect secrecy and satisfying

and

It is also easily verified, similarly to Corollary 4, that the se-
quence in Corollary 6 satisfies
as .

VII. APPLICATION TO FIXED-LENGTH SOURCE CODING

In this section, we focus on fixed-length coding of a gen-
eral source in which the decoding error probability vanishes as

first discussed in [7]. In this section we consider a mod-
ified version of the problem in which we treat a wider class of
encoders than in [7].

Suppose that a general source is given, where
for each and is a countably infinite alphabet.

For each a stochastic encoder encodes source outputs
to a codeword , where
is a set of codewords. Here, a stochastic encoder is defined

as a conditional probability distribution . If ,
then the stochastic encoder generates a codeword
randomly subject to . The stochastic encoder is
denoted by . In a special case where is a mapping from
to , i.e., for every there exists a satis-
fying , we call a deterministic encoder.
On the other hand, a codeword is decoded to by a
decoder. The decoder is defined as a mapping .
We consider only deterministic decoders. It is important to no-
tice that the fixed-length coding of a general source is a special
case of Shannon’s cipher system with .

Given a stochastic encoder and a decoder , the decoding
error probability is defined as
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Note that can be written in the following form:

where is determined by and

otherwise.

Throughout this section encoders mean stochastic encoders un-
less we mention that an encoder is deterministic.

We have the following converse theorem that does not have
the factor .

Theorem 6: For any sequence of encoders and
decoders satisfying as , it holds that

Proof: Similarly to (71), we can easily prove

(86)

Application of Bayes’ formula and (5) to (86) yields

(87)

Note that (7) and (87) yield

(88)
Then, the claim of this theorem follows because the second
term on the left side of (88) is nonpositive (notice that

holds with probability ).

We also have the direct theorem for fixed-length source
coding.

Theorem 7: If there exists a sequence of positive
integers satisfying

as

then there exists a sequence of deterministic en-
coders and decoders satisfying for all and

as .
Proof of Theorem 7 is easy. Setting

the same argument as in (49) leads to . Hence, there
exists a one-to-one mapping from to . We use such
as an encoder. Clearly, there exists a decoder that decodes all
the elements of correctly. Though the elements of not
belonging to may not be correctly decoded, such a proba-
bility of decoding error vanishes because
as due to the assumption of the theorem.

We can also give a formula of the infimum-achievable coding
rate. We define the infimum-achievable coding rate as follows.

Definition 4: A rate is called achievable if there exists a
sequence of encoders and decoders satisfying

(89)

(90)

The infimum of the achievable rate is called the infimum-
achievable coding rate and is denoted by .

If in Definition 4 we require the encoder , ,
to be deterministic, we have the ordinary definition of the
infimum-achievable coding rate. Denote by the in-
fimum-achievable coding rate for such a case. Han and Verdú
show that [7].

The following theorem gives a general formula of .

Theorem 8: .
Since deterministic encoders can be regarded as stochastic en-

coders, it immediately follows that .
Hence, we have only to prove for establishing
Theorem 8. We use the following lemma for establishing The-
orem 8, which was first given in [10]. The proof of this Lemma
7 is given in Appendix E for readers’ convenience.

Lemma 7: Let be an arbitrary real-valued
random variables satisfying , , where we assume
that , , are finite sets. If

then .
Proof of Theorem 8: It suffices to prove that

for any achievable rate . If , is trivial.
Hereafter, we assume that is achievable and prove that

.
We first note that Theorem 6 and Fact 2 guarantee

for any satisfying (90) Then, by using (5) and (7)
we can obtain

which means for . We note
that satisfies (89) because is assumed to be achievable.
Thus, in view of Lemma 7, we have . Since

and is arbitrary, the claim of the theorem
follows.

VIII. CONCLUSION

In this paper we have considered the -threshold scheme
where an -tuple of secrets generated from a general source is
encrypted to shares. The -threshold scheme is required
to satisfy two conditions, one is on the decoding error proba-
bility and the other is on the security of against arbitrarily
collection of less than shares. We have developed two inequal-
ities including the limit inferior in probability one of which is
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closely related to the minimum length of the fair random bits
needed to a dealer. In addition, we have given a construction of
the -threshold scheme meeting the two condition under a
certain assumption. We can also take the same approach to the
problems of Shannon’s cipher system with the perfect secrecy
and fixed-length source coding with vanishing decoding error
probabilities. We have obtained the inequalities in both prob-
lems that are valid for stochastic encoders and lead to the con-
verse coding theorems as easy consequences.

APPENDIX A
PROOFS OF FACTS 1 AND 2

Proof of Fact 1: We only prove (8) because (9) is proved
similarly. For simplicity, set .

Suppose that . Then, from the definition (1), it
holds that as for any .
Since implies that ,
we have as .

Suppose that as holds for
any . Since is defined as the supremum of satisfying

as , we have . Hence, we
obtain because is arbitrary.

Proof of Fact 2: We only prove the first claim because
the second claim is proved similarly. In view of Fact 1,

is equivalent to
for any . Since for any

and , it holds that
. This guarantees that

due to Fact 1.

APPENDIX B
PROOF OF LEMMA 4

Proof: Fix a sequence satisfying condition
G1) arbitrary. We first prove that

(91)

for any , where denotes the joint

probability of and . To this end, fix
arbitrary and define

if
otherwise.

(92)

Then, by using independence of and , it clearly holds that

(93)

For each define

Since is deterministic, ,
, form a partition of . Therefore, (93) can

be written as

(94)

where

if
and
otherwise,

and the last equality follows from the fact that
implies and therefore

we have for
all and .

Notice here that, since is deterministic, we have

if
otherwise.

(95)

Hence, (94) and (95) yield

(96)

Note that in (96) we have
and for all .
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Therefore, by taking the sum with respect to in (96) it follows
that

(97)

which establishes (91).
Now, letting be an arbitrary constant, define

Clearly, gives a partition of . Thus, in view
of (97), we have

(98)

Thus, the combination of (98) with condition G1) in Definition
2 yields

as

which immediately implies

as (99)

In order to complete the proof of this lemma, we define

Since , it follows from (99) that

as

where the equality follows from the definition of . Since
is arbitrary, we obtain the claim of this lemma.

APPENDIX C
PROOF OF LEMMA 5

Proof: Letting be an arbitrary constant, it suffices to
prove that

as (100)

To this end, define

Note that for all it holds that

(101)

for . By multiplying

to both sides of (101), we obtain

(102)
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Then, it follows that

(103)

where the first inequality in (103) follows from (102). This es-
tablishes (100).

APPENDIX D
PROOF OF (71)

Proof: Fix a sequence of encoders and de-
coders. From the definition of the decoding error probability, it
holds that

(104)

where

otherwise

and in (104) is the conditional probability distribu-
tion corresponding to the stochastic encoder . Notice in (104)
that we can take the sum with respect to . That is, in
view of the definition of , it holds that

(105)

where the second equality follows from Bayes’ formula.
Hereafter, we repeat the argument given in the proof of

Lemma 4 in Appendix B. Define

Then, in view of (105), we have

which, together with S1) in Definition 3, yields

as

Hence, we obtain

as (106)

In view of (106), we can establish (71) from the following argu-
ment:

as (107)

where and are defined by

and the inequality in (107) follows from .

APPENDIX E
PROOF OF LEMMA 7

Proof: We prove Lemma 7 by a contradiction argument.
Assume that . Then, there exists a constant
satisfying . Define by

Then, due to the definition of , it follows that

(108)
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Note that, owing to the definition of , the left side of (108)
is positive for infinitely many . That is, there exists a constant

satisfying

infinitely often (109)

On the other hand, since for all
and , it follows that

for all (110)

Therefore, the combination of (109) and (110) yields

infinitely often

that is,

infinitely often (111)

Notice here that, since for all sufficiently
large , (111) guarantees the existence of a subsequence

satisfying

for all (112)

Hence, in view of (112) we obtain

(113)

where the second inequality follows from a property of the limit
superior and the last inequality follows from . Equa-
tion (113) and the assumption of imply that .
However, this contradicts the assumption that is a positive
constant. This completes the proof of .
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