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1. Introduction.

Following recently result given by Wiles [6] we know that the equation of

Fermat (*) Xn + Yn ― Zn has no solutions in positiveintegers X, Y,Z if n > 2.

But in contrast to this situation Fermat's equation (*) has infinitely many

solutions in 2 x 2 integer matrices for exponent n = 4. This fact has been dis-

covered by Domiaty [2] in 1996. Namely, he remarked that if

r=(° ]) '-C J)

where a,b, c are the integer solutions of the Pythagorean equation a2 + b2 = c2

then X4 + Y4 ― Z4. Another resultsconnected with Fermat's equation (*) in the

set of matrices are described by Ribenboim [5].Important problem in these

investigationsis to give a necessary and sufficientcondition for solvability(*) in

the set of matrices. Second Author proved (see;[3],Thm. 1) a necessary condition

for solvabilty (*) in the set of 2 x 2 integral matrices. Moreover, Khazanov [4]

founded a necessary and sufficientcondition for solvabilty (*) when X, F,Ze

SL2{Z), SLi(Z), or GLt,(Z). In particular,he proved that there are solutions of

(*) in X,Y,Ze SLi(Z) if and only if the exponent n is not a multiple of 3 or 4.

In this connection we consider the following set of integer matrices:

G(k,±l) =
＼{ks r) 'r'SSZ'd

4L

r)
= ±1}

where A:is a fixed positive integer which is not a perfect square.

We note that if A: < 0 or k = a2, a e Z then the condition det( , J =
＼ks r J

r1 ― ks1 = ± 1 implies s = 0, r = + 1 and the set G(k, ± 1) reduces to trivial set:
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Gb(*,±l) =

set G(k, ±1)
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0＼ /-I

1' 0 -,
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. But if k > 0 and k-£a2, atZ then the

an infinite set. On the other hand it is easy to see that if

is a subset of SLiiZ) considered by

Theorem 1. The equation of Fermat (*) has no solutionsin X,Y,Ze

G(k, +1) for any positiveintegern.

Moreover, we consider more general situation when G(k, a) is the set of the

form:

<**->={U:) , r.s e Z: det

where k is a fixed positive integer and a is

We prove of the following:

(r

a fixed

:)-･}

integer.

Theorem 2. If X,Y,Z e G(k,a) then the equation of Fermat (*) with positive

integer exponent n > 3 does not hold, except when X = O or Y = O or Z = O.

Further, we prove

Theorem 3. If X, Y, Z, W e G(k, a) and k > 1 is a fixed square-free integer

then the equation:

(**) Xn+Y" + Zn= W"; n>＼

does not hold, except when X+Y=OorY + Z=OorZ + X=O and (n, 2) = 1.

2. Lemmas.

In the proof of our results we use of the following:

Lemma 1. For any positive integer n we have

(1)

＼ks

( Rn

＼kSn Rn)



where

(2) Rn =

Proof.

(r>

I fa,

Let A =

(

Fermat's type equations in the set

＼{*n+n

The proof of

Sn

1

2＼fk
K-n a = r + sVk, B

(1) follows by the following equali

;)-(
r＼r2+ksis2 r＼S2 + s＼r2

k(r＼S2 + sin) f＼n + ksiS2

ty

-― y

) = (*

-sVk
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then by easy calculation we obtain that a = r + sy/k and 6 =

r ―sVk are the eigenvalues of the matrix A. On the other hand it is well-known

that the matrix A" has the eigenvalues an and Bn such that

(3) TrAn = an+P＼ detAn = <x"J3n.

From (3) and (1) we obtain (2) and the proof of Lemma 1 is complete.

Moreover, we use of the following:

Lemma 2. Let ri,r2,r3e Z and n >3 be a positive integer.If r" + r" ― r"

then r＼V2ri= 0.

The proof of Lemma 2 follows by the resultof Wiles [6]

1 Prnnf nf TTtpnrpm 1.

Suppose that the equation (*) Xn + Y" = Z"

X,Y,ZeG(k,±l) and let X =

(r3 S3＼

＼ks3 r3j

＼ksi r,J

has a solution in the elements

Y =
＼ks2

and Z

. Then we have detJT, det 7, detZ e { ±1} and detX = det Y = detZ.

From the theory of the equation u2 ―kv2 =+1 we know (see; e.g. [2]) that

rt + Sj＼/k= sm',i ― 1,2,3 where e = u^ + v^＼/k is the fundamental solution of

the non-Pellian equation u2 ―kv2 = ―1 when this equation is solvable in integers

m,v or otherwise e is the fundamental solution of the Pell equation u2 - kv2 ― 1.

Bv Lemma 1 it follows that

xn =
/4"
4'V

/ n(2)

"
Us'2'

e(2)
on

d(2)

)

zn=(
d(3) e(3)

d(3)
7<≪

)
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where

(4)

and

(5)

(6)

R(i)
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= ＼≪+K) c(0 -jkv-M

a,-= n + SiVk = sm>, fit= n - SiVk - (e-l)m

s = uq + v0Vk, e"1 = uq - vox/k.

i =

From the assumption that Xn + Yn = Zn it followsthat

(7) *■>+ ≪?>=*!?>, s(')+ si2≫= sm

By (4) and (7) it follows that

(8)

(9)

a?+fil + a2"+j&2"

al

From (8) and (9) we obtain

(10)

-fi

= a3
+ /*3

+ a2 ~Pi ―a3 ~^3

a? + an2= < fi+fi- ft

1,2,3

i = 1.2.3

By (10) and (5) it follows that

(11) SnWi +8nm2 =Enm.

It is clear that ms > max{mi,ra2} and we can assume without loss of generality

that mi <mi. Then by (11) it follows that

M2) 1 _j_£≪(w2-w,)= giK-m^

Put sf = at + bt＼fk for non-negative integers t.Then it is easy to see that at and bt

are non-negative integers and from (12) we obtain

1 + an(m2~mi) + ^n(m2-wi) v K = dn{mi-m＼)
+ ^n(w3-wi) v K.

Hence, from the last equality we have

(13) 1 + an(m2-nn) ― ^{m-i-mx)

By (14) follows that m2 = m3 and consequently from (13) we get a contradiction.

The proof of the Theorem 1 is complete.
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3. Proof of Theorem 2.

Suppose that X
( n Sl

I ks＼
r＼

Y
( rl S1

V ks2 r2

)

■'■
V ^3 ^ /
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is a solu-

tionof (*) with detX = det Y ―detZ = a. Then by Lemma 1 in similarway as

in the proof of Theorem 1 we obtain

and

*!>

(15)

(16)

(19)

Kn

kS{n

=＼≪+m

1 s<"＼

sa> =

n

Y" =

(

≪-/??)

c(2)

d(2)
Kn

)

zn

!

ctj= rj+SjVk, B

■+(l)+(g)=≪

-

43) c(3)

= rj―Sjy/k: i

)

1.2.3

2y/k

Thus by the assumption we have

) , R(2)
= R(3) S(l)

, S(2)
= 5(3)

and consequently we obtain

a? + a? = a?, #+#=#

On the other hand we have det X = det Y = det Z = a = rf ―ksf = a,-/?,-for / ==

1,2,3. But from (16) we get (af + o^)(fi"+ 0%) = (a3/?3)n and consequently we

obtain

(17) an + {*xp2)n+ (*&)≫ = <>.

If a = 0 then a,-= 0 or fit= 0 and we have 4° = 2"-1rf for / = 1,2,3. Hence, by

(15) it follows that

(18) rnl+rn2=rn,

From (18) and Lemma 2 we get that nr2r3 = 0, because n,r2,r3 e Z. This fact

implies that X = O or F = 0 or Z = 0. Now, we can assume that a # 0.

Since a = ol＼B,― &i$2 then by (17) it follows that

Putting {fi2/P＼)n= * in the equality (19) we obtain the equation x2 + x + 1 = 0.

It is easy to observe that x = (―1 ± ＼/^3)/2 and consequently we obtain that

{P2/P＼)n = (―1 + V―3)/2. But the last equality is impossible for any positive

integer n > 1. The proof of the Theorem 2 is complete.
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4. Proof of Theorem 3.

Suppose that

x =

n)
Y =
＼ks2

z
(
7*3 53)

＼ks4

S4＼

where detZ = det Y = detZ = det W = a is a solution of the equation (**).

First, we note that since k > 1 is a square-free integer then the condition a ―0

implies X ― Y = Z = W = O. Thus, we can assume that a # 0. Using Lemma 1

by similar way as in the proof of the Theorem 2 we obtain

(20) < + a" + a" = <, /?f+/?2"+A"=≪

Since det X = det Y = det Z = det W = a = rf - ksj = a,#; i = 1,2,3 then by

(20) it follows that

(21) 2an + (od/y* + (a,ft)" + (a^)" + (≪2/*3)"+ (^A)" + (≪3^2)n= 0.

One the other hand we have a ^ 0 and a,

we get

(a/&) for / = 1,2,3 thus from (21)

(22) -(tMtHIHfsHftHgH
Denoting by xi = (P2/Pi)n>X2 = (&/&)" and x3 = (fii/P3)"we obtain xix2x3 =

1 and consequently the equation (22) reduces to the following equation:

(23) 2 + X＼+ X2 + Xt,+ X＼X2 + X2X3 + X3X1
0

Since x＼x2x^ = 1 then by (23) it follows that x＼ ― ―1 or X2 = ―1 or x$ = ―1

the symmetry of (23) we can assume without loss of generality that xi =

Since /?,= r＼- $＼＼fk,/?2 = r2 - S2＼/k and x＼ = {fi2/fl＼)n then we obtain

(24)

(
ri

r＼

S2 Vk

Vk
= -1

It is easy to see that if the exponent n is an even

equation (24) is impossible. Suppose that n is an

(≪,2) = 1. Then from (24) we obtain

(25)

By

_i

positive integer then the

odd positive integer, so

((nr2 - kslS2) + (Jir2 - r,s2)Vk)n = (-a)n

Since k > 1 is a square-free integer then by (25) it follows that

(26) r＼r2 - ks＼s2 = -a, s＼r2 - r＼s2 = 0



From (26) we obtain

X+Y =
("

＼ksi

Fermat's type equations in the set

r2 ―r＼and so

The proof of Theorem 3

::)-(

IS complete.

―S] and therefore we

n +n

k(si + s2)

have

Si +S2

r＼ +r2

)■(;≫

643

= 0

Remark. Similar result to the Theorem 3 one can obtain for the following

equation X[ + X," + ■･･ + X^ = Yn, when Xx, X2,..., Xm, Y e G(k, a) and k > 1

is a fixed square-free integer and n > 1, m>2 are arbitrary fixed integers.
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