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The Schriodinger operator with the white noise potential
—a remark on its definition—

0. Introduction
In 1994, H.P.McKean proved that the first eigenvalue A;(L) of the Schrédinger
operatort with white noise potential

2
HL(w):Hgi—z——kB;(t) 0<t<L,

under Dirichlet and Neumann boundary conditions obeys the following lim-
iting probability law:

I}l_)r{)lo P(Lp(- (L) >z)=¢e¢" 22>0,

where 8
Y(L) = (0V A2 exp(—g(O VA2

Namely for large L, the random variable Li(—A((L)) is approximately obeys
the standard exponential law.

On the other hand, as is well known, the sample function B, (¢) of the
Brownian motion is not differential, so that the definition of the operator
Hj,(w) needs some justification.

1. Definition of the operator H;(w) according to Savchuk and Shka-
likov
Let Q € L2([0, L]) be real valued. Savchuk and Shkalikov (Math. Notes
vol. 66 (1999)) gave a meaning to the expression
d? .
Hou = ~ + Q'(H)u
in the following way: for a differentiable function u, let

ull(e) 1= w/(t) — Q(t)ul?)

be the “quasi-derivative ”of u. Using this notation, we can formally rewrite
Hgu in the form not involving @' :

Hpu= —%u[” — Qut — Q% .



Now let us define the operator Hys in L?([0, L]) by letting
D(Hy) = {u € L*([0, L]) ; uwand v are absolutely continuous, Hou € L2([0, L])}
Hyu = HQ’LL for u€ D(HM) .

For o € [0,7) and 8 € (0,7], we define D(H,p) to be the totality of those
u € D(Hpr) which satisfies the two boundary conditions:

u(0) cos o — ul(0) sina = 0 ; w(L)cos B — ul(L)sinf =0,

and define H,, g to be the restriction of Hys to the domain D(H, g). Then H, 4
is self-adjoint and has purely discrete spectrum. If, moreover, @ is bounded,
then H, g is lower semibounded. Let A < A; < -+ be its eigenvalues. We have
the following oscillation theorem: the eigenfunction (-, \,) corresponding to
the eigenvalue A, has exactly n — 1 zeros in the interval (0, L).

'To prove this, we introduce new variables » and 8

u(t) =.'r(t) sin8(t) ; ul(t) = r(t) cosd .

(Priifer’s transformation.) Then u has a zero at t = £, if and only if 8(¢;) = 0
(mod 7). 8(t) satisfies the ordinary differential equation

0'(t) =14 (Q(t)* + A — 1)sin® (t) + Q(¢) sin 20

which does not include €. The rest of the argument is standard.
We obtain the definition of Az (w) in the introduction by letting Q = B,(+),
the sample function of the Brownian motion,

2. Other approaches.
2-2. Already in 1977, Fukushima and Nakao gave definition of the Schrédinger
operator
d? )
Hy=-—+Q) , 0<t<L
under the Dirichlet boundary condition, where (L) is bounded and Borel.
According to Fukushima and Nakao, Hj, is the self-adjoint operator corre-

sponding to the quadratic form

Eo(u,v) = /0 o (89 (£) dt — /D (W (©)0(8) + w(e)T () }Q(t)dt
6 |



with domain

HY0,L) = {ue L*0,L); uisa c. , v € [*, u(0+) = u(L-) =0} .

2-2. Let Q(') be cadlag In 1986, Minami, the present author, gave a def-
inition of Hg = ~%; + Q(t) in L*(R) in essentially the same manner as
Savchuk and Shkalikov. Namely I defined the function space D(Q) to be the
totality of those u € L*(R) which are absolutely continuous, differentiable
from the right, and are such that there exist v € L*{R) satisfying

)~ 0) = QA ~ QON0) - [ {QI ) +o))dy.

This v is uniquely determined for a given v € D(Q), and we let Hgu = v.

restricting R to [0, L], we would obtain an equivalent definition of the
Schrodinger operator as that of Savchuk and Shkalikov. However, in my
formulation it is sometimes very combersome to convert differential equation
to integral equation. In this sense, the notion of “quasi-derivative ” of Savchuk
and Shkalikov is a prety good idea.

3. Some comments on McKean’s results.
3-1 On the proof of McKean’s limit theorem.

Consider the case of Dirichlet boundary condition. Suppose we are given
a @ € L? ([0,00)) and consider the equation

Hou=)u, uw(0) =0, v'(0) =ul0) =1,

Let 73 (Q) be the left most zero in (0, 00) of the solution u of this equation.
By the oscillation theorem, we have the following equivalence:

A< M(IQ) & Q) > L.

On the other hand, if we let Q(-) = B,(-), and if we consider the random
function 2y (t,w) := «/(t)/u(t), then {z\(t)}: is a diffusion process with the
state space [~o0, +00|. 75 (B,) can be interpreted to be the first hitting time



to —oo of this diffusion process. hence the proof of McKean’s theorem reduces
to the analysis of this special stochastic process.

3-2 some questions,

Before closing this note, let us point out some questions.
(i) Obviously, we should try various stochastic process {Q,(t)}}: other than
Brownian motion. In order to employ the technique of markov processes, we
would let {Q,(t)}: a Levy process,
(ii) Even in the white noise case, where {Qu(¢)}: is the Brownian motion,
the limiting joint distribution of (A\;(L),...,As(L)) as L — oo deserve to
be investigated. In this connection, it should be noticed that Grenkova,
Molchanov and Sudarev (C.M.P. vol.90 (1983)) obtained a result of this kind
when {Q,(¢)}: is the Poisson process,
(ii1) Let 41, (t,w) be the ground state of Hy(w), namely the normalized eigen-
function corresponding to the first eigenvalue A;(L). By scaling, we obtain
random probability measure

oy (dt) = Lapy (t, w)>di

on the unit interval [0, 1]. What is then the limiting behavior of pf as L — 00?
it is of interest to consider the same question for random operators of the type

d d
Lw = _&;a(t, w)—d—t—

instead of H,,.
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Statistics for the number of vertices of Galton-Watson trees

1 Introduction

Let II = {p,}2, be a probability distribution on non-negative integers
and let {X,}22, (Xy = 0) be the Galton-Watson process (or the discrete
time branching process) with the offspring distribution II. Various long time
behaviors of the integer valued Markov chain {X,} form the main subject
matter of classical treatises of Galton-Watson processes (e.g. [7], [1], [9],
[14]). There, the random tree structure which is obvious in the intuitive
description of the process is rather implicit, or even entirely omitted from
the exposition as in [14]. In this paper, we are interested in the typical shape
of the random tree, which we shall call the Galton-Watson tree, obtained as
the “trajectory "of the branching mechanism giving rise to the process {X,}.
Namely a Galton-Watson tree is the random graph each of whose vertices
gives birth to a random number of children according to the probability
distribution II , and independently of each other. Two vertices are adjacent
if and only if one is the parent of the other. Let Z be the total number
of vertices of the Galton-Watson tree and let Y} be the number of vertices
with k children. Motivated by the classical pioneering work by Otter ([13]),
which does not seem to have received full appreciation, we shall investigate
in some deatil the asymptotic behavior of the probability distribution of Z
and Vi = ZLOY;, k =0,1,2,.... It will be seen that ), is the total
number of vertices of a Galton-Watson tree which is hidden in the original
tree. We shall also prove a central limit theorem for the distribution of
(¥5,Y1,...) conditioned on Z. As a corollary of this theorem, the central
limit theorem due to Mahmoud for vertices of uniform binary tree ([11]) will
be reproduced. Our proofs are based on the analysis of generating functions,
and we rely entirely upon the Lagrange inversion formula in obtaining explicit
formulas for various probabilities and upon the classical saddle point method
in obtaining their asymptotic expressions.

In order to prepare a solid basis for our work, it is necessary to give a
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precise description of “trees”, and to introduce a suitable o-field F and a
probability measure P on the space £ of such trees. In this work we follow
the convenient and elegant construction of the probability space (@, F, P)
due to Neveu ([12]). (It should be remaked, however, that an alternative
construction of the probability space of a Galton-Watson tree had already
be given by Otter [13], which turns out to be equivalent to that of Neveu
(see [10]), and which even has some advantage when one considers  as a
topological space.) Let U be the totality of finite sequence u = 13y ++ j, of
strictly positive integers. We can write U = ) ., N", where N = {1,2,...}
and N°® = {¢}, ¢ standing for the empty sequence. A tree w is by definition
subset of U satisfying the following three conditions: (a} ¢ € w; (b) if uj € w
, then u € w; (c) for each u € w, there is a non-negative integer v, (w) such
that uj € w & 1 < j < 1,(w). Here, for two sequences © = J1jo - -+ J,, and
v = kiky -+ ky, we write uv for their conjunction: wv = jigs -+« jnkike - k.
In particular, uj = j1j2- - jnj. Thus w is a graph with vertices v € w and
edges of the form (u,uj). The first condition (a) says that w always contain
the special vertex ¢, the root of w. The second condition (b) expresses the
essential feature of a tree. The third condition (c¢) says that our w is what is
called the ordered tree in combinatorics. »,(w) is the number of children of
the vertex u € w, and we follow Otter in calling it the “type”of the vertex w.

For each u € U, let Q, = {w € U | w 3 u} be the set of trees containing u
as its vertex, and let F be the o-field generated by the family {Q,, | v € U}.
For n = 1,2,..., we let F, be the o-field generated by £,’s with |u] < n,
|u| being the length of the sequence u. For each u € U, we also define the
translation T, : Q, = Q by T, (w) = {v € Uluv € w}.

Now let (0%, F*, P*) = [],cv(Z+,11) be the product over U of the discrete
probability space (Zy,II), F* being generated by the coordinate maps v/,
u € U, and let the measurable map 9 : (%, F*) = (Q, F) be defined by

Y(") ={u=1ji- Gp | der1 SV}, 0S k< P}

If we define P = P* o 97!, then for each n, {T},(w) ; v € w, |u| = n} are
independent under P(:|F,), and X,(w) := H{u € w; |u| =n}, n =1,2,...,
form the Galton-Watson process with the offspring distribution II. See [N]
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for the precise statement of this proposition.
In this setting, our Z and Y} can be expressed as

Zw)= la,; Yew) =Hu€w | va(w) =k} = lo\aupry @) »
uely uelf
so that Z and Y} are certainly F-measurable,

Since we are interested in the probability distribution of Z and Y}, we shall
assume throughout this work that py > 0, in which case we have Z < oo with
positive probability. We also assume py + p; < 1 in order to avoid the trivial
case, which can be treated separately if necessary.

The outline of the present paper is as follows. In Section 2, we consider
the asymptotic behavior of P(Z = n) as n —+ oo. Under a condition on the
generating function of II, we shall show that P(Z = n) has an asymptotic
expansion as n — oo. If we take its main term, we can reproduce Otter’s
result. We also give some partial results when the above mentioned condition
fails to hold. In Section 3, we treat the asymptotic behavior of P(Y; = n)
asn — o0, for k =0,1,2,.... In Section 4, we give some explicit formulas
for the joint distribution of Yy, & > 0 conditioned on the event {Z = n}.
We then consider its limit as n — oo and briefly give an alternative proof
of Otter’s law of large numbers (Thorem 6 of [13]). We shall also prove the
correspondin central limit theorem. Finally some miscellaneous applications
are collected in section 5.

2 Asymptotic results for P(Z = n)

2.1 Preliminaries

Let f(z) = Y o, paz"™ be the generating function of the distribution II =
{Pn},, and let p > 1 be its radius of convergence. As anounced in the
introduction, we assume py > 0 and pg +p1 < 1, so that f(0) > 0 and f(2) is
strictly convex on [0,p). Let further P(2) = Y >, P(Z = n)z" = E[2%] be
the generating function of Z. Since a tree w always contains the root ¢, we

12



have Z > 1. From the relation

vg{w) vg(w)
W) =1+ > > g, () =1+ Y ZoTyw) (1)
i=1 uwel =1
and the conditional independence given 7y of Z o T}, j = 1,...,1(w), we

obtain

9]

4P — ZP(V(}S — k)E [z1+ZoT1+"'+ZoTk | U¢‘, — k']

= ZZPk Elz"))" = 2f(P(2)) -

=0

Thus w = P(z) satisfies the functional equation w = zf(w). Since we are
assuming f(0) # 0, we can apply Lagrange inversion formula (see e.g. [8]),
to show that P(Z = n), which is the n-th coefficient of P(z), is given by

P(Z=n)=_Res K@)nl _ 5}555 (i%zl)ndz | (2)

where ¢ denotes the contour integral along a circle surounding the origin,
(2) shows that P(Z = n) is the coefficient of 2”~! of the power series f(2)"
divided by n. But f(2)" is the generating function of IT*", hence P(Z =
n) is equal to the probability that the 1st generation of our galton-Watson
process consists of n — 1 individuals when there are n individuals at the 0-th
generation. In other words, if we let {q(n, m)}nm>0 the transition probability
of the Galton-Watson process with the offspring distribution II, then we have

P(Z=n)=—q(nn~1). 3)

By purely probabilistic argument, Dwass ([5]) obtained this seemingly non-
trivial relation. The basic functional equation P(z) = zf(P(z)) seems to date
back to the work of Hawkins and Ulam (see the footnote on page 32 of [7]),
and was independently re-discovered by Good ([6]) and Otter ([13]), the latter
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having noted the formula (2) at the same time, This was also re-discovered
by Boyd ([2]), who used it to give an alternative proof of the relation (3).

Now let o (a > 1) be the radious of convergence of the power series P(z)
and let a = P(a—).

Proposition 1 Under the condition py > 0 and py + p1 < 1, we have
(i) a<p;

(ii) « and a are finite;

(i) £(a)/a=1/c;

(V) () < 1/0;

(v) flla)=1/aifa < p;

(

vi) if, conversely, f'(¢) = f(C)/¢ for some 0 < ¢ < p, then a < p and
a=(.

Proof. All the statements except (vi) are proved in [13]. To show (vi), suppose
a = p. Then as z increases from 0 to «, P(z) strictly increases from 0 to
p. Hence there exists a 2y € (0, ) such that { = P(z). If we put 2z = %
in the formula 2f(P(2)) = P(z) and in 2f'(P(2))P'(2) + f(P(2)) = P'(z)
which is obtained by differentiating the former with respect to z, then by
F1(€) = F(€)/¢, we get P'(2) + f({) = P'(2), whence f(¢) = 0. But this is
a contradiction because f(z) is increasing and f(0) = py > 0. Thus we must
have a < p, and by (iii) and (v), f/(2) = f(2)/z is satisfied also at z = a.
But since (2f'(z) — f(2)) = 2f"(2) > 0 on (0, p), such z is unique, so that
¢ = a. '

We shall refer the condition of the statement (vi) as Condition A. Since
(2f'(2) — f(2)|s=0 = —po < 0, it is obviously equivalent to

lim(2f(2) — £(2)) > 0. @

2tp

It is also easy to see that Condition A holds if and only if f(z)/z attains a
unique minimum in (0, p), which is f(a)/a.
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When, on the other hand, Condition A fails, we have p = @ < oo, and
f(z)/# is non-increasing on (0, a]. Hence the number a is always characterized

by
i@-: inf f—(i)

a 0<z<p 2

(5)

As a trivial a priori estimate for P(Z = n), we have the following

Proposition 2 (i) Let d be the greatest common diviser of all n > 0 such
that p, > 0. Then P(Z =n)=04fn#1 (mod d).
(i) limsup,, ., P(Z = n)Y" = f(a)/a, where a is given by (5).

Proof. (i) This is a part of Theorem 4 of [13]. Here we give an alternative
proof.
In the expansion

n
— ) +jot+-tin—n
( z ) Z PirPip "+ Djn 2" T

51,52,---,jn20.

we have p;,ps, ++ p;, > 0 only when all 71, 4,..., 7, are integer multiple of
d. Hence if n # 1 (mod d), then we have

Jitiat ot gn—nF -1

for such ji, Ja, ..., jn, 50 that the residue at the origin of (f(2)/z)" vanishes
and so does P(Z = n) by (2). This proves (i). The assertion (ii) is obvious
from the Cauchy-Hadamard formula for the radius of convergence of power
series and from (iii) of Proposition 1. Note that wehave 0 < f(a)/a < 1 by
1<a <.

2.2 Asymptotic expansion of P(Z =n) as n — o

The folowing is an improvement of Theorem 4 of [13].
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Theorem 1 Under Condition A, P(Z = n) has an asymptotic expansion of
the form
= f(@)\" —k~1/2
PZ = ~ —r 6
z=m) = >oa(2) s ©)
as n —+ 00 keeping n = 1 (mod d). Here a and d are the numbers given in
Propositions 1 and 2 respectively, and

f(a)
2nf'(a)
Proof. Throughout the proof, we assume n = 1 (mod d). Condition A means

that we can take the contour |2| = a in the integral of (2). Noting that f(z)
d

C]_:d

depends only on 2¢, we can rewrite (2) as

ad [™4 -
P(Z=n)=-— exp{ny(8)}e?ds , (7)

"~ 2mn r/d

where we let ¥(0) = log[f(ac®)/ae®]. From f'(a) = f(a)/a, it is easy to ver-
ify 9(0) = log f(a)/a, ¢¥'(0) = 0 and ¥"(0) = —a®f"(a)/f(a) < 0. Thus we
are in a typical situation in which the Laplace method yields the asymptotic
expansion (see [4] and [3]). Since the technique is standard, we shall only
sketch the outline, omitting the details.

Pick a § € (0,7/d) sufficiently small so that for |#] < &, we have the
inequality Ret(8) < —n6* with an n > 0 and the expansion
1e) _ e s " B

0 kz:; k :
where we have let "(0) = —2K. It is easy to show |f(ae®®)| < f(a) for
8 € [-w/d,m/d]\ {0}, so that

$(6) = log

A= sup f(af;:’) < f(@) .
s<lolsnm/d] a€ @
Hence
5
P(Z=n) = %—% g exp{ny(8)}e?dd + O(n~1A")
d "o
- o (f_(;_)> /_ exp(=nK6") exp(i6 + n8°B(6))d8 + O(n” 49
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for large n, where B(6) := 3,53 Bif*>.
Following [4], introduce the power series

P(w,8) = exp(i6 + wB(@B)) = > comw'o™

and the polynomial

Py(w,8) = Z Cemwt O™
Hm<A

Then we have
P(w,8) — Py(w,8) = Owt!) + O(84*)

as |w| + (0] — 0.

We now replace § by 7, := n~/2 in the integral of (8). The resulting error
can be estimated to be O(n~?%e~"""), Then we put P4(n63,6) in place of
exp(if + n8°B(0)) = P(nd?,6). The bound of the error committed by this
procedure is given by

ad. (I_(El)n % O ( ]O " exp(—n K6 { ()4 + 9A+1}d9)

2mn a

- of(2)rv)

which absorbs the other smaller error terms. Thus we have for any A > 0,

P(Z =n)= —2% (ﬂaﬂ)n [ / " exp(—nK8*)Py(nd®,6)do + O(n*l"*l/”] .
' (9)

Finally we extend the integral to the whole real line with the error estimated
as O(e™*) for some a > 0. Thus we arrive at

P(Z=n) = 2% (M)

2mn a

L+m<A

>
i @ Lm<A
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where Yy, = 0 if £+ m is odd and = T((34+m+1)/2) if £+ m is even. If we
take A=2k~1,k=1,2,..., then the error term becomes O(n~*=%/2), while
the final term in the sum is const.(f(a)/a)"n~%"*/2. The validity of (10) for
all A > 0 thus implies the asymptotic expansion

ad had _384m+1 f(a) " k-1
P(Z:”)NEEZ( Z Yem K™ 2 ) (T novo2
k=1 \‘£+m=2(k-1)

as n — 00. The coefficient for &k = 1 is

ad . 15 ad 1\ [a®f"(@)\7% _ fla)
2 0K = ool ("2‘) ( 2f(a) ) =W arpi(a)

b=

This completes the proof.

2.3 Some partial results when Condition A fails

When Condition A fails to hold, we have p = a < o0, and f(p) = f(a) =
aj/o < oo, Also we have f'(p) = f'(a) < 1/a < oo, namely f'(p) < f(p)/p.
On the other hand, f(p)/p = f(a)/e < 1/a < 1 because of @ > 1. In
particular, f(2) = f(z +iy) is of C' with respect to (z,y) on the closed disk
{|z| £ p}, hence we can take the circle {]z| = p} as the contour in (2), so
that

w/d
P(Z=n)=LL

i0
~om exp(ni(6))e”ds

where we let ¥(6) = log{f(pe™*/pe®®}. We shall consider two cases sepa-
rately.

2.3.1 The case f'(p) = f(p)/p.

In this case, we shall assume f*)(p) < co. As before, we have ¢/(0) = 0
and

=K =9"(0) = p*f"(p)/ f(p) <O,
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so that %
$(6) = $(0) ~ 6 +366° + 4(6) (1)

where i = ¥{®(0) with real 8 and ¢(8) = O(6*) as § — 0. Moreover,
$(0) = log(f(p)/p) is the maximum value of R)(8). Now we can procede as
in §2.2, to obtain

PZ=n) = 2% { / " xp(np(0))e"d8 + O(A”)}

21mn ~§

_ % {/—m exp(nip())eds + O ((f-%)l)n /: e—(n/2)n62d9)

Tn

+O(A")}

where 4, A, 7, and n have the same meaning as before. Since

8
/ o= (n/2m8? go O(n*2/36—(17/2)n1/3) ,
-

n

it absorbs the error term O(A"). Hence taking (11) and 7, = n~/%into
account, we can write

PZ=n) = 2% (f_@l) { [ " exp G%mﬁ +ifné® + nqb(@)) e dh+

2T\ p ™
FO(n 3/ A% }

= P4 (M) {/ " exp (—-Ii'n,@z + iﬁn@s) e d
2rn \_ p ety 2
+O (/ n e_-;_fnﬂans(g)dH) + O (n-—2/36-—(n/2)n1/3)} ‘
0
Noting ¢(6) = O(6*), we can estimate
/ " e" T ng(6)do = O(n~%?) .
0

On the other hand,
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/ exp (———n92 +ifng> + z9>

I cos(Bnd® + 6)dd

™

= / e~ 2’ {cos(Bnb®) cos 6 — sin(Bnf®) sin} d6
1

e Eg 40 ( / T En (20 4 g7 4 nas)df))

Tn
o0

e T dy + O(n=3?),

i

Vi oo

thus

Pz =n)= fo(f()p) (fff)p))nn_m(pr@(nhl)) |
2.3.2 The case f'(p) < f(p)/p

In this case, we shall assume f®(p) < oo for some k¥ > 3. As before,
$(0) = log(f(p)/p) is the maximum value of R (#). Moreover we have

pf'(p) — fp) _

YO =00 0
with 8 > 0 and
" pf'(p) _ 2£I(_pl
P"(0) = o) 5 (0 (p) = £(p)) oy <0
Thus letting K = —4¢"(0), we can write
$(6) = 9(0) ~ 60 — SK6* +9(6) | (12)

with a ¢ € O satisfying ¢(6) = O(63) and ¢(0) = ¢'(0) = ¢"(0) =
We now procede, with the same notation as before,

P(Z=n) = i {/_: exp(nip(6))e®df + O ((m)nn“z/se“”"”a)} .

2mn p
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If we let o ‘
In :=/ exp(nip(0))e?dd

[ -rn

then

FON™ L™ a2 il iz
== — e "Viz{e"T%e MRV dy |
P Vs

It is easy to see that

2

d {e- 87 ertteivris Y| = 0 (=)

dz

for some ¢ > 0, so that integrating by parts k times, we obtain

and consequently

as n — oo.

For illustration, consider the case p = 1, so that f(p)/p = 1. The condition
f'(p) < f(p)/p means that our galton-Watson tree is subcritical. What has
just been proved shows that

if f®)(1) < oo (k > 3). If, for example, p, ~ ™% with § > 0 and 0 < v < 1,
then f®)(1) < oo for all ¥ > 3, and consequently P(Z = n) decays faster
than any power of n. But still one has

limsup P(Z = n)}/" = 1

n—eo

by Proposition 2.
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3 The distribution of ).

In this section, we consider Yy(w) := Z;?:()Y}(w), the number of those
vertices of the Galton-Watson tree w having at most k children, YVo{(w) being

in particular the number of “leaves ”of w.
Let

Q2) = Qu(2) = Elliy,co0)2”*] = Y P(Vp = n)2"
n=1
be the generating function of the distribution of }%. (Note that by our
assumption pg > 0, we have P(Yy > 0) = 1. Thus P()) = 0) = 0 for all
k>0.)
Since we have

vp(w)

V(W) = L) + D (Ve o Tj)(w)

j=1

we can proceed, just as in section 2.1,

Q) = B0 [ (topeo o) (zykom]
i j=1
_ B |sen [1{%@} o1 [ o7,

J=1

Fi

|

, [ e
= E |/t [[E [1{yk<°°}zyk:|]
=1

B (1029 Q(2)"] + B [Lysn Q)]

k k
= 23 pQE) +/(Q) - Y piQeeY -

Il

Thus w = Q(2) solves the equation

b b
zijfwj =w — flw) +ij'wj ,
=0

j=0
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or

where we have set

w — f(w) + 5o pjwd

For later use, let us further define

gr(w)

k
hip(w) = ij'wj and p(w) = ijwj""l : (13)
j=0 J>k
Then ()
)= 2 14

We shall now prove that gx(w) is the generating function of a probability
distribution II® := {p{F}2 = which satisfies our basic assumption pi > 0
and p(()k) + pgk) <1l

To this end, let us write

g(w) = hy(w) > ep(w)"

If we set

o (w)
P(w) = )
(w) er(1)
then H, G, ¢ are generating functions respectively of

Plugeo| vy <k);
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the geometric distribution with parameter (1) ;

and
Pluoy—1leceo|vy>k).

Consequently, if X, N, S51,9,... are independent integer-valued random
variables such that X [resp. N, S;] H [resp. G, 9] as its generating function,
then gy(w) = G(v(w))H (w) is the generating function of the random variable

N
> Si+X.
j=1
Obviously gx(0) = pp for k > 1 and = py/(1 — p1) for k = 0, whence
s = g:(0) > 0. By

Q;c('w) — hfk(w)(l - (Pk(w)) + hk(’lU)(p;e(QU)

and by ¢(w) + hx(w) = 1, we get
hi(1) + ¢4 (1) fr1) -1
p(1) ==& B =1+ .
1) (1) hi(1)
This shows that g, (1) < 1 [resp. =1 or > 1] if and only if f/(1) < 1 [resp.
=1 or > 1]. On the other hand, we have

pop2/(1 —p1)* (k=0)
g5(0) = pit+pope (k=1)
D1 (k‘ > 1)

Hence for & > 1, pgc) +p§k) = gx(0) + 95,(0) = po + p1 < 1 by the assumption.
Similarly for k =1,

91(0)+91(0) =po+p1+pop2a <po+p1 +p2 < 1.

To consider the case k=0, let g = > -, > 0. Then

I

po(l — p1 + p2) (1—p1—q2)(1 — p1 +p2)
(I—p1—g)(1 = p1+qs)

1-p)?—q <(1-p)?,

(FAN
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and hence

_ b 4+ Pop1i  _ po(l — p1 + pa)
l=p  (1-p1)? (1 —p1)?

Finally, if ¢ > 0 satisfies f(£) = t, then hg(t) + tpp(t) = ¢ for any k > 0,
namely

90(0) + 95(0) <l.

. hk (f) .
1~ p(t)
These considerations can be summerized in the following theorem:

9x(t)

Theorem 2 For any k > 0, the distribution of Vi is equal to that of the
total progeny of the Galton-watson tree with the offspring distribution II*) =
{p%k)};'fzo. As the original T = {p,}2,, I® satisfies the condition p{ > 0,
pgk} + pgk) < 1. The new Galton- Watson tree is sub-critical fresp. critical or
super-criticall if and only if the roiginal one is so. Moreover the extinction

probability of both Galton-watson trees coincide.
Corollary 1 P(Z =00, Yco0) =0,

Proof. Obviously {Z < oo} C {)% < co}. But the probability of both events,
being the extinction probability of the old and the new Galton-Watson tree
respectively, are equal.

Remark 1 The new Galton-Watson tree, the total progeny of which has the
same distribution as Yy, can actually constructed as a functional on Q, the
probability space of the original Galton-Waison tree. In other words, there
hides another Galton-Watson tree in the original one which has Vi as its
total progeny. the discussion of the construction of this hidden tree will be
postpohed to other opportunity.

By Theorem 2, the analysis of the asymptotic behavior of P(Y;, = n as
n — oo is essentially reduced to that of P(Z = n) with a proper choice of
offspring distribution. Namely if we let o) be the radius of convergence of
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the power series gr(w) and if we define by, € (0, o] following (??), that is by
the relation

then we have

Proposition 3 (i) Let d(II*)) be the greatest common divisor of all n > 0
such that p,(qk) > 0. Then P(Yx = n) > 0 only for those n such that n = 1
(mod d(IT%)) ),

(i) im sup,,_, oo P(Ve = n)/™ = gy (by) /by, -

(151) If 0 < by < oy, then the following asymptotic expansion holds as
n — oo keepingn =1 (mod d(II*))):

where

There is no simple relation between d(II) and d(II®), but we can prove
the following proposition:

Proposition 4 d(II)) 4s giben by
dI™) = g.cd [{0<5 <k |p;>0U{j >k |pjs1 >0} .
Proof. Note that
dII*Y = max{€ > 1 | gr(e T} =1} .

On the other hand, g;(w) = 1 is equivalent to hx(w) = 1 — ¢r{w), namely to

k-1 fo%e]
Tp(w) := ij’wj + (pr + Py )w® + Z P’ =1,
j=0 J=k+1
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hence

d(11t®))
max{{ > 1 | Ty(e®?) = 1}

ged {0<j<k[p; >0 U{k}U{j>k|pjt1 >0} ifpp+pres>0
gcd-{0<j<k|p; >0tU{j2k|pjy1 >0} ifpe+prs>=0,

ll

which gives the desired result.

Now we shall give a condition for 0 < b; < oy in terms of I = {p,}22,.
By (14), our consideration is divided into 4 cases.

case 1. pr(p~) > 1. In this case, there is a o4 € (0, p) such that o) = 1.
This oy, is the radius of convergence of gi(w) and we have gy(op—) = oo.
Consequently by, € (0, ay,).

case 2. If pp(p—) = 1, then o, = p < oo and gi(ox) = co. In this case also,
one has by, € (0,0%).

case 8. When 0 < ¢(p—) < 1, one has o = p < 0o and g(op~) < 0.

case 4. Finally when ¢i(p—) = 0, then gi(w) = f(w) and we trivially have
bk = Q.

In the last two cases, both b; < oy and by = o}, are possible.
Proposition 5 0 < by < o, if and only if

lim{(z — £(2))hi(2) = (1= £/(2))hu(2)} > 0 .

ztp

Proof. Define

Ap(2) = (z — f())hip(2) — (1 = f'(2))hu(2)
Then

295 (2) = gr(2) = (1= ()2’ (15)



and after some computation

k 00 k
Ak(z) = Z(E — ].)pg.‘é}’{E + Z Z(J - E)pjpgzj""‘e_l
£=0 j=k+1 £=0
k ' k 0o ' oo '
= Z(E — Dpez’ + Z Z (7 — E)Pjpezﬁe_l + Po ( Z jpia
=1 £=1 j=k41 J=k+1

From the above preliminary consideration and the condition (??) (see section
2) applied to gi(2), we see that 0 < b < o if and only if pi(p—) > 1
or wrp(p=) < 1, limy,, Ag(or) > 0. But in case pr(p—) > 1, we have

wr(or) = 1, namely
m *
E ij'i—l =1 .

j=k+1
Since pg + py < 1, this implies

o0
Z jij',Jcml >1,
=kt

so that Ag(ox) > 0 by (16). Thus 0 < by < oy implies Ag(p—) > Ag{oy) > 0.
Conversely suppose Ag(p =) > 0. If, in addition, ¢(p—) > 1, then one
has 0 < by < oy and if p(p—) < 1, then since o = p,

lim{eg4(2) - 99} = [y Anlom) > 0,

namely 0 < by, < op.

Since Vi T Z as k — oo, the number gy(o%)/by, governing the exponential
behavior of P()), = n) is expected to increase with k. This is actually the
case as the following proposition shows.

Proposition 6 For each k > 0, we have

gk(bk)<9k+1(bk+1) f(a)
by T bp a

AN

(17)
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If f(z) is critical (i.e. f'(1) = 1) or sub-critical (f'(1) < 1) and p = 1,
then each member equals to 1. If ppr1 = 0, then gp(z) = gry1(2) and the
first inequality is actually an equality. If, further, pe = 0 for all £ > k, then
g1(2) = f(2) and we have equality also in the second inequalty. In all the
other cases, the inequality is strict.

Finally it holds that

’31—1_}1,1(;10 gklEf:k) _ fia) ' (18)

Proof. First note that
2(z — f(2)) (hi1(2) — hi(2))
2 — f(2) + h(2))(z — f(2) + ha(2))

For the moment, we suppose that there exists ¢, and gy such that f (%) = @,
i=1,2,and 0 < ¢; < g2 < p. Since

ge41(2) — gu(z) = ( (19)

hy (Q2)
da

vr(qe) =1~ <1,
we have g3 < oy, thus gi(2) is well defined on [g1, ga]. But for z € [gy, ¢z], we
have f(z) < z, and hence gr41(2) > gi(2) holds on [g1,¢s] by (19). By the
convexity of f(z)/z and gx(2)/z, and by f(g:)/a; = g(@)/a = 1,1 = 1,2, we
see that a and by belong to g1, ¢a].

Now since we have hi(2) T f(z), we also have g,(2) T f(z) on [g1, g2] as
k — oo. By Dini’s theorem, this convergence is uniform on the compact
interval [q1, ga], that is for any € > 0, gr(2)/z > (f(2)/2) — € holds for all
z € lq1, ¢o] and for all sufficiently large k. Taking z = by, and z = a, we obtain

f0) o oule) o aelb) S o fa)
a T a T b b T a
for large k. This shows limy e g (bx) /b = f(a)/a.
Now suppose f(z) is supercritical and let ¢ be the extinction probability:

f(g) = q. Then we can take ¢1 = ¢, go = 1 and (17) and (19) are proved in
this case. When f(%) is critical, or subcritical with p = 1, we have

o= f(a) = b = ga(bi) = L

29



and there is nothing to be proved. Finally consider the case where f(z) is sub-
critical (.e. f/(1) < 1), p > 1, but f(z) < zfor 1 < z < p. In this case, we
have in particular p < co and f(p) < 0o, and gx(2) 1 f(2) holds uniformly on
[1,p]. Thus the above argument can be applied to prove gi(bx)/bx 1 f(a)/a.

Finally suppose that f(z) is super-critical or sub-critical with p > 1 and
that pry; > 0. Then hyir > hy(2) for z > 0 and hence we have gj41(2) >
gx(2) on (q1,¢2) or on (1,p). Thus

Ie+1(0n41) _ go(bry1)  gr(be)
> >
bi1 br+1 b

and the inequalty is strict.

4 'The joint distribution of Z and ).

For complex numbers u, v; (§ = 0,1,...) with |u], |v;| < 1, let

7 < oo; u? Hfu}f] (20)

J=0

w = G(u;vp,vy,...) =B

be the joint probability generating function of Z < ¥;Y4,. ... Since 2;’10 Y; =
Z, [T52, 'v;j is actually a finite product. Due to the relations (??) and

vy (w)
) = oo + 3 T @1

we can proceed, using the formula of Neveu (page 202 of [[12]]),

w = E Z < OO UI+EJ 1Z OT H 1u¢_k+23 1YkDT]

L k=0
v oo
= E (H Liz<c0} OT}) U (H 1"¢’=k) (Hu Hv ) oT
L \j=1 k=0 j=1
— ﬁ {Vqt:-h} (H 1{Z<oo}'uf H’Uk; ) OT}
k=0 k=0
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= uE ﬁ 1{u¢:k}HE!:Z<OO, ZH’U ”

j=1

" oo
= uE H {V¢—k} e

= U Zpk'ukwk '
k=0

Thus if we define

(I)(w) - (I)('LU;?)(],’Ul, o ) = Zpkvkwk ¥

then w is & solution of the equation w = u®(w). If we assume vg # 0, then
®(0) = povo # 0, and we can again apply Lagrange inversion, to obtain the

formula
7 =n; Hfu ] = 2mnj§{®$})}ndw (22)

for the coefficients of the power series

oQ o0
w:ZE Z:n;Hfu?;’“ u" .
n=1 k=0

Now if Z(w) = n, then we have Yy (w) = 0 for & > n. Moreover Y p_; Vi(w) =
14 Y4) kYi(w) = n. Hence the probability P(Z =n, Y, = ng, k=0,1,...)
is non-zero only for those values of n; such that

n—1 n—1
nk=0fork2n;2nk=1+2knk=n, (23)
k=0 k=1

and for such (n;), we obtain from (23)

PZ=n,Yy=n,k=0,1,..))

q on -1 v
— E | Z = n v,k
H nk! 81)6103?)?1 e av',?r::% I];:IO ¢ yp=vy="=0

k20
1 1 on [ ®(wyvo,v1,..) "
T 2min (H nk!) v OvH -+« Byl f { w dw

k>0 n—1

vo=vy=---=0
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On the other hand, it is easily seen that

an
- ®(z;v0,v1,...)"

710 1 n— ‘uo:'Ul:---:O
6@0 a’Ul L avn__l

-1
= nl (Hpg’“) w1
k=0

Thus, interchanging the contour. integral and the differentiation, we finally
obtain the following result.

Proposition 7
P(Z:n, thnk ) k=0,1,...)
_ { (n—1)! ( s %%) if (ny) satisfies (28)

0 otherwise.

Let us discuss several examples.

4.1

Suppose IT = {p;}, is the geometric distribution with parameter p: py =
(1-p)p*, k=0,1,2,.... In this case f(2) = (1~ p)/(1 —pz), and we obtain

1 1 /1-p\"
Plz=n) = 2min z_”(lupz> dz

B _l_dn_l 1__p L
T ol \1-pz/ |,

= (1-pyps (2n B 2) . (24)

n\n-—1

For a finite tree w € Q with Z{w) = n, we thus obtain

Pl 2=1) = 7= [P

uew

- -(—1—~j~ - (25)

n—1

32



The right hand side being independent of the detailed data {v,(w)}ye, of
w, this shows that conditioned the event {Z = n}, all trees of size n are
equiprobable. In other words, the total number of trees with size n is = (2?:" 12)
which is a well known result in combinatorics.

For a sequence (n) of non-negative integers satisfying (23), we have, by
Proposition 7 and (?7),

(n —1)! (Hk>0 —falpknk)

PYy=ny, k20|Z=n) =

where

n
= E ng —-n
NoMp >+ - nghh

i=>0
is the multinomial coefficient. By the equi-probability of the trees under the

condition {Z = n}, this shows that the total number of trees w such that
Z(w) = n, Yi(w) = ng, k > 0 is given by

1 n
n\ngng » ,

where (ny,) satissfies (23). This result is also well known and is attributed to
Tutte [15], but it had already been stated by Otter (page 213 of [13]), though
with somewhat implicit proof.

4.2

Next consider the case where II is the binomial distribution B(d, p), so that
f(z) = (1 — p+p2)? Applying (2), we can easily compute

1

dn n—mn i—
P(Z:n):a(n“]-)(l_p)d +1p 1'
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On the other hand, for a tree w of size n,

P{w}) = [Ipnw =11 (ij))pw(w)(l—p)d—wfw)

UCw new

= pHL-p) ] (Vu?w)) ,

ucw

and hence { p
P 2= = rray 11 (1) (26

These results have the following interpretation. Consider the bond perco-
lation on the rooted d-ary tree. Here we mean by the rooted d-ary tree an
element T € 2 such that v,(T) = d for all 4 € T, and we suppose that each
bond, or edge, of the graph T' is “open”with a certain probability 0 < p < 1
and is “closed”with probability 1 — p, independently from each other. We
then call a percolation cluster on 7" a subset «y of T' consisting of those vertices
v € T which are connected to the root ¢ through open bonds. A percolation
cluster  thus obtained is a “tree” which is different from our galton-watson
tree defined in section 1 in the sense that each vertex u € v can have k
children, among d possible ones, in (}) different ways. (When d = 2, the per-
colation clusters thus obtained is often called “uniform binary trees” (see e.g.
[7]).) If we renumber the children of each vertices of a percolation cluster ,
then we shall obtain a Galton-Watson tree w. Denote this correspondence by
V. When w is finite, then there are exactly JT,.,, (V ( w)) percolation clusters
which correspond to the same w.

Now let C,, be the totality of percolation clusters of size n. From what we
have seen above,

o= > = S T1(,0)-
we Z(w)=n _ wE; Z(w)=n u€w
On the other hand, we have

1= Z Pw} | Z=n)= (];in) Z H(uu,w)’

we Z(w)=n n-1/ we;Z{w)=n u€w

3=
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thus L/ 4
i)
e = 'E(n — 1) '

If we let E,(y) be the number of outward edges issued from the vertex u
of a percolation cluster y € C,, then it is clear that

H{u € 7| Bu(y) = k} = ¥i(¥(7)) .

Thus if we are given (ny)y>0 which is subject to the condition (23), then it
holds that |

{v€Cn | ia(¥(y)) =ng , k> 0}
= > 0~ ({w})

we Z{w)=n , Yi{w)=ng , k>0

d Ty
= Hwe|Z@w)=n, Yiw)=m, k2 0} x]] CD

S (O

=0
"This shows that if ¢, is the uniform distribution on C,, then from (26),
1 n Hd dy e
Qnli{u €7 Buly) =k} =mp, k20) = ~ (”"’”;) y 8

{8y

= P(Ypr=mng, k>0]|Z=n}27)

Later we shall apply this result to the case of uniform binary tree.

4.3

In case II is the Poisson distribution with parameter A > 0 so that f(z) =

Az—1

e ), we have




(=17 1 (1)™
P(y=mi, k20| Z=n)= "2 lTT ,(—) .
k!

n—1 |
n K50 k!

Similarly, when IT is the negative binomial distribution with f(z) = {(1 -
/(1 —p2)}*, &> 0,0< p< 1, then

P(Z=n)=(1 —p)anpn-"l(

P} | Z“‘”)z‘(am}?:jﬂ(aﬂu(w)ﬂ) ;

an+n—1 .
n ]

1 UuUCw V(w)
oz-l—k—l e
P(ch=nk,k20]Z=”) an-}-n— )
n k>0

Here of course, w has size n and (ny) is subject to (23).

4.4

As is seen in the above examples, the conditional distribution P({w} | Z =
n) does not depend on the parameter p or A\. This is generally true when
the offspring distribution is a power series distribution. Namely, let B(6) =
> o0 De8® be a power series with non-negative coefficients and positive radius
of canergence p. Assuming by > 0 and b > 0 for some k > 2, we let

k
n0)= 5y

for 0 < 6 < p. Then we have the following

k=0,1,2,.

Proposition 8 Let Py be the probability measure for the Galton- Watson tree
with offspring distribution II(0) = {pr(0)}2,. Then for any n > 1, the
conditional distribution Py(e|Z = n) does not depend on 6.

Proof. The generating function of II(6) is given by B(6z)/B(8). Hence by

(2),
P2 =n)= *2?1?6 }( 515 (%%)") s 27rlz'n gz;)ln ?f Brfu?ndw '
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On the other hand, for a tree w with Z(w) = n,

gn— 1
{U)} Hqu(w)Sg (9) H qu(w) !

UEwW UEwW

so that by dividing, the facters involving 8 cancel out in P({w}|Z = n).

5 The law of large numbers and the central
limit theorem for Y.’s conditioned on 7

Throughout this section, we assume that Condition A holds. The following
theorem is due to Otter ([13]):

Theorem 3 For k =0,1,2,..., we have

Y,
P(’: ce | Z"’l’b) -— 6akpk/f(a)(.) )

where we let n — oo keeping n = 1 (mod d(I1)).

Corresponding to this, it is natural to consider the central limit theorem.

To state the result, let us ddefine the infinite symmetric matrix V = (vik) 3%=0
by

HVH = ZPkﬁk f” {Z kpitpa® Zpktkak_l}z
k>0 k>1 k>0
2
(thka ) )

k>0

where { = (£)§2, and tj, = 0 except for finite number of &’s. for each & > 0,
we denote V7€ = (vj;) X,y the restriction of V. Then we obtain the following
result.

Theorem 4 For each K > 0,

P ({\/ﬁ(%—%) };e o | Zzn) — N(0,VE)
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as n — oo keeping n = 1 (mod d(I1)), where N(0,V¥) denotes the muiti-
dimensional Gaussian distribution with mean 0 and covariance matriz VE,

As a special case, let us consider the case where [ = B(2,p) with0 < p < 1,
and denote by P, the cprresponding probability measure of Galton-Watson
tree. On the other hand, if @, is the uniform distribution on the set C, of

size n percolation clusters on the rooted binary tree T, then as was shown in
42,

Qu(Xp=np,i=012 =P i=n;, k=0,1,2| Z=n).

Here X; (k= 0,1,2) is the number of the vertices of the percolation cluster
£ having k children. The conditional probability on the right hand side
being independent of p, we set p = 1/2 without loss of generality. Then
a= fla) =1,p =p = 1/4, py = 1/2, and p; = 0 for k£ > 3. With this
choice of p, we now apply Theorems 3 and 4, to conclude

X
Qn(-fe->—->5pi,n—->oo

n
and
X X X
0n{ (VA2 =), VA -5, VA ) €} — H0,0),
with
! 1 -2 1
1 =2 1

The latter result is due to Mahmoud ([11]).
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The Equivalence of Two Constructions of
Galton-Watson processes

6 | Introduction

In his elegant paper, J. Neveu®

gave a convenient definition of a o-field
F and a probability measure P on the space Q of trees, thus obtaining a
probability space which describes every detail of a Galton-Watson branching
process. Neveu was motivated by the lack of fundamental theory of this
kind in the existing works on branching processes, but apparently he was not
aware that already in 1949, R. Otter® had given a similar definition which
turns out to be equivalent to Neveu’s definition. The purpose of this note is
to show this equivalence.

Oftter’s construction looks more honest to our intuition of branching pro-
cesses, if not as concise as Neveu'’s, and is closely related to the topological
structure of the space {2 of trees, as will be discussed in the final section of
this note. Also, it is remarkable that Otter already emphasizes the conceptual
advantage of realizing Galton-Watson processes on the space of trees, instead
of treating them merely as Markov chains with a special kind of transition
probabilities.

7 The construction by Neveu®

Let U be the totality of finite sequences of strictly positive integers, of
which the empty sequence is denoted by ¢. We can write U = 5=, (N*)",
where N* = {1,2,...}, (N*)° = {#}, and (IN*)" is the totality of sequences
U = j1Ja+* Jn of length n. By defintion, a tree is a subset w C U which
satisfies the following three conditions: a) ¢ € w ; b) uj € w implies v € w
whenever u € U and j € N*, where we write uj = jija -+ jnj ifu = J15a -+ 4n
, ¢) for each u € w, there is an integer v,(w) > 0 such that for any j € N*,
uj € w if and only if 1 < § < wu(w). Let O be the totality of trees in this
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sense. Then F is defined to be the smallest o-field containing all subsets
Qui={we|wdul,uel.

Given a probability distribution II = {p,}22, on non-negative integers
N, let (Q*, F*, P*) be the product space (N,II)®Y, F* being the o- field
generated by the coordinate maps v} : w* = (W})yery — wi, v € U. If we
define the map ¢ : 0* — Q by

P ={u=7g1...0p € Ul Jor1 S vjpj ("), for 0 <k <p},

then ¢ is F*/F-measurable, and we can consider the induced measure P =
P*oy! on (Q, F). The resulting probability space (2, F, P) then describes
every detail of the Galton-Watson process with the offspring distribution II.
In particular, if Z,(w) is the cardinality of w N (IN*)", then under this prob-
ability measure P, {Z,(w)}32, is an N-valued Markov chain with transition
probability P(z,y) = (I1**)({y}), where “ *"deotes the convolution.

8 The construction by Otter(®

Since the definition of trees by Otter®) is obviously seen to be equivalent
to Neveu's definition, we shall work on the same space {) introduced in the
previous section.

For each tree w, we define the set Z(w) of its inner points and the set £ (w)
of its endpoints as follows:

Zw) ={u€w]yw >0} ; Ew) :={ucw|nw)=0}.

For two trees w,w’ € 2, we say that w extends w' and write w > o, if
the following two conditions hold: i) w D «' ; ii) yu(w) = v, (w') for each
u € Z{w').

Next let f be the totality of finite trees. For a T € f and A = (\;e €
E(T)) € N¢T)| define

TiA={weQ|w>T, vilw)=A forec (T},
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which Otter called a “neighborhood ”.

Given a probability distribution IT = {p,}32, on N, Otter constructs a
o-field B and a probability measure ¢ on (€, B) in the following way.

First he let S be the class of subsets S C {2 of the form S = 7, [T} A]
with T € Qf and A = [[ gy Ae C N®T). Then § is shown to be a semi-
algebra. Next he defines a set function @ on S by

Q(T; A]) ( 11 pyu(:p)) ( 1] p,\e) ; QS) =) QUT;A),

u€Z(T) ec&(T)

where the value of Q(S) turns out to be independent of the expression of
S. He then shows that @ is countably additive on S , and hence is extended
to a probability measure () on the o-field B generated by S (or equivalently
generated by N ).

Otter’s discussion is actually quite sketchy, and in order to fill its details,
it is necessary to prepare several lemmas concerning the sets [T; A], which
are not as trivial as regarded by Otter. Among those lemmas, the following
one will be useful in the rest of this note:

Lemma 1. The class N defined by
N ={T;A] | T e, Ae N DY {}

is a m-system, namely is closed under the formation of finite intersection.
Proof. We shall show that if [T3; A;] € NV, ¢ = 1,2, have non-empty inter-
section, then we can construct a T3 € Qf and A; € N€(T¥) gych that

[T1; M} N [T Ag] = [T3; Ag)

For this purpose, let T3 = 77 U Ty. Then obviously T3 € Q. It is also easy
to see that Z(T3) = Z(Ty) UZ(T3), and that

EM) = [E(M)\ D]+ [ET)\ T+ [EM)NE(T)]

Now suppose w € [T1; A1) N [To; Ag]. If w € Z(Ty) N Z(T3), then since w > T3,
i = 1,2, we have v,(T1) = y,(w) = 1,(T3). In this case, we also have
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vu(Ts) = vu(w). If on the other hand, u € Z(T1) \ Z(T3), we see from w > T}
that v, (1) = w,(T3) = v, (w), and if u € Z(Ty) \ Z(T}), we see from w > Ty
that v,(T) = 1,(T3) = vu(w). Thus 73 > T3, © = 1,2, and whenever u €
Z(T3), one has v, (T3) = vy(w), showing w > Ts.

Let us write A; = (A;e € E(Ty)) for i = 1,2. If e € E(T1) \ T3, then
w € [T1; Ay] implies v (w) = A, and if e € E(Ty)\ T3, then w € [Th; Ay] implies
Ve(w) = A2, Finally if e € £(T1) N E(Ty), then we must have A\l = v, (w) = X2
by w € [T1; A1) N [T; Ap). Thus if we define Ay = (\3;e € E(T3)) by

Ay, foree E(Ty)\To
AL = A2, foree E(T)\ Ty
M=2X, forec (M) NETD),
then we must have w € [T3; As). Since w was arbitrarily chosen from [Ty; A;]N
[T2; Ag), we conclude [T1;A1] N [Ty; Ag) C [T3; Azl
'To prove the converse inclusion, let w € [T3; As] be arbitrary. Since T3 > T;,
i=1,2, we havew > Tj, i = 1,2. If e € £(T1) \ Z(T3), then e € £(T3) and
Ve(w) = A} = AL. If on the other hand, e € E(TY)NZ(T3), then ve(w) = v, (Ty).
But we are assuming [T7; A1) N [T3; Az] # @, so that there exists an w such
that w > T and that v.(w) = AL. Hence v,(Tt) = v.(w) = AL, In any case,
e € £(T1) implies ve(w) = Al. Thus w € [T}; A;]. Similarly one can show
w € [Ty; Ag], completing the proof of the lemma.

9 The equivalence of two constructions

We are now ready to prove our main assertion.

Proposition 1. B = F and ¢ = P, hence the probability space con-
structed by Otter and Neveu coincide.
Proof. Since we can write, with the convention u0 = v,

[T, A] = (ﬂ Qu) N ( ﬂ Qﬁ(,,u(T)H)) N ( ﬂ Qg \Qu()\u+1)) )

uET w€Z(T) ue&(T)

we see [T; A] € F and hence B C F.
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Conversely we can also write
= J{[TA] lueTeQf , A e N6}

hence €2, € B for any u € U, proving F C B.
On the other hand, since

w-l([T;A])=(mw*|v:(w*)= ) (ﬂ{w @) =2t |

w€Z(T) u€E(T)
we have
P([T;A]) = P* (™ ([T5 A]) = ( 1] pw(T)) ( 11 P,\e) =Q([T;A]) .
weZ(T) ee&(T)

Thus P and @ coincide on the n-system A, hence on the \-system F = B
which is generated by .

10 () as a metric space

As was mentioned by Otter®, and as is obvious from Lemma 1, we can
make (2 into a topological space by calling “open”those subsets G C 2 which
are written as unions of [T;A] ’s. In particular, our o-field F is the Borel
o-field corresponding to this topology. Let us briefly show that this topology
is generated by a metric on (.

For n > 0, let z,(w) = w N (N*)". Given w , o' € Q, let us define

pw, ') = sup{n 2 0 | zn(w) = zn(w') },

where we let pu(w,w’) = co if 2,(w) = 2, (w') for all n > 1, namely if w = ',
Since we have
B, ") 2 min{(w,of) , p(wo") },
we can define a metric d on Q by letting d(w,w') := exp{—p(w,w’)}.
Now let G C ) be open in the sense already defined. Then for each w € G,
we can choose a [T;A] such that w € [T}A] € G. Let h(T) = max{n >
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0|7 N (N*)® # @} be the “height "of the finite tree T'. Then w' € [T;A] as
soon as zp(w') = 2,(w) for 0 < n < A(T) + 1, or equivalently as soon as
d(w',w) < exp{—(h({T) + 1)}. This shows that G is open with respect to
the metric d. Conversely, suppose G is open in the metric d. Then for each
w € G, there is an integer m > 1 such that ' € G whenever z,(w') = z,(w),
0 <n <m. If we define T = Ulz,(w) and A = (), ; e € £(T)) with
Ae = Vg(w), then the last condition is equivalent to ' € [T;A]. Thus w €
[T; A] C G and G is open in the original sense.

Since N = {[T; A]} U{0} is a countable basis of topology, our metric space
(2, d) thus obtained is separable. It is also complete. To see this, let {w®}o
be a Cauchy sequence with respect to the metric d. Then we can choose an
increasing sequence N, /' oo such that d(w®,w®) < e~ for all k,£ > N,.
In other words, we have z;(w®) = z(W®), 1 < j < nfor all k,£ > N,. If
we let w®) = {#} U U2, 2,(w¥)), then w(®) is a tree, and it is clear that
d(w®, wl®)) — 0 as k = oco.

Noting that A is also a m-system, we can apply Theorem 2.2 of Billingsley(?),
to obtain the following criterion for the weak convergence of probability mea-
sures on {2.

Proposition 2. Let P and P,, n = 1,2,... be probability measures on .
If P,([T;A]) = P([T; A)) for each [T;A] € N, then one has P, = P,

As an immediate corollary of this proposition, we see that if P, and P
are the probability measures for Galton-Watson processes with offspring dis-
tributions II, and II respectively, and if II, = II on N, the P, = P on
£2.
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