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Abstract

In our previous paper (Nishimura, 1997) we probed into
a deeper structure of the Jacobi identitiy of vector fields
with respect Lie brackets in the realm of synthetic
differential geometry to find out what might be called the
general Jacobi identity of microcubes. The main objective of

this paper is to present a less esoteric and more lucid proof

of it.



§0. Introduction

Kock and Lavendhomme (1984) have developed a theory
of microsquares, in which the Lie bracket of vector fields on
a microlinear space M can be expressed as the strong
difference of their associated microsquares on MM. Nishimura
(1997) took a step forward to find out that the Jacobi
identity of vector fields on M with respect to Lie brackets
is a reverberation of a deeper identity of microcubes on MM,
which might be called the general Jacobi idenfily. Though its
proof there was thoroughly correct and exact, the exposition
might appear precipitous and more esoteric than it was to be.
The principal objective of this paper is to elaborate it into
a less esoteric and more comprehensible one.

The main text of the paper consists of three sections,
the first two of which are a hasty review of Kock and
Lavendhomme (1984) and Nishimura (1997) and are intended
mainly for fixing our notation and preparing the reader for
more advanced quasi-colimit diagrams in the last section.

The first and the second sections are devoted to simplicial
objects and strong differences respectively. The gigantic
quasi-colimt diagram of small objects in our previous paper
(Nishimura, 1997, Lemma 3.3) is successfully divided into a
few more manageable and more accessible ones in the last
section. In particular, the core of the proof of the general
Jacobi identity is crystalized as an elegant quasi-colimit

diagram of small objects in Theorem 3.6.



We assume that the reader is well familiar with
Lavendhomme (1996) up to Chapter 3. We choose, once and for
all, a microlinear space M. The extended set of real numbers
including infinitesimal ones is denoted by R and is expected
to satisfy the general Kock axiom. We denote {dE]RId2 = 0} by
D as usual. Elements of D are usually denoted by d with or
without subscripts. As is usual in synthetic differential
geometry, the reader should presume that we are working in
a non-Boolean topos, so that the principle of excluded
middle and Zorn's lemma should be avoided. But for these two
points, we could feel that we are working in the standard

universe of sets.



§1. Simplicial Objects

In this section we distinguish a clear-cut class of
small objects. Let n be a natural number and n the set
consisting exactly of 1,2,...,n. Let An be the set of
finite sequences (11,...,1k) in n with 1l<...<1k. Given a
finite subset p of An’ we define a small object Dn{p} as

follows:

(1.1) D™p} = {(dl,...,dn)eDnldi ...d. = 0 for any

(i .,ik)ep}

10
If p is empty, D"{p} is D" itself. If p 1s &, then D'{p} is
D(n) in standard terminology. Small objects of the form

Dn{p} are called swmplicral obgecits of degree n. If

p c g cC An’ then Dn{q} is a subset of Dn{p}, in which the
canonical injection of Dn{q} into Dn{p} is generally denoted
by +. Given two simplicial objects Dm{p} and Dn{q} of degrees
m and n respectively, we define a simplicial object

Dm{p} ® Dn{q} to be Dm+n{P®q}, where

(1.2) p®a = p U {(Jl+m,...,jk+m)|(Jl,---,jk)€q} U

{(i,j+m)|1<i<m, 1<j<n}

By way of example, D(m) ® D(n) is D(m+n). Simplicial objects

Dm{P} and Dn{q} can naturally be regarded as subsets of



p™p} ® D"{a}. Given functions 6 :D"i{p,} - D™{p} (1<i<n) of
simplicial objects with Bi(O,...,O) = Bj(O,...,O) for any
i,j, there exists a unique function

B:Dml{pl} ®...e Dmn{pn} - Dm{p} whose restriction to Dmi{Pi}
coincides with Bi for each i. We denote this £ by

Bl ®...® Bn.

n
Given a simplicial object D™ {p}, we denote by TD {p}(M)

the set of all functions from Dn{p} to M. In particular,
D p?
T7(M) is the set of tangent vectors to M, T~ (M) is the set

3
of microsquares on M, and TD (M) is the set of microcubes on

M. It is well known that, given tangent vectors ti to M
(1<i<n) with ti(O) = tj(O), there exists unique

{(t £ ):D(n) - M whose restriction to i-th D coincides
100ty
with ti (1<i<n).
We note in passing that Lavendhomme and Nishimura (1997)
have developed a synthetic theory of differential forms based

on simplicial objects.



§2. Strong Differences

The following proposition is borrowed from

L.avendhomme (1996, §3.4).

Proposition 2.1. The diagram

p? ——— p3{(1,3),(2.3)}

is a quasi-colimit diagram of small objects, where

(2.1) @(dl,dz) = (d,,d,,0), and

1’72
(2.2) W(dl,dz) = (dl’dz’dldz)

2
for any (dl,dz)ED .
As a direct corollary of the above proposition we have

Proposition 2.2. For any yl,VZETZ(M), if

Yl'D(Z) = YZID(Z)’ then there exists unique

y:DS{(1,3),(2,3)} » M with y<¢ = v, and v<¥ = v,.

We will write ¢ for v in the above proposition.
(Yl,Yz)

The strong difference YZ - Yl is defined to be the tangent



vector deD |- y( (0,0,d) to M.

SRR
By relativizing Proposition 2.1 we have

Proposition 2.3. The diagram

p3{(2,3)) —=~—— p3

Ll lw‘j
p3 p4((2,4),(3,4)}

is a quasi-colimit diagram of small objects, where

3 -
(2'3) wl(dl,dzrd3) - (dlydzydgyo)s and

3 -
(2-4) wl(dlrdzydB) - (d1;d29d3)d2d3)
for any (d,,d,,d )ED8
1772’73 ’
As a direct corollary of the above proposition we have

Proposition 2.4. For any yl,yzeTB(M), if

?1|D3{(2’3)} = yled{(2’3)}, then there exists unique
3

v:D{(2.4).(3,4)} » M with v-@° = p

3 _
1 and V«wl =y

1 2

We will write 91

5 for ¥ in the above proposition.
(?l,vz)

The strong difference ?2 - is defined to be the

171



2 1

microsquare (dl,dz)ED [- 9(? (dl’O’O’dZ) on M.

1,}’2)

An appropriate variant of Proposition 2.3 readily

yields

Proposition 2.5. For any Y],YZETs(M), if

yllDB{(l,S)} = ?2|D3{(1,3)}’ then there exists unique

v:D¥((1.4),(3,4)} » M with yowg = v, and yowz = v,, where

3 3

functions wz,wg:D - D4{(1,4),(3,4)} go as follows:

[t}

(2.5) w,(dl,d d,) 0)

2’73 3’
(dy,d,,dg) = (dj,dy.dgy.djdy)

(d;.d,.d

W w

(2.6) ¥,

for ¥ in the above proposition.

. . 2
We will write #
(Yl,Y )

2
The strong difference YZ é Yl is defined to be the

2

microsquare (dl,dz)ED |- ?(Yl,yz)(o’dl'o'dz) on M.

An appropriate variant of Proposition 2.3 readily

yields

Proposition 2.6. For any ?l.YZETB(M), if

YllDB{(l,Z)} = YZ'DB{(l,Z)}’ then there exists unique

?:D4{(l,4),(2,4)} - M with ycwé = and Yowg = YZ’ where

Yy
. . 3 ,3 .3 4
functions wg,wB:D - D {(1,4),(2,4)} go as follows:

3 -

3 ’



3 -
(2.8) wg(dl$d29d3) - (dl’d2’d3’dld2)

We will write y?y v.) for vy in the above proposition.
1’72

The strong difference vy - is defined to be the

2 37

5

(?l,vz)

The general Jacobi identity goes as follows:

. 2
microsquare (dl,dz)ED - 2 (O’O’dl’dZ) on M.

Theorem 2.7. Let v ETB(M).

123° Y132 Y213° Y231 ¥312° Y321
As long as the following three expressions are well defined,
they sum up only to vanish:

(2.9) ) - (v

=

(Y1935 1 Y132

231 321
(2.10) (Y231 5 ?213) ~ (Y312 5 Y132)
(2.11) (Y599 3 Y391) = (Y1953 3 Yo13)



§3. The General Jacobi Identity

This section is devoted completely to a proof of Theorem

Proposition 3.1. The diagram

D(2) 14 p4((2,4),(3,4)}
‘14| |”2
4 ]

1

is a quasi-colimit diagram of small objects with its

quasi-colimit E, where

(3.1) E is D7{(2,6),(3,6),(4,6),(5,6),(1,7),(2,7),(3,7),
(4,7),(5,7),(6,7),(2,4),(2,5),(3,4),(3,5)1}.

(3.2) Ll4(dl,d2) = (dl,0,0,dz) for any (dl,dz)ED(Z).

(3.3) nl(dl’dZ’dB’d4) = (dl,dz,d3,0,0,d4,0) for any
(d,.d,.dg.d,)eD {(2,4),(3,4)}.

(3.4) n2(d1’d2’d3’d4) = (dl,O,O,dz,d3,d4,dld4) for any

4
(dl,dz,dB,d4)€D {(2,4),(3,4)}.

proof. The so-called general Kock axiom warrants that
functions yl,yz:D4{{2,4),(8,4)} -+ R and y:E -» R should be
polynomials of infinitesimals in D with coefficients in R of

the following forms:



(3.5) ?1(dl,d2,d3,d4) = a + aldl + azd2 + a3d3 + a4d4 +

+

a;,d;dy + ajqdydg + ay,didy + a,q0d,dg + oag,4d,d,dg

(3.6) Yz(dl,dz,d3,d4) = b + bldl + b2d2 + b3d3 + b4d4 +

bypdqdy + bygdydg + by ,dyd, + bygdydg + byyqdidydg

(3.7) Y(dl,dz,ds,d4,d5,d6,d7) = Cc + Cldl + CZdZ + c3d3 +
cydy + cgdg * cgdg + cpdy v cyodidy + Cyadidg ¥
c14dydy + ¢ygdidg v cpgdidg v cyadydg +ocpoddg -

C193d1dodg + ¢ y5d,d dg

The condition that vy, -« = is equivalent to the

1 %14 T Y2714

following condition:

(3.8) a =b, a, = b, and a, = b

Therefore it is not difficult to see that, as long as

Y1414 = Yo 4140

exactly when vy is of the following form:

it is the case that yen, = Yl and yen, = Y

1 2 2

(3.9) ?(dl,dz,ds,d4,d5,d6,d7) = a + aldl + a,d, + a3d +

2%2 3
bydy * bgdg + a,dg + (by, - a;,)d; + a;,d,d, +
a13d7dg * byydid, + bygdidg +oa,didg + agqdydg +
bysdyds + aj,5didydg + by yadydydg

This means that the above diagram is a quasi-colimit diagram

of small objects. m]



Proposition 3.2. The diagram consisting of objects

. 3
(3.10) El’ E2, E3, E4, all of which are equal to D
(3.11) F12’ F34, all of which are equal to D3{(2,3)}

(3.12) E all of which are equal to

12° Egg-
p*{(2,4),(3,4)}

(3.13) F1234, which is equal to D(2)

(3.14) E1234, which is equal to D7{(2,6),(3,6),(4,6),
(5,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7),(2,4),

(2,5),(3,4),(3,5)}
and of morphisms

(3.15) (:FlZ - El’ L:F12 - E2’ LZF34 - ES’ 4:F34 - E4

12 34 .
1 .E1 - E12’ f3 .E3 - E34, all of which are
equal to wi:Dd s p¥(2,4),(3,4))

12, 34 .
o .E2 - E12’ f4 .E4 - E34, all of which are

35 p%((2.4),(3,4))

(3.16) f

(3.17) f
3

equal to ¥7:D

(3.18) “14°F10g4 7 Eqgr 49471034 7 Egy

:E = E E - E

(3.19) 1512 1234° "2°F34 1234

is a quasi-colimit diagram of small objects with its
quasi-colimit E1234.
proof. 1t suffices to note that the above diagram is a

hybrid of the following three diagrams:



L
Fi9 Ey
L 12
| el
E, 12 B9
1
L
Fay Ky
n 34
| 5
Eq 32~ Esq
£
3
‘14 .
1234 34
L14l J”z
E1g n K934

Each of them is a quasi-colimit diagram of small objects by

Proposition 2.3 or Proposition 3.1. O

We will write E[1] for D7{(2,6),(3,6),(4,6),(5,6),(1,7),

(2,7),0(3,7),(4,7),(5,7),(6,7),(2,4),(2,5),(3,4),(3,5)}. We

. . 1 1 1 1 3 43 3
will write 11, 32, 13 and z4 for n]\wl, nl wl, nz wl and
3 . . . . 3
n2~wl respectively. That is to say, for any (dl’dZ’dB)ED ,
we have

1 _
(3.20) zl(dl,dZ,dS) = (d1’d2'd3’0’0’0’0)

1
(3.21) lz(dl,dz,dS)
1

(3.22) zS(dl,dz,dS)

Ly 1 —
(3.22) 14(d1,d2,d3) = (dl,O,O,dz,d3,d2d3,dld2d3)

(dl,dz’d3,0’0’d2d3,0)

(dl,O,O,dz,dS,O,O)

As a direct corollary of Proposition 3.2 we have



Proposition 38.3. For any yl,yz,VS,y4ET3(M), if the

expression (Y4 1 y3) (?2 1 yl) is well defined, then there
exists unique yETE[l](M) such that yazi = ?i (i =1,2,3,4). O
We will write ﬁ for vy in the above

(v 1° Y9 V357, )

proposition. We note that for any

4,
(dl’dZ’dS’d4)ED {(2,4),(3,4)},

1
(3.23) ?(y )(d],dz,dS,d4)
1' 79
.1
- ﬁ(vl,v Yoty y(dq.dy.dgq,0,0,d,,0)
o . 1
(3.24) 9(y3’y )(dl’dZ’dS’d4)
41
= (d,,0,0,d,,d,,d,,d.d,)
(?l,vz,vg,r4) 1 2°°3°74°71°4

Therefore, for any (dl,dz)EDz, we have

(3.25) (Y2 1 ?1)(dl,d2)
1
= 4 (d,,0,0,0,0,d,,0)
(?1,?2,?3.?4) 1 2
(3.26) (Y4 i YB)(dl,dz)
1
= ﬁ/ (d ,0,0,0,0,d‘ ’d dl)
(Yl,YZ,?B,Y4) 1 2’7172

(3.25) and (3.26) imply that for any
3 .
(dl’dZ'dB)ED {(1,3),(2,38)},

(3.27) 7 (dl’dZ’dS)

Yo 1 ¥Y1°¥4 1 ¥3)



1

= A v v r)
1° Y2 Y37y

(d;,0,0,0,0,d,,dy)

1’ 3

Therefore, for any d€D, we have

(3.28)  ((v, 1 ¥y) - (¥y 1 ¥{))(d)

1

= 4
(?1,?2,?3,?4)

(0,0,0,0,0,0,d)

We will write E[2] for D7{(1,6),(3,6),(4,6),(5,6),(1,7),

(2,7),(3,7),(4,7),(5,7),(6,7),(1,4),(1,5),(3,4),(3,5)}. We

define functions li, lg, lg and zi from D3 to E[2] as follows:

5 99y 2 _
(3.29) ll(dl,dz,dB) = (dl,dz,d3,0,0,0,0)
2 -
(3.30) Ez(dlydztds) - (dl;d2;d3vovovdld31o)

)
)

. 2
(3.31) lS(dl,d2,d3 (O,d2,0,d3,d1,0,0)

Q qc 2
(3.32) 14(d1,d2,d (O,dz,O,d3,dl,d d,d,d,)

3 ld3’ 17273

By the same token as in Proposition 3.3 we have

Proposition 3.4. For any yl,yz,yg,y4€T3(M), if the

expression (Y4 é yg) - (?2 é yl) is well defined, then there

E[2]

exists unique 7veT (M) such that yclf = vy, (i =1,2,3,4).0

1

We will write ?fr ) for y in the above
1

’YZ’YB’Y4
proposition. By the same token as in (3.28) we have that for

any deD,



(8.33) (v, 5 ¥y) - (v, 5 ¥{))(d)

2

= ,{(
yl,Y2$Y3’y

(0,0,0,0,0,0,d)
4)

We will write E[3] for D {(1.6).(2.6),(4,8),(5,6),(1,7),

(2,7),(3,7),(4,7),(5,7),(6,7),(1,4),(1,5),(2,4),(2,5)}. We

define functions a?, 13 13 and 13 from D3 to E[3] as follows:

27 3 4

1

3
(3.34) ll(dl,dz,dg) (dl,dz,dB,O,O,O,O)

3
(3.35) iz(dl,dz,d ) (dl’dZ’dB’O’O’d d,,0)

3 172’
3 -
(3.86) i5(d;,d,.ds) = (0,0,d,4,d,,d,,0,0)
3 _
(3.87) 1,(d;.d,.dg) = (0,0,d,4,d;,d,,d;d,,d;d,dg)

By the same token as in Proposition 3.3 we have

Proposition 3.5. For any ¥.,,v.,V.,,? ETS(M), if the
1’72793’ "4
expression (v (yz é yl) is well defined, then there

3 .
PR (i = 1,2,3,4).0

4373
. . E[3] . ,
exists unique yeT (M) such that v-i

«

We will write ?3

(?1,?2

for vy in the above

yVas¥ )

3’74

proposition. By the same token as in (3.28) we have that for

any de€D,

(3.38)  ((v, 5 ¥gy) - (v, 5 ¥))(d)
2

= A
(?1,v2,v3,?4

)(0,0,0,0.0,0,d)

The crucial step in the proof of Theorem 2.7 is



epitomized by the following theorem.

Theorem 3.6. The diagram consisting of objects

(3.39) E[1], E[2]1, E[3]

(3.40) le, H28’ H81’ all of which are equal to D3 @ D3

(3.41) G, which is equal to DS{(2,4),(3,4),(1,5),(3,5),
(1,6),(2,6),(4,5),(4,6),(5,8),(1,7),(2,7),(3,7),
(4,7),(5,7),(6,7),(1,8),(2,8),(3,8),(4,8),(5,8),

(6,8),(7,8)}

and of morphisms

o g0y w1l . . 2 . 2

(3.42) hy,:H, = E[1], h{,:H;, = E[2], hj :H,, » E[2],
3 . 3 . 1.

hy,tH,q = E[3], hy :Hg, > E[3], hg :tHy, > E[1]

(3,43) kl:E[l] - G, kZ:E[Z] - G, kg:E[B] - G

is a quasi-colimit diagram of small objects, where

11 1 .2 2 2 .2 2 2

(3.44) h12 = i, ® Lo h12 = iy @® Ly h23 = iy @ Ly
3 .3 3 .3 _ 3 3 .1 1 1

h23 = iy ® Ey h81 ty @® Lo h81 = iy @ '

(3.45) kl(dl’dz’dS’d4’d5’d6’d7)

= (dl’dz + d4,d3 + d5,d6,—d1d5,d1d4,d7,0)
for any (dl,dz,d3,d4,d5,d6,d7)€E[1],

(3.46) kz(dl’dz’dB’d4’d5’d6’d )

7
= (dl + d5,d2,d3 + d4,d2d49d6)_d2d5)0,d7)
for any (dl,d2,d3,d4,d5,d6,d7)EE[2], and



(3.47) kS(dl’dZ’dB’d4’d5’d6’d7)

= (d1 + d4,d2 + d5,d d3d5,d d d —d7,-d

for any (dl,dz,dg,d4,d5,d6,d7)EE[3].

7)

proof. The so-called general Kock axiom warrants that

functions yl:E[l] -> R, ?Z:E[Z] > R, v,:E[3] » R and v:G6 - R

3

should be polynomials of infinitesimals in D with

coefficients in R of the following forms:

(3.48) v,(d;,d,,dg,d,,d_,dg.d-) = a'+ ajd, + apd, + aid,
+ aid4 + ald + ald + a}/d7 + i2d1d2 + a}3d1d3 +
a}14(11‘14 * 15d1d5 ¥ 16d1d6 * é?dzda * a4115d4d5 *

123d1d2d3 ¥ 145d1d4d5

(3.49) v,(d;.d,.d;.d,.d..dg.d-) = a’+ a’d, + aZd, + asd

2G4 g-05,4y.05. 06,07 2% 393
+ aid4 + a2d + aéd + azd + 12d1d2 + a%sdld3 +
agsdzds * d§4d2d4 ¥ 25d2d5 * 26d2d6 * aisd4d5

1zsd1dzd3 * z45dzd4d5

(3.50) v,4(d,.d,,dg.d,,d.,dg,d) = a’+ a’d, + ajd, + and

5' 997 2% 393
+ a4d4 + a5d5 + a3d + a§d7 + 1zd1dz + a§3d1d3 +

zsdzds ¥ d34d3d4 * 35d3d5 * g6l3d6 * a25d4d5 *

123d1d2d3 * 4fd3d4d

(8.51) v(d,,d,,dy,d,,ds,dg,dy,dg) = b + bd, + b,d, +
bgdg + bydy + bgdg + bgdg + bydy + Dgdg + by ,d;d,
v bygdydg + byudydy + bygdydy + bygdydy + bggdadg

It is easy to see that



1
vyohyy
1

a + ald

(3.52)

( ) (d

+

leldS

a1d4
ol
8145

d

+ a

D—:-hi—‘
o

+

5

d

)d3)

l ’

a

2

d

d
1
272

+ a

1

ajgd dydg
1

5 * agdg

6

40 ds.dg)
1 1
3dg *+ agdy
1
dzsdzd3

l4d4d5

+

+

dl

123)d2d

d

0 * a. d

l
16

14d4d5

1
a  + a

1

+

6
ald

+ a

e

1
2

+ (a

(a
+ ald +

145d4d d

2)(dlyd2vd yd ,d

+

(3.53) (y2°h

2

a + azd a d

5

+ azd‘ +

1

24d2d3

* d, + a,

25d1
: 2

+

3 12
al )
]23

15d4

+

+

dg)

* aGdl

Bdldzdd

1
aj,d d,

123d1d2d3

15d4d6

d3 +

+

+

45d5d6

+ + a

13dld3

+ a d

d,d

172

d1d2d3

+
+

+

d

6 d.d

* a45 5%

+ d7dld2d3
2

45dld3

+

ds

+ +

z45d1dzd3

+ a_d

+

d, + a

d d_

+

+ aid
2

4

5d6

+

275

2 4.4

A
a3
12374 Sd

S)dld‘

d
2

zdz

+

245)

d,d

+ a“’d.

a
2
4
d

dldzd

+a

+

3 55
d

2
3 + ald
d-d

Therefore the condition that ?1°h

to the following condit

=

(3.54) a

(3.55) a

o
e S e

(3.58) a

[\

o

13 476

ions:

237576

1
12

6 1274

d,d.

172

+

2
agdg

+ +

* azds

123d4d5d6

4

is equivalent



1 1 2 2 2 1 2

(3.57) ajg + ajyq = a7 * 8ye + 8y 5, 81,5 = 8794
By the same token the condition that v °h2 =y °h3 is
2 723 3 23
equivalent to the following conditions:
(3.58) 32 = a3
2 3 2 3 2 38 2 3 2 3
(3.59) a2 = d5, d3 = d3, al = a,, a2 = az, a4 = a8,
a2 _ a3
5 1
2 3 2 3 3 2 2 _ .3
(3.60) a,q = agg, ay, = ag + 8,5, 8g + ayg = agy,
22 3 .2 3 203
24 23’ 925 12’ 45 13
(3.61) 32 a2 = a3 + a3 + a3 a2 = 33
’ 26 123 7 36 345’ 7245 123
By the same token again the condition that oh3 = oh1 is
Y ga - ¢ ¥gollgy = ¥p°0gq
equivalent to the following conditions:
(3.62) a3 = al
3 _ .1 3 _ 1 3 _ 1 3 _ 1 .3 _ 1
(3.63) a5 = ag, a; = a;, a, = a,, ag = as, 8, = aj,
a3 = al
5 “2
. 3 1 3 1 1 .3 3
(3.84) ajq = aj5, agg = ag + a5, ag + a7, = A,
a3 gl 3 1 31
34 13"’ 35 23’ 45 12
23 23 5 1 1 1 s .1
(3.65) age + aj9q = a7 + ajg + a7 0. dgys = 81,4

Three conditions (3.54), (3.58) and (3.62) can be combined

into



Three conditions (3.55), (

3.59)

a

nd

superseded by the following three conditions:

(3.67) a
(3.68) a

(3.69) a

W N

a

Three conditions

the following six conditions:

(3.
(3.
(3.
(3.

(3.

Conditions

(3.

70)
71)
72)
73)

74)

.75)

76)

(3.57),

2 .3 _ 2 _ 3
178 T35 7 Ay
2 _ 3 _ 1 _ 3
2 2 4 5
2 _ .3 _ 1 _ 2
3 3 5 4
(3.56), (3.60) and (3.64)
az, = a;.
12 12
22~ 8
13 13
a2 3
23 23
al . a3 al al a2
12 6’ 15 13 6’
22 gl 42,2 8
23 6’ 25 12 6’
8,3 + Eiz E13 = EiS - al
13 6’ 35 23 6’
(3.61) and (3.65) imply
a2 + aS
7 7
+ a3 a1 - al ) + (a
123 16 145
)+ (adg v al,. - A, - an
26 123 36 3
+ a3 al a2 ) + (a
123 16 123
) (aZ N a2 _ a3 N al
26 123 36 1
1
h12

Now it is not difficult to see that yl

are equivalent to

1
45

45

6145

that

16

45
1
16

+

(3.63) are to be

1
23

13

419

41903

al
123

a

26

26



2 3 3 1 .
yz h23 = y3 h23 and y3 h81 = Yl h31 exactly when there exists

v:6G » R with vy = ?oki (i = 1,2,3), in which v is to be of

the following form:

1 1 1
(3.77) Y(dl,dz,d3,d4,d5,d6,d7,d8) = a  + ald1 + a2d2 +
1 1 2 3 1 2 1
agdy + agd, + agds + agdg + azd; + agzdg + a;,dyd,
1 1 1 2 3
+ajgdidg +oajgdid, v oagqdydg v oaygdyds v agadadg
This completes the proof of the theorem. n

As a direct corollary of Theorem 3.6 we have

Theorem 3.7. For any V193> Y1397 V913" Y931 Y319°

y321€T3(M), if all the expressions (2.9)-(2.11) are well
defined, then there exists unique yeT®(M) such that

1
(3.78) vk, = 4
1 (Y391: Y931+ ¥132°Y123)
2
(3.79) v-k. = 4
2 (Y139°7Y312:Y213°Y931)
3
(3.80) y-k. = # 0
3 (Y913 7123 Y321 ¥Y312)
We will write m or m for

(Y123°7132°Y213°Y231°Y312° V321’
short for the above V.

Once the above theorem is established, we can proceed in
the same line as in our previous paper (Nishimura, 1997,

pp.1117-1118) so as to get the general Jacobi identity.

Indeed we note that



= m(0,0,0,0,0,0,d,0) for any de€D.
(3.82) ((Y231 5 Y213) - (Y312 5 Yq139)) (d)

= mn(0,0,0,0,0,0,0,d) for any deD.

(3.83) (( ) )) (d)

Y312 3 Y321 (Y193 3 Yo13
= m(0,0,0,0,0,0,-d,-d) for any de€D.

1 t2 and t3 denote expressions

(2.9)-(2.11) in order, we have

Therefore, letting t

(3.84) ¢ (d,,d,,d,)
(tl,tz,tS) 172’73

= m(O,O,O,O,O,O,dl - d3’d2 - d3) for any

(dl’dZ’dS)ED(B)'
This means that for any de€D,

(3.85) (tl + t2 + t3)(d)

=1 (d,d,d)
(tl’tZ’tB)

m(0,0,0,0,0,0,d - d,d - d)

n(0,0,0,0,0,0,0,0)

This completes the proof of Theorem 2.7.
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