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1. Imntroduction.

Following recently result given by Wiles [6}] we know that the equation of
Fermat (x) X" + Y" = Z" has no solutions in positive integers X, Y, Z if n > 2.
But in contrast to this situation Fermat’s equation (*) has infinitely many
solutions in 2 x 2 integer matrices for exponent n = 4. This fact has been dis-
covered by Domiaty [2] in 1996. Namely, he remarked that if

) () ()

a 0)’ b 0)’ c 0

where a,b,c are the integer solutions of the Pythagorean equation a® + b* = ¢?
then X* + Y* = Z*. Another results connected with Fermat’s equation (*) in the
set of matrices are described by Ribenboim [5]. Important problem in these
investigations is to give a necessary and sufficient condition for solvability (x) in
the set of matrices. Second Author proved (see; [3], Thm. 1) a necessary condition
for solvabilty () in the set of 2 x 2 integral matrices. Moreover, Khazanov [4]
founded a necessary and sufficient condition for solvabilty (x) when X,Y,Z¢
SLy(Z), SL3(Z), or GL3(Z). In particular, he proved that there are solutions of
(*)in X, Y, Z € SL,(Z) if and only if the exponent # is not a multiple of 3 or 4.
In this connection we consider the following set of integer matrices:

G(k,il):{(krs j);r,seZ, det(l; i):il},

where k is a fixed positive integer which is not a perfect square.

We note that if kK <0 or k =a? aeZ then the condition det(kr S) =
s 7

r* — ks> = +1 implies s =0, » = +1 and the set G(k, +1) reduces to trivial set:
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-1 0
Go(k,il)z{((l) ?),( 0 —l)}' But if k >0 and k # a?, ae Z then the

set G(k,+1) is an infinite set. On the other hand it is easy to see that if

ks
Khazanov in [4]. We prove the following:

det( ’ i) =1 then the set G(k,1) is a subset of SL,(Z) considered by

THeOREM 1. The equation of Fermat (%) has no solutions in X,Y,Z e
G(k, 1) for any positive integer n.

Moreover, we consider more general situation when G(k,a) is the set of the

form:
ros ros
G(k,a)—{(ks r>,r,seZ, det(ks r) —a},

where k is a fixed positive integer and a is a fixed integer.
We prove of the following:

THEOREM 2. If X, Y,Z € G(k,a) then the equation of Fermat (x) with positive
integer exponent n > 3 does not hold, except when X = O or Y =0 or Z= 0.

Further, we prove

THEOREM 3. If X,Y,Z,W € G(k,a) and k > 1 is a fixed square-free integer
then the equation:

(x%) X"+Y"+Z"=W", nx=1
does not hold, except when X + Y =0 or Y +Z=0o0rZ+ X = O and (n,2) = 1.

2. Lemmas.

In the proof of our results we use of the following:

LemMMmA 1. For any positive integer n we have

® (6 1) (5 &)
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where

) R,,:%(oc"-i-ﬁ"), Sy (@"—B"), a=r+svk, B=r—svk.

1
T 2vk

Proor. The proof of (1) follows by the following equality:

oS F sz)_ riry + ksys2 r1sz+s1r2>_(R S)
ksi rnJ\kss rn) \k(nss+sir) rrn+ksisn) \kS S/
¥
Let 4 =
© (ks

r — sVk are the eigenvalues of the matrix 4. On the other hand it is well-known
that the matrix 4” has the eigenvalues «” and B” such that

s), then by easy calculation we obtain that o = r + svk and f =
r

(3) TrA" = a" + B", detA" = a"B".

From (3) and (1) we obtain (2) and the proof of Lemma 1 is complete.
Moreover, we use of the following:

LEMMA 2. Let ri,ry,r3€Z and n >3 be a positive integer. If r+ri=r}
then riryr; = 0.

The proof of Lemma 2 follows by the result of Wiles [6].

3. Proof of Theorem 1.
Suppose that the equation (x) X" + Y" = Z”" has a solution in the elements
X,Y,ZeG(k,+1) and let X = ( "l ““), Y = ( "2 Sz) and Z =

kS] 8] ksz r3

(/:3 :3> Then we have det X, det ¥, det Z € {+1} and det X = det ¥ = det Z.
53 3

From the theory of the equation u®> —kv?> = +1 we know (see; e.g. [2]) that
ri+sivk =¢e", i=1,2,3 where ¢ = u((f) + v(()i)\/lz is the fundamental solution of
the non-Pellian equation u? — kv> = —1 when this equation is solvable in integers
u,v or otherwise ¢ is the fundamental solution of the Pell equation u? — kv? = 1.
By Lemma 1 it follows that

oo (RSN (RDSPN . [(RD s
ksy) RV ) ks RY ) ksy) RY
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where
(4) RO =y 4 g, SO Lo, =123
n = \% i PN/ i
and
(5) w=ri+sivk=¢e" Bi=r—-svk=("" i=1273
(6) e=uy+vvk, &'=u— voVk.

From the assumption that X"+ Y" = Z” it follows that
(7) RO 4+ R® = RO s 4 5@ = §).
By (4) and (7) it follows that

(8) of +B+a3+ P =03+ B3

©) of — By +of — By =3 — fs.
From (8) and (9) we obtain

(10) of +og =03, Y+ =p3.

By (10) and (5) it follows that

(11) MM 4 M = M

It is clear that m3 > max{m;,m;} and we can assume without loss of generality
that m; < m,. Then by (11) it follows that

(12) 1+ gnlma—m) — gnlms—mi)

Put ¢’ = a, + b,Vk for non-negative integers ¢. Then it is easy to see that a; and b,
are non-negative integers and from (12) we obtain

1+ Giony ) + Bions ) VE = Gotomy—my) + Broms -y VK.
Hence, from the last equality we have
(13) b+ @umy—my) = Gnimy—my)
(14) bngmy—mi) = Onioms—m)-

By (14) follows that m; = m3 and consequently from (13) we get a contradiction.
The proof of the Theorem 1 is complete.
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3. Proof of Theorem 2.

Suppose that X = o , Y= 7R , L= S is a solu-
kS] I3 kSZ r kS3 r3

tion of (x) with detX =detY =detZ = a. Then by Lemma 1 in similar way as
in the proof of Theorem 1 we obtain

m g 0 ) 6 B
el T P G W R N P A B N
ks R! kSP RS ks RS
and

R,(1’)=§(oc,f’+ﬂf), s (0 =B, wi=ri+sivk, B=ri—svk; i=1,23.

1
n _ﬁ
Thus by the assumption we have
(15) RY + R =R® s 4 52 _ gO)
and consequently we obtain
(16) of +ay =o3, Br+py=p

On the other hand we have detX =detY =detZ =a=r? — ks? = o;f3; for i =
1,2,3. But from (16) we get (af + of)(B] +f5) = (23f;)" and consequently we
obtain

(17) a" + (u1fy)" + (28)" = 0.

If a =0 then o; = 0 or §;, = 0 and we have Rﬁ,i) = 2”‘1r,-” for i =1,2,3. Hence, by
(15) it follows that

(18) =

From (18) and Lemma 2 we get that ryr,r; = 0, because r,r;,r; € Z. This fact
implies that X = O or Y =0 or Z = 0. Now, we can assume that a # 0.
Since a = o, = of, then by (17) it follows that

(19) 1+(%y+(%f=o

Putting (B,/B;)" = x in the equality (19) we obtain the equation x2 + x+ 1 = 0.
It is easy to observe that x = (=1 + v/—3)/2 and consequently we obtain that
(B2/B1)" = (=1 + V/=3)/2. But the last equality is impossible for any positive
integer n > 1. The proof of the Theorem 2 is complete.
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4. Proof of Theorem 3.

Suppose that

¥y S1 r 52 r3 $3 r4 S4
X = s Y = s Z = ) W= )
(ksl ¥ ) (ks2 r ) (kS3 r3 ) (kS4 ¥4 )
where detX =detY =detZ =det W =a is a solution of the equation (#x).
First, we note that since k > 1 is a square-free integer then the condition a =0

implies X = Y = Z = W = O. Thus, we can assume that a # 0. Using Lemma 1
by similar way as in the proof of the Theorem 2 we obtain

(20) af +af +of =of, Pr+p5+P5 =5

Since detX =detY =detZ=detW =a=r?~ks? =af; i=1,2,3 then by
(20) it follows that

21) 20"+ (afy)" + (mfs)" + (B))" + (02B)" + (@3B1)" + (a:,)" = 0.

One the other hand we have a # 0 and o; = (a/p;) for i =1,2,3 thus from (21)
we get

ﬁz)" (ﬂa)” (/31)" (ﬁa)" (/31)" (ﬁz)”

22 2+(—+——+—+—~+—+—=0.

22) 5) \5) \5) *\5) " \5) B

Denoting by x; = (8,/8,)", x2 = (B3/B,)" and x3 = (B,/B5)" we obtain x;x2x3 =
1 and consequently the equation (22) reduces to the following equation:

(23) 24+ x1 4+ X3 4+ X3+ X1%2 + x2%3 + x3%] = 0.
Since x1x;x3 = 1 then by (23) it follows that x; = —1 or x = —1 or x3 = —1. By
the symmetry of (23) we can assume without loss of generality that x; = —1.
Since B, =r| —sivk, fy =r, —s5v/k and x; = (f,/B;)" then we obtain
n
(24) M = 1.
r - Sn/z

It is easy to see that if the exponent n is an even positive integer then the
equation (24) is impossible. Suppose that n is an odd positive integer, so
(n,2) = 1. Then from (24) we obtain

(25) ((rira — kS1Sz) + (S1r2 - rm)x/l?)” = (—a)".
Since k > 1 is a square-free integer then by (25) it follows that

(26) rir — kS1S2 = —a, Sir—risn= 0.
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From (26) we obtain r, = —r; and s, = —s; and therefore we have

o8 o r+nrn 1+ 82 0 0
X Y = — = = 0.
+ (ksl r1)+ (ksz r2) <k(s1+sz) r1+r2> (O O>
The proof of Theorem 3 is complete.

REMARK. Similar result to the Theorem 3 one can obtain for the following
equation X"+ X'+ .-+ X =Y" when X1,X2,..., Xy, Y eG(k,a) and k > 1
is a fixed square-free integer and n > 1, m > 2 are arbitrary fixed integers.
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