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Abstract

The bifurcation structure of a constraint Duffing van der Pol oscillator with a diode is ana-

lyzed and an objective bifurcation diagram is illustrated in detail in this work. An idealized case,

where the diode is assumed to operate as a switch, is considered.In this case, the Poincaré map is

constructed as a one dimensional map: a circle map. The parameter boundary between a torus-

generating region where the circle map is a diffeomorphism and a chaos-generating region where

the circle map has extrema is derived explicitly, without solving the implicit equations, by adopting

some novel ideas. On the bifurcation diagram, intermittency and a saddle-node bifurcation from

the periodic state to the quasi-periodic state can be exactly distinguished. Laboratory experiment

is also carried out and theoretical results are verified.
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I. INTRODUCTION

The purpose of this study is to analyze a simple driven oscillator in detail, and a bi-

furcation structure of its governing equation is discussed rigorously. The circuit that the

present authors deal with in this paper is a constrain piecewise-linear Duffing van der Pol

oscillator with a diode. Even though it is a natural and simple circuit, it possesses a rich

variety of interesting bifurcation structures and phenomena such as the Arnol’d tongue,

torus breakdown, and chaos. A parameter boundary between a torus-generating region

and a chaos-generating region is explicitly derived and the objective detailed bifurcation is

obtained.

Generally, even simple driven oscillators with only two dimensions have such complicated

bifurcation structures that no comprehensive analysis of the structures covers all their as-

pects [Levi, 1981; Kawakami, 1984; Endo & Chua, 1988; Mira & Qriouet, 1993; Qriouet &

Mira, 1994; Qriouet & Mira, 2000]. The conventional technique for the analysis of bifurcation

structures of the driven oscillators is a mapping method, by which analysis of the continuous

time system becomes the analysis of the discrete dynamics. However, it is difficult to ana-

lyze two- or higher dimensional discrete dynamics because mathematical discussions on such

dynamics are too complex and their discussions are few. The literature indicate [Kawakami,

1984; Mira & Qriouet, 1993; Qriouet & Mira, 1994; Qriouet & Mira, 2000] that it is an ex-

tremely difficult task to make the bifurcation structures clear completely even on the periodic

states. There exist various locking states, namely infinitely many ultraharmonic, subhar-

monic and fractional harmonic entrainments which are well known as Arnol’d tongues. Also

in these entrainments, saddle-node bifurcations, period-doubling bifurcations and Neimark-

Sacker bifurcations form an extremely complicated bifurcation structure [Mira & Qriouet,
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1993; Qriouet & Mira, 1994; Qriouet & Mira, 2000].

On the other hand, bifurcation phenomena on one-dimensional maps have been investi-

gated in detail [Collet & Eckmann, 1980]. For example, the mechanism of period-doubling

bifurcation is explained using the logistic map [Myrberg, 1963], and a definition of chaos on

unimodal maps was given by Li and Yorke [Li & Yorke, 1975]. The mechanism of various

locking states and chaos via torus breakdown is explained using a circle map [Katznelson,

1977; Outlund et al., 1983; Kaneko, 1984].

Rössler first analyzed and introduced the constraint chaos generating differential equation

to explain the qualitative aspects of chaos generation [Rössler, 1976; Rössler, 1979]. He

showed that the chaos generation mechanism can be explained by the degenerate equation

which consists of two 2-dimensional manifolds and one hysteresis. His smartness arises from

the fact that the Hausdorff dimension [Young, 1983] of chaotic attractor generated in three

dimensional autonomous oscillators is less than three. For such a system, the Poincaré map

is almost one dimensional. Therefore, it is reasonable that Rössler attempted to explain

generation of the chaos by means of one dimensional map.

There are some novel works about a forced relaxation oscillator where the Poincaré map

is constructed as a one dimensional map: a circle map [Levi, 1981; Alseda & Falco, 1994].

We aim at detailed analysis of a simpler driven circuit with a diode, and the objective

two-parameter bifurcation diagram is illustrated in detail in this study. We introduce a

piecewise-linear technique combined with a degeneration technique for this analysis. For a

rigorous discussion on the bifurcation structure of this oscillator, we simplify the function of

the diode to an ideal switch [Inaba & Mori, 1991; Sekikawa et al., 2004]. If this idealization

is simply applied, the order of the governing equation decreases to one lower order when the

diode is on. From this degeneration, the Poincaré map is constructed as a circle map which
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is one-dimensional. The generation of interesting phenomena, such as the Arnol’d tongue,

torus breakdown and chaos, is well explained by the Poincaré map.

We successfully derive the parameter boundary explicitly between a torus-generating

region where the circle map is a diffeomorphism and a chaos-generating region where the

circle map has extrema in a bifurcation diagram [Inaba & Mori, 1991], which is denoted as

Σ hereafter. Generally, it is difficult to derive the boundary explicitly even if the Poincaré

map is one-dimensional and a piecewise-linear technique is also applied. The reason is as

follows: Although a solution of driven piecewise-linear oscillators can be obtained explicitly

in each piecewise-linear branch, we must solve implicit equations to obtain the time when the

solution crosses the boundary of the piecewise-linear branch. Therefore, the Poincaré map

is given by implicit equations. This makes it difficult to analyze even simple piecewise-linear

oscillators. In this study, we successfully obtained the bifurcation parameter Σ explicitly

without the need to solve the implicit equations, by adopting some novel ideas.

The main theorem for these ideas is presented in Section V. The objective bifurcation

diagram of the oscillator is illustrated in detail . It must be mentioned that the bifurcation

diagram was not obtained in [Inaba & Mori 1991]. Arnol’d tongues and the parameter

boundary Σ are drawn in the diagram, where the saddle-node bifurcation from the periodic

state to the quasi-periodic state is distinguished from intermittency. Moreover, laboratory

experiment is also carried out and theoretical results are verified.

The novelty of this research work is that it provides physical substance for the extensively

investigated analyses of the circle map. The degeneration of assuming the diode to be an

ideal switch must be a simple and natural circuit model [Inaba & Mori 1991; Sekikawa et

al. 2004].
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FIG. 1: Circuit diagram of Duffing van der Pol oscillator.

II. CIRCUIT SETUP OF THE DUFFING VAN DER POL OSCILLATOR

Figure 1 illustrates a circuit diagram with which the authors deal in this paper, where

L, C, R, and E cos(ωt) are an inductor, a capacitor, a linear resistor, and a forcing term,

respectively. −gN is a linear negative conductance and D is a diode. In this study, the v–i

characteristic of the diode is approximated as a piecewise-linear function:

id(v) =





gd(v − V ) for v ≥ V

0 for v < V,

(1)

where gd is assumed to be large. This is a natural assumption because the diode is a strongly

nonlinear element. This characteristic is illustrated in Fig. 2. The governing equation is

represented by the following 2nd-order nonautonomous differential equation:





C
dv

dt
= gNv − id(v) + i,

L
di

dt
= −v −Ri + E cos(ωt).

(2)
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v

id

gd
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FIG. 2: v–i characteristic of diode.

If diode D is replaced with a diode pair, and the v–i characteristics of the pair is approxi-

mated by a third-order polynomial function, then the governing equation is represented by

the Duffing van der Pol equation [Ueda & Akamatsu, 1981]. The “Duffing van der Pol”

qualifier implies the presence of a nonlinear restoring term, and a nonlinear damping with

negative and positive components in the equation. As the circuit in this paper contains only

a single diode, the nonlinearity id(v) in Eq. (2) becomes asymmetric, which is represented by

a piecewise-linear function. Therefore, this equation can be recognized as a piecewise-linear

version of the Duffing van der Pol equation with asymmetric nonlinearity.

Changing the variables and parameters in Eqs. (1) and (2) as

x =
1

V
v, y =

1

V

√
L

C
i, τ =

1√
LC

t,

δ1 =
R

2

√
C

L
, δ2 =

gN

2

√
L

C
, α =

gd

2

√
L

C
,

ν =
√

LCω, B =
E

V
,

(3)
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yields the normalized equation, which is represented by





ẋ = 2δ2x− h(x) + y,

ẏ = −x− 2δ1y + B cos(ντ),

h(x) =





2α(x− 1) for x ≥ 1

0 for x < 1,

(4)

where ‘·’ means a derivation of τ and α À 1 is assumed. This assumption corresponds to

the fact that gd is assumed to be large, which is closely related to the constraint equation

proposed in the next section.

The characteristic equations of Eq. (4) are given by

λ2 + 2(δ1 − δ2 + α)λ + (1− 4δ1(δ2 − α)) = 0 for x ≥ 1, (a)

λ2 + 2(δ1 − δ2)λ + (1− 4δ1δ2) = 0 for x < 1. (b)

(5)

The eigenvalues of Eq. (5.a) in the region where x ≥ 1 are assumed to be real and denoted

by σ1 and σ2, where |σ1| > |σ2| is assumed. Those of Eq. (5.b) in the region where x < 1

are complex and denoted by δ± jγ. Since Eq. (4) is piecewise-linear, the explicit solution is

obtained in each branch. Let (x(τ ; τ0, x0, y0), y(τ ; τ0, x0, y0))
T be the flow of Eq. (4) for the

initial condition given by (τ, x, y) = (τ0, x0, y0). The explicit solution is represented by the
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following equations. If x ≥ 1, then



x(τ ; τ0, x0, y0)

y(τ ; τ0, x0, y0)


 = F1(τ − τ0)×




C1

C2


 + G1(τ),

where F1(τ) =




f1a(τ)

f1b(τ)


 , G1(τ) =




g1a(τ)

g1b(τ)


 ,

f1a(τ) = (eσ1τ eσ2τ ) , g1a(τ) = k1a sin(ντ) + k1b cos(ντ) + k1c,

f1b(τ) =
d

dτ
f1a(τ)− 2(δ2 − α)f1a(τ),

g1b(τ) =
d

dτ
g1a(τ)− 2(δ2 − α)g1a(τ)− 2α,

k1a =
−2(δ2 − α− δ1)νB

(1− 4δ1(δ2 − α)− ν2)2 + 4(δ2 − α− δ1)2ν2
,

k1b =
(1− 4δ1(δ2 − α)− ν2)B

(1− 4δ1(δ2 − α)− ν2)2 + 4(δ2 − α− δ1)2ν2
,

k1c =
4δ1α

1− 4δ1(δ2 − α)
,

(6)

and C1 and C2 are constants that satisfy



C1

C2


 = F1(0)−1 ×








x0

y0


−G1(τ0)





. (7)

If x < 1, then



x(τ ; τ0, x0, y0)

y(τ ; τ0, x0, y0)


 = F2(τ − τ0)×




C3

C4


 + G2(τ),

where F2(τ) =




f2a(τ)

f2b(τ)


 , G2(τ) =




g2a(τ)

g2b(τ)


 ,

f2a(τ) =
(
eδτ sin(γτ) eδτ cos(γτ)

)
, g2a(τ) = k2a sin(ντ) + k2b cos(ντ),

f2b(τ) =
d

dτ
f2a(τ)− 2δ2f2a(τ), g2b(τ) =

d

dτ
g2a(τ)− 2δ2g2a(τ),

k2a =
−2(δ2 − δ1)νB

(1− 4δ1δ2 − ν2)2 + 4(δ2 − δ1)2ν2
, k2b =

(1− 4δ1δ2 − ν2)B

(1− 4δ1δ2 − ν2)2 + 4(δ2 − δ1)2ν2
,

δ = −(δ1 − δ2), γ =
√

1− (δ1 + δ2)2,

(8)
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and C3 and C4 are constants that satisfy



C3

C4


 = F2(0)−1 ×








x0

y0


−G2(τ0)





. (9)

To draw the attractors of Eq. (4), the solutions, Eqs. (6) and (8), must be alternated and

connected continuously at the boundary of x = 1. At this boundary (x = 1), the values of y

and τ must be obtained for the continuous connection, that is, these values are necessary for

the initial conditions in order to draw the solution after the flow passes over the boundary.

To derive time τ , we must solve the transcendental equation x(τ) = 1. This equation is

solved by Newton’s method. After this τ is obtained, substituting τ into Eq. (6) or (8)

yields y.

Figures 3 and 4 illustrate the attractors observed experimentally and numerically, re-

spectively. The amplitude of the forcing term is chosen as a varying parameter. As shown

in these figures, for smaller amplitude, a quasi-periodic attractor is observed (Figs. 3 (a)

and 4 (a)), and for larger amplitude, a chaotic attractor is observed (Figs. 3 (c) and 4 (c)).

Periodic attractors are observed at several amplitudes (Figs. 3 (b) and 4 (b)).

III. CIRCUIT SETUP WITH IDEALIZED DIODE

Because of the strong nonlinearity of the diode, α À 1 was naturally assumed in the

last section. If we take a limit of α → ∞ in Eq. (4), then the diode can be recognized as

an ideal switch. The v–i characteristic of the idealized diode is illustrated in Fig. 5. We

study Eq. (4) under this simplified function of the diode. At the end of this section, we will

demonstrate that attractors based on this rigorous study with the simplified diode (Fig. 6)

are identical with those in Fig. 4 in Section II.

The governing equation under the assumption of the idealized diode is represented by the
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(a)
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FIG. 3: Attractors observed in laboratory experiment with L = 47 mH, C = 0.01 µF,

R = 140 Ω, gN = 4.7 mS, (The natural frequency is 3.8 kHz.) and ω = 2.7 kHz:

(a) Quasi-periodic attractor with E = 0.05 V; (b) Periodic attractor with E = 0.24 V;

(c) Chaotic attractor with E = 0.32 V.
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v 
[V

]

cos(ωt) [V]

-4

-3

-2

-1

 0

 1

-1.5 -1 -0.5  0  0.5  1  1.5

(c)

FIG. 3: — continued.

following constraint equations [Inaba et al., 1987; Inaba & Mori, 1991; Sekikawaet al.]:

1 diode on :





x = 1 (constant),

ẏ = −2δ1y − 1 + B cos(ντ),

(a)

2 diode off :





ẋ = 2δ2x + y,

ẏ = −x− 2δ1y + B cos(ντ).

(b)

(10)

When the diode is on, x = 1 (constant), because the voltage across the capacitor v is

constrained to the threshold voltage V of the diode. In turn, when the diode is off, Eq. (10.b)

is the same as Eq. (4). It must be noted that the governing equation for the region in which

diode is on is of the first order because x is constant. Solutions of Eq. (10) are connected

by the following transition conditions:





1 −→ 2: y = −2δ2, (a)

2 −→ 1: x = 1. (b)

(11)
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x

cos(ντ)
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(a)
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FIG. 4: Attractors obtained from Eq. (4) with δ1 = 0.1, δ2 = 0.5, α = 1000, and ν = 0.745:

(a) Quasi-periodic attractor with B = 0.1; (b) Periodic attractor with B = 0.3;

(c) Chaotic attractor with B = 0.38.
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FIG. 4: — continued.

v

id

V0

diode off

diode on

FIG. 5: v–i characteristic of the idealized diode.

Equation (10.a) takes the governing equation from Eq. (10.b) when the voltage across the

diode reaches the threshold voltage corresponding to Eq. (11.b). In turn, Eq. (10.b) takes

the governing equation from Eq. (10.a) when the current through the diode decreases to

zero, corresponding to Eq. (11.a). This degeneration technique is proposed by the authors
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in order to analyze third-order autonomous circuits [Inaba et al., 1987; Inaba & Mori, 1988]

or second-order nonautonomous circuits [Inaba & Mori, 1991; Sekikawa et al.] with chaos-

generating capability. The governing equation of the circuit in the diode off region (x < 1)

is represented by Eq. (4), and therefore, the solution is given by Eq. (8). On the other hand,

the solution of the diode on region (x = 1) is given by

1 diode on :

y(τ ; τ0, y0) = C5e
−2δ1(τ−τ0) + k1a sin(ντ) + k1b cos(ντ) + k1c,

where k1a =
νB

ν2 + 4δ2
1

, k1b =
2δ1B

ν2 + 4δ2
1

, k1c = − 1

2δ1

,

(12)

and C5 is a constant that satisfies

C5 = y0 − k1a sin(ντ0)− k1b cos(ντ0)− k1c. (13)

Figure 6 shows the attractors obtained from the constraint equations (10) and (11). The

maximum Lyapunov exponent is also written in the caption. The derivation of the maximum

Lyapunov exponent is described later. Figure 6 (a) shows a quasi-periodic attractor, and

Figs. 6 (b) and (c) show a periodic and a chaotic attractor, respectively.

Equations (10) and (11) are a good representative of Eq. (4) if α À 1, because Eqs. (10)

and (11) under α À 1 yield various phenomena observed from Eq. (4), as shown in Figs. 4

and 6. In the next section, we will analyze these interesting phenomena rigorously using

these constraint Eqs. (10) and (11).

IV. CONSTRUCTION OF POINCARÉ MAP

The conventional analysis of the bifurcation structure of driven oscillators is a mapping

method [Kawakami, 1984] by which the analysis of differential equations of the continuous

time system arrives at that of the discrete dynamics. However, it is difficult to analyze
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(a)
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FIG. 6: Attractors obtained from Eqs. (10) and (11) with δ1 = 0.1, δ2 = 0.5, and

ν = 0.745: (a) Quasi-periodic attractor with B = 0.1 (Maximum Lyapunov exponent is

−2.19× 10−5.); (b) Periodic attractor with B = 0.3 (Maximum Lyapunov exponent is

−0.181.); (c) Chaotic attractor with B = 0.38.(Maximum Lyapunov exponent is 0.188.)
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FIG. 6: — continued.

two- or higher dimensional driven oscillators because their mathematical discussions are too

complex and few. On the other hand, bifurcations and chaos in the one-dimensional maps

have been investigated in detail [Li & Yorke, 1975; Myrberg, 1963; Collet & Eckmann, 1980;

Outlund et al., 1983; Kaneko, 1984; Katznelson, 1977].

Note that Eq. (10) is one-dimensional when the diode is on. Thereby, the Poincaré map

is constructed as a one-dimensional map as follows. A plane, D1, a subset, D2, and a line,

C, are defined as

D1 = {(τ, x, y)|x = 1},

D2 = {(τ, x, y)|x < 1},

C = {(τ, x, y)|x = 1, y = −2δ2}.

(14)

D1 is a plane where the diode is on, D2 is a space where the diode is off, and line C is

the transition condition of Eq. (11.a), which is on D1. Figure 7 illustrates the geometric

structure of the vector field. Let us consider a flow where the initial point is on C. The
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x τ

y

1D
τ = 0

τ = 2π/ν

C

y =    2δ2

P1

P0

P2

2D

FIG. 7: Geometric structure of vector field.

initial point is denoted as P0 in Fig. 7. Note that ẋ = 0 at any point on C. ẍ < 0 holds for

any point on C if the following condition is satisfied:

4δ1δ2 − 1 + B < 0. (15)

The case where Eq. (15) is satisfied will be considered in the following discussions. In such

a case, any solution which leaves C enters D2, where the diode is off (x < 1), and hits

D1, where the diode is on (x = 1), at point P1 (τ = τ1). At this moment, the solution is

constrained on D1, and it finally reaches C again at P2 (τ = τ2). Therefore, the Poincaré

18



map is defined by a one-dimensional map as follows:

T : C → C, θ 7→ T (θ),

where

θ =
ν

2π
τ0 for τ0 ∈

[
0,

2π

ν

)

T (θ) =
ν

2π
τ2 mod 1.

(16)

τ0 is the time of point P0 and τ2 is the time of point P2. Since the forcing term is periodic,

T (0) = T (1) (17)

holds. Therefore, T is a circle map under a certain condition which is rigorously described

in Section V. We emphasize that the circle map is constructed from a simple and natural

driven oscillator.

The representation of T is as follows: point P0, which is an initial point on C, is denoted

as (τ, x, y) = (τ0, 1,−2δ2). Let point P1 be denoted as (τ, x, y) = (τ1, 1, y1). Equations (8)

and (9) yield y1 as follows:

y1 = y(τ1; τ0, 1,−2δ2)

= (0 1)×


(F2(τ1 − τ0)× F2(0)−1 ×








1

−2δ2


−G2(τ0)





+ G2(τ1)


 ,

(18)

where τ1 is the minimum value that satisfies the following transcendental equation:

H1(τ1, τ0) = 0,

where

H1(τ1, τ0) ≡

(1 0)×


F2(τ1 − τ0)× F2(0)−1 ×








1

−2δ2


−G2(τ0)





+ G2(τ1)


− 1.

(19)
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Let point P2 be denoted as (τ, x, y) = (τ2, 1,−2δ2). τ2 is the minimum value that satisfies

the following transcendental equation:

H2(τ2, τ1, y1) = 0,

where

H2(τ2, τ1, y1) = Ae−2δ1(τ2−τ1) + k1a sin(ντ2) + k1b cos(ντ2) + k1c + 2δ2

A = y1 − k1a sin(ντ1)− k1b cos(ντ1)− k1c.

(20)

According to Eqs. (18) through (20), we can conclude that the Poincaré map is represented

by the transcendental equations. It includes no approximation. Therefore, these equations

can be solved to any degree using a computer.

Figure 8 illustrates the Poincaré map. The transcendental equation is solved by Newton’s

method. When B is small, the Poincaré map is a diffeomorphism on a circle, as shown in

Fig. 8 (a.1). In this case, torus is generated [Katznelson, 1977]. A quasi-periodic trajectory

is drawn in Fig. 8 (a.2). On the other hand, when B is large, the Poincaré map has extrema,

as shown in Fig. 8 (b.1). It is well known that chaos is generated in a circle map which has

extrema [Outlund et al., 1983; Kaneko, 1984]. Hence, chaos naturally occurs in this case. A

chaotic trajectory of the map is drawn in Fig. 8 (b.2).

V. BIFURCATION STRUCTURE OF DRIVEN OSCILLATOR

In this section, the bifurcation structure of the constraint Duffing van der Pol oscillator is

rigorously investigated, where the boundary between a torus-generating region and a chaos-

generating region is explicitly derived. This expression of the boundary is noteworthy for

its explicitness, even though the Poincaré map is given by implicit equations of H1 and H2.

This boundary is denoted as Σ. The definite expression of the boundary will be presented

in Theorem 1, the proof of which is given in Appendix C. In the process of the proof, it
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FIG. 8: Poincaré maps and their trajectories with δ1 = 0.1, δ2 = 0.5, and ν = 0.745:

(a) Diffeomorphic circle map and torus with B = 0.1 (< Bc); (b) Circle map with extrema

and chaos with B = 0.38 (> Bc).

is shown that the expression of the differential coefficient of T with respect to θ, which is

denoted as DT , is extremely simple (see Appendix B). The main point of the proof is based

on the fact that we could calculate τ1 explicitly such that DT = 0 owing to such a very
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simple expression of DT (see Appendix C).

In the following discussions, the parameters δ1, δ2 and ν are fixed and B is chosen as

a bifurcation parameter. To simplify the discussion, continuity of the Poincaré map is

assumed. We must first derive the range of B that supports the continuity of the Poincaré

map.

Let us consider the solution of the linear differential equation (10.a) where the initial

point is on C. After leaving C, x(τ ; τ0, 1,−2δ2) becomes a minimum at τ = τa, where τa is

the first solution of ẋ(τa; τ0, 1,−2δ2) = 0, and then it becomes a maximum at τ = τb, where

τb is the second solution of ẋ(τb; τ0, 1,−2δ2) = 0. Let xs be this first maximum at τ = τb.

Let the least value of B that satisfies

min
τ0

xs(τ0) = 1 for all τ0 which satisfy
dxs

dτ0

= 0 and
d2xs

dτ0
2 > 0 (21)

be denoted as Bmax.

Proposition 1 The Poincaré map T is differentiable if

0 < B < Bmax. (22)

See Appendix A for the proof of Proposition 1.

The most important result in this paper is the following theorem.

Theorem 1 Choose the system parameters δ1, δ2, ν and B such that

√
1− (δ1 + δ2)2(τ1 − τ0) + ϕ0 < 3π, ∀τ0 ∈ [0, 2π/ν)

where tan ϕ0 = −
√

1− (δ1 + δ2)2

δ1 + δ2

(π/2 < ϕ0 < π).

(23)
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δ1, δ2, and ν are fixed and B is chosen as a bifurcation parameter. Define Bc as

Bc = Bc (δ1, δ2, ν)

=


1 + 2δ1e

(δ2−δ1)ϕ1√
1−(δ1+δ2)2




×
√√√√√√

(1−4δ1δ2−ν2)2+4(δ2−δ1)2ν2

(4δ2
1+ν2)e

2(δ2−δ1)ϕ1√
1−(δ1+δ2)2

+

(
4δ1 cos

νϕ1√
1−(δ1+δ2)2

+2ν sin
νϕ1√

1−(δ1+δ2)2

)
e

(δ2−δ1)ϕ1√
1−(δ1+δ2)2

+1

,

(24)

where ϕ1 = 2π − ϕ0.

T is a diffeomorphism on a circle for 0 ≤ B < Bc, and T is a circle map which has

extrema for Bc < B < Bmax.

The proof of the theorem is given in Appendix C. It is well known that a circle map

generates torus when it is a diffeomorphism, and that it generates chaos when it has ex-

trema [Outlund et al., 1983; Kaneko, 1984; Katznelson, 1977]. Quasi-periodic attractors and

periodic attractors are alternately generated when the circle map is a diffeomorphism, and

chaotic attractors and periodic attractors are alternately generated when the circle map has

extrema. Therefore, B = Bc(δ1, δ2, ν) is the boundary between a torus-generating region

and a chaos-generating region, namely, Σ.

Now, a bifurcation diagram is illustrated. The Poincaré map depends on the system pa-

rameter λ, which must explicitly appear in the map as T (θ, λ). The saddle-node bifurcation

point for the solution of period m is obtained by solving the following bifurcation equation:




Tm(θ, λ)− θ = 0,

DTm(θ, λ)− 1 = 0,

(25)

where Tm is an m-times composite of T and DTm =
dTm

dθ
. The period-doubling bifurcation

point is obtained by solving the following bifurcation equation:




Tm(θ, λ)− θ = 0,

DTm(θ, λ) + 1 = 0.

(26)
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DT is calculated and represented by the following very simple form:

DT (θ) =
dT (θ)

dθ

=
4δ1δ2 − 1 + B cos(ντ0)

γ (4δ1δ2 − 1 + B cos(ντ2))
eδ(τ1−τ0)−2δ1(τ2−τ1) sin {γ(τ1 − τ0) + ϕ0} ,

where tan ϕ0 = −
√

1− (δ1 + δ2)2

δ1 + δ2

(π/2 < ϕ0 < π).

(27)

The derivation of DT is presented in Appendix B. DTm(θ) is calculated by the chain rule

and is represented by

DTm(θ) = DT (θ) ·DT (T (θ)) ·DT
(
T 2(θ)

)
· . . . ·DT

(
Tm−1(θ)

)
. (28)

Note that bifurcation equations (25) and (26) include no approximation. We can solve

bifurcation equations (25) and (26) to any degree of precision using a computer.

Figures 9 illustrates a two-parameter bifurcation diagram. In this figure, the abscissa

denotes the angular frequency ν of forcing term, and the ordinate denotes its amplitude

B. Many ultraharmonic, subharmonic, and fractional harmonic entrainments are observed

in this diagram. These entrainments are called Arnol’d tongues. The boundary of these

entrainments is generally the saddle-node bifurcations. These curves are denoted by “G” in

the figure. Furthermore, “I” denotes the period-doubling bifurcation curve. It is well known

that each Arnol’d tongue is surrounded by two G-curves originating from the rational point

for B = 0 at which ν/ν0 is a rational number where ν0 is the natural oscillation frequency of

the autonomous system. In the figure, the entrainment denoted as 1/1 is the fundamental

harmonic entrainment, and those denoted as 2/1 and 3/1 are the second-harmonic and the

third-harmonic entrainment, respectively. Furthermore, the entrainments denoted as 3/2,

3/4, 2/3 and 3/5 are the fractional harmonic entrainments. Bmax and Bc are also shown in

24



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

Bmax
Bc

ν

B

A1

A2

1/12/13/1 3/2 2/33/4 3/5

G
G

G G G G G
G

G

I

I

I

I

I

l(a) (b)
(c)

(d)

(e)

(f )

l

1

2

FIG. 9: Two-parameter ν–B bifurcation diagram with δ1 = 0.1 and δ2 = 0.5.

Fig. 9. The maximum Lyapunov exponent λ̃ is calculated by

λ̃ = lim
N→∞

1

N

N∑

k=1

log |DT (θk)|

' 1

10000

11000∑

k=1000

log |DT (θk)|,

where θk = T k(θ0),

(29)

and the chaos-generating region (λ̃ > 0) is shaded in Fig. 9. Chaos is observed where

Bc < B < Bmax. This result agrees with Theorem 1. Examples of the attractors and the

Poincaré maps observed at points (a), (b), . . ., (f) in the figure are shown in Fig. 10.

Figure 11 illustrate a one-parameter bifurcation diagram of θk (k = 1001, 1002, . . ., 1010)

to ν and a behavior of the maximum Lyapunov exponent λ̃, where B is fixed at 0.38. This
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FIG. 10: Examples of attractors and Poincaré maps with δ1 = 0.1, δ2 = 0.5:

(a) Quasi-periodic attractor, Poincaré map and its trajectory with ν = 0.415 and B = 0.38;

(b) Periodic attractor, Poincaré map and its trajectory with ν = 0.55 and B = 0.38;

(c) Chaotic attractor, Poincaré map and its trajectory with ν = 0.74 and B = 0.38;

(d) Quasi-periodic attractor, Poincaré map and its trajectory with ν = 0.85 and B = 0.0;

(e) Periodic attractor, Poincaré map and its trajectory with ν = 0.85 and B = 0.38;

(f) Chaotic attractor, Poincaré map and its trajectory with ν = 0.85 and B = 0.55.
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FIG. 10: — continued.

condition is indicated by line l1 in Fig. 9. The values of ν1 and ν2 indicated in Fig. 11

correspond to points A1, A2 indicated in Fig. 9, respectively.

Nonperiodic oscillation is observed for ν < ν1 and ν > ν2. According to Theorem 1, we
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can draw the following conclusions. The nonperiodic oscillation for ν < ν1 is quasi-periodic,

because point A1 in Fig. 9, which corresponds to ν1 in Fig. 11, is located under Bc. On the

other hand, the nonperiodic oscillation for ν > ν2 is chaotic, because point A2 in Fig. 9,

which corresponds to ν2 in Fig. 11 is located over Bc. Therefore, the bifurcation at point A1

is a saddle-node bifurcation from a periodic solution to a quasi-periodic solution, and the

bifurcation at point A2 is an intermittency. Figures 12 (a) and (b) illustrate the Poincaré

maps obtained at points A1 and A2 in Fig. 9, respectively.

Figure 13 illustrates a one-parameter bifurcation diagram of θk (k = 1001, 1002, . . .,

1010) to B and a behavior of the maximum Lyapunov exponent λ̃, where ν is fixed at 0.85.

This condition is indicated by line l2 in Fig. 9. The period-doubling-bifurcations route to

chaos is observed.

APPENDIX A: DIFFERENTIABILITY OF T

PROOF OF PROPOSITION 1.

If both Eqs. (A1) and (A2) are satisfied for any τ0,

∂H1

∂τ1

6= 0, (A1)

∂H2

∂τ2

6= 0, (A2)

then, by the implicit function theorem, the Poincaré map T (θ) is differentiable on [0, 1) since

all the functions of Eqs. (16), (18), (19), and (20), which give the relations between θ and

T (θ), are totally differentiable. It is easily checked that Eq. (A2) is always satisfied from

Eq. (15). On the other hand, ∂H1/∂τ1 is calculated as

∂H1

∂τ1

= 2δ2 + y1. (A3)

28



ν

θ

λ
∼

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-8

-7

-6

-5

-4

-3

-2

-1

 0

 1

 0.4  0.5  0.6  0.7  0.8  0.9ν ν1 2

FIG. 11: One-parameter bifurcation diagram and maximum Lyapunov exponent with

δ1 = 0.1, δ2 = 0.5 and B = 0.38.

Now, for 0 ≤ B < Bmax, ∃τs > τ1 holds from x(τ1) = 1 and xs > 1. Since ẋ(τ) > 0 for

τ1 ≤ τ < τs, we get ẋ(τ1) = 2δ2 + y1 > 0. Therefore Eq. (A1) holds. 2
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FIG. 12: Poincaré maps with δ1 = 0.1, δ2 = 0.5, and B = 0.38: (a) Poincaré map at point

A1 in Fig. 9 with ν = ν1 ' 0.469137; (b) Poincaré map at point A2 in Fig. 9 with

ν = ν2 ' 0.735481.

APPENDIX B: DERIVATION OF DT

Equation (27) is derived as follows:

DT (θ) =
dT (θ)

dθ

=
ν

2π

dτ2

dτ0

2π

ν

=
dτ2

dτ0

=
∂τ2(τ1, y1)

∂τ1

dτ1

dτ0

+
∂τ2(τ1, y1)

∂y1

dy1

dτ0

=
∂τ2(τ1, y1)

∂τ1

dτ1

dτ0

+
∂τ2(τ1, y1)

∂y1

(
∂y1(τ0, τ1)

∂τ0

+
∂y1(τ0, τ1)

∂τ1

dτ1

dτ0

)
,

(B1)

where

∂τ2

∂τ1

= −∂H2/∂τ1

∂H2/∂τ2

,
∂τ2

∂y1

= −∂H2/∂y1

∂H2/∂τ2

and
∂τ1

∂τ0

= −∂H1/∂τ0

∂H1/∂τ1

. (B2)
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FIG. 13: One-parameter bifurcation diagram and maximum Lyapunov exponent with

δ1 = 0.1, δ2 = 0.5 and ν = 0.85.

By simple calculation, we find

∂τ2(τ1, y1)

∂τ1

= −∂τ2(τ1, y1)

∂y1

∂y1(τ0, τ1)

∂τ1

,

−∂H2/∂y1

∂H2/∂τ2

= − e−2δ1(τ2−τ1)

4δ1δ2 − 1 + B cos(ντ2)
.

(B3)
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Substituting Eq. (B3) into Eqs. (B1) and (B2) yields

DT (θ) =
∂τ2(τ1, y1)

∂y1

∂y1(τ0, τ1)

∂τ0

= −∂H2/∂y1

∂H2/∂τ2

∂y1(τ0, τ1)

∂τ0

=
4δ1δ2 − 1 + B cos(ντ0)

γ (4δ1δ2 − 1 + B cos(ντ2))
eδ(τ1−τ0)−2δ1(τ2−τ1) sin{γ(τ1 − τ0) + ϕ0},

where tan ϕ0 = −
√

1− (δ1 + δ2)2

δ1 + δ2

(π/2 < ϕ0 < π).

(B4)

APPENDIX C: PROOF OF THEOREM 1

PROOF.

A naive way of obtaining boundary Σ is to solve

DT (θ, λ) = 0 and D2T (θ, λ) = 0,

where D2T =
d

dθ
DT . DT (θ, λ) and D2T (θ, λ) may be derived as implicit equations. There-

fore, Σ may be obtained by solving these equations numerically, not explicitly. On the

other hand, the simple expression (B4) is utilized to obtain Σ explicitly in the following

proof [Inaba & Mori, 1991].

Under condition (15), the coefficient of sin{γ(τ1 − τ0) + ϕ0} in Eq. (B4), such as

4δ1δ2 − 1 + B cos(ντ0)

γ(4δ1δ2 − 1 + B cos(ντ2))
eδ(τ1−τ0)−2δ1(τ2−τ1),

is positive. Hence,

DT (θ) > 0 if 2π < γ(τ1 − τ0) + ϕ0 < 3π

DT (θ) < 0 if π < γ(τ1 − τ0) + ϕ0 < 2π,

(C1)

according to the sign of sin{γ(τ1 − τ0) + ϕ0}. Therefore, if

2π < γ(τ1 − τ0) + ϕ0 < 3π ∀τ0, (C2)
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T is a diffeomorphism, and if

π < γ(τ1 − τ0) + ϕ0 < 2π ∃τ0, (C3)

T has extrema. The following statement holds.

• T is a diffeomorphism, if

H1(τ̃1(τ0), τ0) 6= 0 ∀τ0 ∈ [0, 2π/ν), (C4)

• T has extrema, if

H1(τ̃1(τ0), τ0) = 0 ∃τ0 ∈ [0, 2π/ν), (C5)

where

γ(τ̃1 − τ0) + ϕ0 = 2π, (C6)

namely

τ̃1(τ0) = τ0 +
2π − ϕ0

γ
. (C7)

Note that τ̃1(τ0) is τ1 such that DT (θ, λ) = 0. Thus, we can avoid solving the implicit

equations.

We will calculate H1(τ̃1(τ0), τ0). From easy calculations, the following relations hold:

sin {γ(τ̃1 − τ0)} = −γ,

cos {γ(τ̃1 − τ0)} = −(δ1 + δ2),

sin (ντ̃1) = cos νϕ1

γ
sin(ντ0) + sin νϕ1

γ
cos (ντ0) ,

cos (ντ̃1) = cos νϕ1

γ
cos (ωτ0)− sin νϕ1

γ
sin (ντ0) ,

where ϕ1 = 2π − ϕ0.

(C8)
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Substituting Eq. (C8) into H1(τ̃1(τ0), τ0) and calculating it, we obtain

H1(τ̃1, τ0) = −2δ1e
δϕ1

γ +
{
(2δ1k2a − νk2b)e

νϕ1
γ + k2a cos νϕ1

γ
− k2b sin νϕ1

γ

}
sin(ντ0)

+
{
(2δ1k2a − νk2b)e

δϕ1
γ + k2a sin νϕ1

γ
+ k2b cos νϕ1

γ

}
cos(ντ0)− 1

= A(B, δ1, δ2, ν) sin(ντ0 + φ)− 1− 2δ1e

(δ2−δ1)ϕ1√
1−(δ1+δ2)2 ,

(C9)

where

A(B, δ1, δ2, ν) =
B√

(1− 4δ1δ2 − ν2)2 + 4(δ2 − δ1)2ν2

×
√√√√

(4δ2
1 + ν2)e

2(δ2−δ1)ϕ1√
1−(δ1+δ2)2 +

(
4δ1 cos νϕ1√

1−(δ1+δ2)2
+ 2ν sin νϕ1√

1−(δ1+δ2)2

)
e

(δ2−δ1)ϕ1√
1−(δ1+δ2)2 + 1,

tan φ =
(2δ1k2a+νk2b)e

δϕ1
γ +k2a sin

νϕ1
γ

+k2b cos
νϕ1

γ

(2δ1k2a−νk2b)e
δϕ1

γ +k2a cos
νϕ1

γ
−k2b sin

νϕ1
γ

(C10)

In Eq. (C9), the range of sin(ντ0 + φ) is [−1, 1]. Therefore, if

0 < A(B, δ1, δ2, ν) < 1 + 2δ1e

(δ2−δ1)ϕ1√
1−(δ1+δ2)2 , (C11)

H1(τ̃1(τ0), τ0) 6= 0 ∀τ0 ∈ [0, 2π/ν) and T (θ) is a diffeomorphism, and if

A(B, δ1, δ2, ν) > 1 + 2δ1e

(δ2−δ1)ϕ1√
1−(δ1+δ2)2 , (C12)

H1(τ̃1(τ0), τ0) = 0 for two τ0’s ∈ [0, 2π/ν) and T (θ) has extrema. By solving

A(Bc, δ1, δ2, ν) = 1 + 2δ1e

(δ2−δ1)ϕ1√
1−(δ1+δ2)2 , (C13)

the critical parameter Bc (Σ) is obtained. 2
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Rössler, O.E. [1976] “Different types of chaos in two simple differential equations,” Natur-

forsch, Z. 31a, 1664–1670.
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