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THE SERRE DUALITY THEOREM
FOR A NON-COMPACT WEIGHTED CR MANIFOLD

MITSUHIRO ITOH, JUN MASAMUNE, AND TAKANARI SAOTOME

(Communicated by Mikhail Shubin)

Abstract. It is proved that the Hodge decomposition and Serre duality hold
on a non-compact weighted CR manifold with negligible boundary. A com-
plete CR manifold has negligible boundary. Some examples of complete CR
manifolds are presented.

1. Introduction

Let M be a strongly pseudo-convex CR manifold, an s.p.c. CR manifold for short,
without boundary. A weighted CR manifold is an s.p.c. CR manifold endowed with
a measure µ, which has a smooth positive density η with respect to the volume
form of the CR structure. Then the space (M, µ) has a natural weighted Kohn
Laplacian �µ, which we call the Witten-Kohn Laplacian.

In this article, we are interested in Serre duality and Hodge decomposition on
a non-compact weighted CR manifold. The Serre duality of a compact s.p.c. CR
manifold was proved by Tanaka [15] for the case of a trivial line bundle, and recently,
the first and the third named authors generalized it to any holomorphic vector
bundle E [8]. On the other hand, Kohn’s Hodge decomposition for a compact s.p.c.
CR manifold was extended to a general s.p.c. CR manifold with negligible boundary
(Definition 2.4) when E is a trivial line bundle by the second author [13].

The aim of the present article is to extend these results to an arbitrary holomor-
phic vector bundle E over a general weighted CR manifold with negligible bound-
ary, and to relate them to each other. Namely, by denoting Hp,q(E) the space of
E-valued L2-harmonic forms of (p, q)-type, we will show

Main Theorem. Let M be a (2n − 1)-dimensional weighted CR manifold with
negligible boundary, and let E be a holomorphic vector bundle over M . Then the
L2-Hodge decomposition

L2 (Ω•,q(E)) = H
•,q ⊕ range

(
∂

q−1
)L2

⊕ range
(
δq+1
µ

)L2

holds for 0 < q < n − 1, and the Serre duality

�µ : H
p,q(E) ∼= H

n−p,n−(q+1)(E∗)
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holds for every 0 ≤ p, q ≤ n − 1, where E∗ is the dual bundle of E and �µ is the
complex-conjugate weighted Hodge star operator. In addition, it follows that

ker
(
∂

q
) /

range
(
∂

q−1
)L2

∼= H
p,q(E)

�µ∼= H
n−p,n−(q+1)(E∗), for 0 < q < n − 1.

We say that M is complete and M is Riemannian complete if it is complete
with respect to the Carnot-Carathéodory distance dCC and Riemannian distance
dg associated to the CR structure, respectively (see Section 2). Then we have

Theorem (Proposition 4.1).
(i) If M is Riemannian complete, then it is complete
(ii) If M is complete, then M has negligible boundary.

Therefore, the Main Theorem is applicable, for example, to the Heisenberg group,
Sasakian space forms, spherical orbits, and unbranched covering over a compact
s.p.c. CR manifold with any weight. These are very important s.p.c. CR manifolds,
but they have been excluded from the literature because of their non-compactness
(see Section 4). Two main points in the proof are: identification of the weak solution
of the Laplace equation �µα = 0 with the harmonic form (Corollary 2.7); explicit
expressions for ∂ and δµ in terms of ∂∗ and δµ∗ via �µ (Lemma 3.3).

We organize the article in the following manner: In Section 2, we recall some
necessary notions which we will use in the article. Some new results are given,
including the self-adjointness of the E-valued Witten-Kohn Laplacian. In Section 3,
we will prove the Serre duality, and finally, in Section 4, we present the examples.

2. Strongly pseudo-convex CR manifolds

This section contains preliminary results. We recall some definitions related to a
strongly pseudo-convex CR manifold M , focusing on the construction of the space
Ωp,q(E) of E-valued (p, q)-forms, its holomorphic structure ∂

q
, and the Witten-

Kohn Laplacian �µ. For a thorough discussion on a geometrical analysis of an s.p.c.
CR manifold, we refer the reader to [5] and [15]. We also establish the essential
self-adjointness of �µ and characterize the harmonic forms as the solutions of the
Laplace equation with respect to �µ. These results are important steps when we
extend our knowledge of a compact manifold to a non-compact one.

A (2n−1)-dimensional strongly pseudo-convex CR manifold M , we call it simply
an s.p.c. CR manifold, is an oriented smooth manifold which carries a structure
(P, J, θ), that is: P = ker(θ) ⊂ TM is an (n − 1)-dimensional real subbundle with
an almost complex structure J : P → P satisfying:

[X, Y ] − [JX, JY ] − J [JX, Y ] − J [X, JY ] ∈ Γ(TM/P ), for X, Y ∈ Γ(P ),

and a contact form θ ∈ Γ((TM/P )∗) whose Levi-form L(X, Y ) = −dθ(JX, Y ), for
X, Y ∈ P , is positive definite.

Consider the complexification of J and its eigenspace S = {X −
√
−1JX : X ∈

P} ⊂ CTM . Then S ∩ S = (0) and [Γ(S), Γ(S)] ⊂ Γ(S), where S is the complex
conjugation of S. With the assumption of the strong convexity of M , there exist
the following implications:

• a Riemannian metric g = −dθ + θ ⊗ θ;
• a volume form dv = (n − 1)! θ ∧ (dθ)n−1;
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• a distance dCC on M .
Indeed, since the Levi form L is positive definite, it follows for 0 �= X ∈ Px that

0 �= 2L(X, X) = − (JX(θ(X))− X(θ(JX))− θ([JX, X])) = θ([JX, X]).

This shows that [JX, X] /∈ Px, and hence, P satisfies the Hörmander condition
[7]. Due to the Chow theorem [4], P implies a non-degenerate distance dCC on M
defined as

(2.1) dCC(x, y) := sup{u(x) − u(y) : u ∈ C∞(M), ‖π∇u‖L∞ ≤ 1},
where π : TM → P is the projection with respect to g. We say M is complete if
the distance space (M, dCC) is complete.

Definition 2.1. A complex vector bundle E over M is called holomorphic if it
admits a linear differential operator ∂E : Γ(E) → Γ(E ⊗ S

∗
) satisfying:

(i) ∂X(fu) = f ∂Xu + (Xf) u;
(ii) ∂X(∂Y u) − ∂Y (∂Xu) − ∂[X,Y ]u = 0;

here f ∈ C∞(M), u ∈ Γ(E), and X, Y ∈ Γ(S), where ∂Xu := ∂Eu
(
X

)
.

Example 2.2 (E.g. [15]). Let M be a boundary of a strongly pseudoconvex complex
manifold and E be a holomorphic vector bundle on the neighbourhood of M . Then
E|M is holomorphic in the above sense.

Hereafter, E stands for a holomorphic vector bundle over M . Consider the vector
bundle T̂M = CTM/S, which is holomorphic (e.g. p. 15 in [15]) together with the
operator ∂ = ∂M :

∂Xu = �([X, Z]),

for u ∈ Γ(T̂M) with Z ∈ Γ(CTM) such that �(Z) = u and X ∈ Γ(S). Here
� : CTM → T̂M is the canonical projection. The distinguished vector bundle
E ⊗

∧p(T̂M)∗ with 0 ≤ p ≤ n − 1 carries a holomorphic structure:

∂E ⊗ id∧p + idE ⊗ ∂∧p ,(2.2)

where id is the identity operator on the indicated space, and
∧p =

∧p
T̂M . Here-

after we assume additionally that (E, ∂E) is furnished with a smooth Hermitian
fiber metric 〈·, ·〉E. The bundle which we will study is

Ωp,q(E) = Ωp,q(M ; E) = Γ(M ; E ⊗
p∧

T̂M∗ ⊗
q∧

S
∗
),

with the holomorphic structure ∂
q

: Ωp,q(E) → Ωp,q+1(E) defined as

(∂
q
α)(X1, · · · , Xq+1) :=

∑
(−1)i∂Xi

(
α

(
X1, · · · , X̂i, · · · , Xq+1

))

+
∑
i<j

(−1)i+jα
(
[Xi, Xj ], X1, · · · , X̂i, · · · , X̂j , · · · , Xq+1

)
,

where ∂ is the holomorphic structure of E⊗
∧p T̂M∗, α∈Ωp,q(E), and X1, · · · , Xq+1

belong to Γ(S). If E is the trivial line bundle, we simply denote Ωp,q(M) =
Ωp,q(M ; C). Set

Ω•.q(E) =
⊕

q

Ωp,q(E), Ω(E) :=
⊕

q

Ω•,q(E);

Ωp,q
0 (E) = {α ∈ Ωp,q(E) | α has compact support}.
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Let η be the weight, which is a positive smooth function on M , and consider the
measure dµ = ηdv. The associated inner product (α, β) of α, β ∈ Ωp,q

0 (E) is

(α, β) =
∫

M

〈α, β〉(x) dµ(x),

where 〈α, β〉(x) is the pointwise inner product of α and β at x ∈ M . Denote by
‖α‖2 the norm

√
(α, α), and by L2(Ωp,q(E)) = L2(Ωp,q(E), µ) the set of square

integrable E-valued measurable (p, q)-forms, which coincides with the completion
of Ωp,q

0 (E) with respect to ‖ · ‖2.

Let δq
µ : Ω•,q+1(E) → Ω•,q(E) be the formal adjoint of ∂

q
in L2(Ω(E)). The

Witten-Kohn Laplacian �q
µ : Ω•,q(E) → Ω•,q(E) is defined by

�q
µ := ∂

q−1
δq−1
µ + δq

µ∂
q
.

In abbreviation, we remove the super index q when the operator is acting on the
space of mixed degree forms. The operator �q

µ is called subelliptic (e.g. [5], [15]) if
there are positive numbers σ and Cσ such that

‖α‖2
(σ) ≤ Cσ

(
(�q

µα, α) + ‖α‖2
2

)
, for every α ∈ Ω•,q

0 (E),

where ‖ · ‖(σ) is the Sobolev norm of order σ.

Proposition 2.3. The Witten-Kohn Laplacian �q
µ is subelliptic for 0 < q < n−1.

Proof. By Lemma 3.3, the Kohn Laplacian � = �dv, which is the Witten-Kohn
Laplacian with η ≡ 1, has the form:

(2.3) � = �∗∂∗δ∗� + �∗δ∗∂∗�,

where � = �dv (see Definition 3.1), ∂∗ is the holomorphic structure of Ω(E∗) and δ∗
is its adjoint operator in L2(Ω(E∗), dv). Again by Lemma 3.3 and (2.3),

�µα = �∗∂∗��
∗δ∗�α + η−1�∗(∂∗η ∧ ��∗δ∗�α)

+ �∗δ∗��
∗∂∗�α + �∗δ∗�(η−1�∗(∂∗η ∧ �α))

= �α + η−1�∗(∂∗η ∧ δ∗�α) + �∗δ∗(η−1(∂∗η ∧ �α)),

for α ∈ Ω(E). Therefore, �µ and � have the same principal symbols. Since � is
subelliptic [10], we can draw this conclusion. �

We consider the following domains:

D(∂
q
) = {α ∈ Ω•,q : α and ∂

q
α are square integrable};

D(δq
µ) = {α ∈ Ω•,q+1 : α and δq

µα are square integrable};

D(�q
µ) = {α ∈ D(∂

q
) ∩ D(δq+1

µ ) : ∂α ∈ D(δq
µ) and δq−1

µ α ∈ D(∂
q−1

)}.
We need the following assumption so that �µ is symmetric:

Definition 2.4. We say M has negligible boundary if

(∂α, β) = (α, δµβ), for every α ∈ D(∂) and β ∈ D(δµ).

We say �q
µ is essentially self-adjoint if its L2-closure is self-adjoint, and �q

µ is
hypoelliptic if, whenever the distribution �q

µα is smooth, then α is smooth.

It is proved in [11] that

Lemma 2.5. A subelliptic operator is hypoelliptic.



SERRE DUALITY ON A NON-COMPACT WEIGHTED CR MANIFOLD 3543

The assumption such that M has negligible boundary implies a stronger property
to �µ:

Proposition 2.6 (e.g. [13]). If M has negligible boundary, then �q
µ is essentially

self-adjoint in L2(Ω•,q(E)) with 0 < q < n − 1.

Outline of the proof. Set αε = e−�µεα for α ∈ D(δµ
L2

). By Proposition 2.3 and
Lemma 2.5, αε is smooth for every ε > 0 (here we need the assumption: 0 < q <

n−1). Therefore, since δµ
L2

αε = ∂
∗
αε → ∂

∗
α as ε → 0, we deduce that δµ

L2

⊂ ∂
∗
.

Since M has negligible boundary, δµ
L2

= ∂
∗
, and by von Neumann’s theorem (e.g.

[14]), ∂
∗
δ∗µ is self-adjoint. Moreover, it follows that

�µ
L2

= ∂
∗
δ∗µ + δ∗µ∂

∗
,

where the right-hand side is self-adjoint. �
We say α is harmonic if ∂α = 0 and δµα = 0 in the weak sense. A harmonic

form always solves the Laplace equation �µα = 0, but in general, the converse does
not need to be true. However, it follows that

Corollary 2.7. If M has negligible boundary, then the following conditions are
equivalent:

(i) ∂α = 0 and δµα = 0 pointwise;
(ii) α is harmonic;
(iii) α solves the Laplace equation;

here, α ∈ L2(C•,q(E)) and 0 < q < n − 1.

Proof. (i) ⇒ (ii) is obvious. (ii) ⇒ (iii) If α is harmonic, then, (α, δµβ) = 0 and
(α, ∂γ) = 0 for every β ∈ D(δµ) and γ ∈ D(∂). This implies (α, �µβ) = 0 for every
β ∈ D(�µ); that is, α is the solution of the Laplace equation.

(iii) ⇒ (i) Let α be a solution of the Laplace equation. By Proposition 2.6, there
exists a sequence αl ∈ D(�µ) such that

αl → α and �µαl → 0, as l → ∞.

Due to the fact that M has negligible boundary,

‖∂αl‖2
2 + ‖δµαl‖2

2 = (�µαl, αl) → 0, as l → ∞.

This shows that α ∈ D(∂)∩D(δµ), and ∂α = δµα = 0 µ-a.e. Due to the hypoellip-
ticity of �µ, α is smooth, and hence, ∂α = δµα = 0 pointwise. �

A consequence of the celebrated Kohn’s harmonic theory [10] is the Hodge de-
composition of a vector bundle over a compact s.p.c. CR manifold. The correspond-
ing result on a non-compact manifold, which is a consequence of Corollary 2.7, is
the L2-Hodge decomposition in the Main Theorem. Since the proof is similar to
the case where η ≡ 1 and E is trivial (e.g. [13]), we will omit the proof here.

3. Serre duality

In this section, we study Serre duality and complete the proof of the Main
Theorem. Our method is to relate the operators on E to those on E∗ via the
weighted complex-conjugate Hodge star operator �µ (see e.g. [8], [6]). Together with
results from the previous section, we obtain the Main Theorem.
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We start from the construction of �µ. Let ∗ :
∧k T ∗M →

∧2n−1−k T ∗M be
the Hodge star operator of M with respect to g, which is uniquely determined by
g(∗α, β)dv = (n− 1)! α∧β, for α ∈

∧k
T ∗M and β ∈

∧2n−1−k
T ∗M . ∗ is isometric

and involutive, i.e. g(∗α, ∗β) = g(α, β) and ∗2 = id, because M is odd-dimensional.
As the complexification of ∗ exchanges the set of holomorphic forms and the set of
anti-holomorphic forms, the linear map � = �M := − ◦ ∗ satisfies (e.g. Lemma 7.1
[15]):

(3.1) � (Ωp,q(M)) = Ωn−p,n−(q+1)(M).

We extend (3.1) to

Definition 3.1. Define

�µ : Ωp,q(E) → Ωn−p,n−(q+1)(E∗)

by
�µα :=

∑
1≤i,j≤r

ηaji(�αi) ⊗ sj , for α ∈ Ωp,q(E),

where α =
∑

αi ⊗ si, {si}1≤i≤r is a local frame of E, {si} is its dual frame of E∗,
and aij = 〈si, sj〉E . Moreover, define �∗µ : Ωn−p,n−(q+1)(E∗) → Ωp,q(E) by

�∗µφ :=
∑

η−1αij (�φj) ⊗ si,

where φ =
∑

φj ⊗ sj and aij = 〈si, sj〉E∗ , which is the entry of the inverse-matrix
of (aij). Here E∗ is furnished with the Hermitian fiber metric induced from E:

(φ, ψ)E∗ = (φ, ψ)(E∗,dµ−) =
1

(n − 1)!

∫ ∑
φiψja

ij dµ−,

where φ =
∑

φj ⊗ sj , ψ =
∑

ψi ⊗ si, and dµ− = η−1dv. For α ∈ Ωp,q(E) and
φ ∈ Ωs,t(E∗), the product α ∧ φ is defined by

α ∧ φ := αi ∧ φi ∈ Ωp+s,q+t(M),(3.2)

where α =
∑

αi ⊗ si and φ =
∑

φj ⊗ sj . The definition is well defined; i.e. it
is independent of the choice of the frames. Similar to the Hodge star operator, it
follows that

(3.3) (α, β)E =
1

(n − 1)!

∫
α ∧ �µβ, for α, β ∈ Ω(E),

and

(3.3∗) (φ, ψ)E∗ =
1

(n − 1)!

∫
φ ∧ �∗µψ, for φ, ψ ∈ Ω(E∗).

The operators �µ and �∗µ satisfy the following properties.

Proposition 3.2. It follows that
(i) �∗µ�µ = idΩ(E) and �µ�∗µ = idΩ(E∗);
(ii) (α, �∗µφ)E = (�µα, φ)E∗ , for every α ∈ L2(Ω(E)) and φ ∈ L2(Ω(E∗)).

Proof. (i) �∗µ�µα = �∗µ

(
ηαji∗αi ⊗ sj

)
= αkj∗

(
aji ∗ αi

)
⊗ sk = α.

(ii)
(
α, �∗µφ

)
E

= (α, �∗dvφ)(E,dv) = (�dvα, φ)(E∗,dv) = (�µα, φ)E∗ . �

We denote by ∂∗ and δµ∗ the holomorphic structure of L2 (Ω(E∗)) and its formal
adjoint, respectively.
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Lemma 3.3. It follows that

(3.4)
(
α, �∗µ∂∗�µβ

)
E

=
(
∂α, (−1)p+q+1β

)
E

,

for α ∈ Ωp,q(E) and β ∈ Ωp,q+1
0 (E), and

(3.4∗) (−1)(p+q+1)
(
ψ, δµ∗φ

)
E∗ =

(
ψ, �µ∂�∗µφ

)
E∗

for φ ∈ Ωp,q(E∗) and ψ ∈ Ωp,q−1
0 (E∗).

Proof. Recall that the holomorphic structure ∂∧n coincides with the tangential
Cauchy-Riemann operator (−1)nd′′ (e.g. Proposition 1.1 in [15]) defined as:

d′′f := df |S , for f ∈ C(M).

Therefore, since �µβ ∈ Ωn−p,n−(q+2)(E∗) and α ∧ �µβ ∈ Ωn,n−2
0 (M),

0 = (−1)n

∫
d(α ∧ �µβ) = (−1)n

∫
d′′(α ∧ �µβ)

=
∫

∂∧n(α ∧ �µβ)

=
∫ (

∂α ∧ �µβ + (−1)p+qα ∧ ∂∗�µβ
)

=
(
∂α, β

)
E

+
(
α, (−1)p+q�∗µ∂∗�µβ

)
E

.

We used (3.3) and Proposition 3.2 for the last step. We have (3.4).
Next, by taking into account that

∫
d(φ ∧ �∗µψ) = 0, we can prove (3.4∗) in a

similar way. �

We are now in a position to show:

Theorem 3.4 (Serre duality). It follows for every 0 ≤ p, q ≤ n − 1 that

�µ : H
p,q(E) ∼= H

n−p,n−(q+1)(E∗).

Proof. Take α ∈ Hp,q(E). Then α ∈ D(∂) ∩ D(δ), ∂α = 0 and δµα = 0. By
Proposition 3.2 and (3.4), for β ∈ Ω0(E) we have that(

δµ∗�µα, �µβ
)
E∗ =

(
�µα, ∂∗�µβ

)
E∗

=
(
α, �∗µ∂∗�µβ

)
E

=
(
∂α, (−1)p+qβ

)
E

= 0.

Since {�µβ : β ∈ Ω0(E)} is dense in L2(E∗) by Proposition 3.2, we have δµ∗�µα = 0.
On the other hand, for φ ∈ Ω0(E∗), we have by Proposition 3.2 and (3.4∗) that

(−1)p+q+1
(
∂∗�µα, φ

)
E∗ = (−1)p+q+1

(
�µα, δµ∗φ

)
E∗

=
(
�µα, �µ∂�∗µφ

)
E∗

=
(
α, ∂�∗µφ

)
E

=
(
δµα, �∗µφ

)
E

= 0.

Therefore, ∂∗�µα = 0, and we deduce that �µα ∈ Hn−p,n−(q+1)(E∗).
The reverse implication can be shown by running the argumentation above from

the bottom to the top. Now we obtain

�µ : H
p,q(E) ∼= H

n−p,n−(q+1)(E∗),

where �µ is a complex conjugate linear isomorphism. �
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4. Examples

In this section, we present examples of non-compact s.p.c. CR manifolds with
negligible boundary. Our argumentation relies on the following proposition.

Proposition 4.1.
(i) If M is Riemannian complete, then it is complete with respect to dCC .
(ii) If M is complete, then M has negligible boundary.

Proof. (i) Assume that M is Riemannian complete, and let {xn}n>0 ⊂ M be a
Cauchy sequence with respect to dCC . Since dg has the alternative expression [12]

dg(x, y) = sup{u(x) − u(y) : u ∈ C∞(M), ‖∇u‖L∞ ≤ 1},
it follows that dg ≤ dCC by Equation (2.1). Hence, {xn}n>0 is a Cauchy sequence
with respect to dg, and thus, the limit belongs to M , by the assumption. Since the
topologies generated by dg and dCC are the same, we have the assertion.

(ii) Due to the fact that M is complete, there exists a sequence {χl}l>0 of smooth
functions with compact support such that 0 ≤ χl ≤ 1, χl → 1, and ∂χl → 0 as
l → ∞ ([1], [12]). For α ∈ D(∂), set αl = χlα. Since αl has compact support for
every l > 0,

(∂αl, β) = (αl, δµβ) → (α, δµβ), as l → ∞ for every β ∈ D(δµ),

where the left-hand side tends to (∂α, β) as l → ∞. �

The most fundamental example is

Example 4.2 (Heisenberg group). The Heisenberg group H(n) is

H(n) = {(w, z) ∈ C
n × C : Imz = ‖w‖2}

with the group structure

(w, z) ◦ (w′, z′) = (w + w′, z + z′ + 2
√
−1w · w′).

It is a quadratic CR submanifold (see e.g. [2]), whose defining function is

f(w, z) = Imz − ‖w‖2.

Consider the following CR manifold which is CR-equivalent to H(n): Cn × R with
the contact form

θ = dt + 2
∑

(xidyi − yidxi).

Then since the orthonormal frame {Xi, Yi} of P and the characteristic direction ξ
are given by

Xi =
1
2

∂

∂xi
− yi

∂

∂t
, Yi =

1
2

∂

∂yi
+ xi

∂

∂t
, and ξ =

∂

∂t
,

no geodesics with respect to g = −dθ+θ⊗θ reach ∞ in finite time. Due to the Hopf-
Rinow theorem, H(n) is Riemannian complete, and we conclude by Proposition 5.1
that H(n) is complete. Moreover, it was proved in [13] that H

p,q(E) = 0 for
0 < q < n − 1 when E is the trivial bundle over H(n).

Remark 4.3 ([13]). If M has negligible boundary and additionally either
(1) the Ricci operator is positive on Ωp,q or
(2) the Ricci operator is non-negative on Ωp,q and M has infinite volume,

then H
p,q(E) = 0 for 0 < q < n − 1 when E is the trivial bundle over M .
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Example 4.4 (Sasakian space forms). There exist exactly three types of Riemann-
ian complete simply connected Sasakian space forms: S2n+1, R2n+1, and Dn × R,
where D ⊂ C

n is a simply connected bounded domain with Kähler form dω (e.g.
[3]). The latter two space forms R2n+1 and Dn × R are non-compact and they
have the contact form dt−

∑
i yidxi and ω + dt, respectively. They have negligible

boundary.

Example 4.5 (Spherical orbits). Let O be the orbit of an n2-dimensional automor-
phism in an n-dimensional non-homogeneous hyperbolic manifold. If O is spherical,
i.e. each point of O has a neighbourhood which is CR-equivalent to an open set of
S2n−1, then O is CR-equivalent to one of the following hypersurfaces (e.g. [9]):

(1) A lens space S2n−1/Zm;
(2) σ = {(w, z) ∈ Cn−1 × C : Rez = ‖w‖2};
(3) σ′ = {(w, z) ∈ Cn−1 × C : |z| = exp ‖w‖2};
(4) ω = {(w, z) ∈ Cn−1 × C : ‖w‖2 + exp(Rez) = 1};
(5) ωα = {(w, z) ∈ C

n−1 × C : ‖w‖2 + |z|α = 1, z �= 0}, for some α > 0.

We are interested in σ and σ′ because they are non-compact. First we show that σ
is complete. Consider the map Φ : H(n) → σ defined as

Φ(w, z) := (w,−
√
−1z).

Clearly, Φ preserves the holomorphic structure. Moreover, since

fσΦ(w, z) = fH(w, z),

where fσ = Rez − ‖w‖2 is the defining function of σ, the contact structure is also
preserved. Since H(n) is complete, so is σ.

Next we proceed to show that σ′ is complete. The differential dfσ′ of the σ′’s
defining function fσ′ = |z|2 − exp ‖w‖2 is

dfσ′ =
1
2

(
z

|z|dz +
z

|z|dz

)
− exp ‖w‖2

(∑
(widwi + widwi)

)
,

and its pull-back Ψ∗dfσ′ by the covering map Ψ : σ → σ′, defined as Ψ(w, z) =
(w, exp z), is

1
2

exp (Rez)−1 (exp zΨ∗dz + exp zΨ∗dz) − exp ‖w‖2
(∑

(widwi + widwi)
)

=
1
2

exp (Rez)−1 exp (2Rez) (dz + dz) − exp ‖w‖2
(∑

(widwi + widwi)
)

= exp ‖w‖2dfσ,

where we have used the fact that Rez = ‖w‖2 for the last step. This shows that
ker(θσ) = ker(θσ′) via Ψ. Moreover, since

Ψ∗dθσ′ = d exp ‖w‖2 ∧ θσ + exp ‖w‖2dθσ,

where the first term on the right-hand side vanishes on P and exp ‖w‖2 ≥ 1, it
follows that the distance associated to Ψ∗dθσ′ is not less than the one associated
to dθσ.

Thus, since these two distances generate the same topology and σ is complete
with respect to dθσ, we may conclude that the distance associated to Ψ∗dθσ′ is
complete by the same reason as in the proof of Proposition 4.1.

We can also show that ω is complete, where the proof will appear in a forthcoming
paper.
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Example 4.6. If M is a compact s.p.c. CR manifold and M ′ → M is an unbranched
covering, then M ′ has negligible boundary.

Remark 4.7. Since the distance structure of M is independent of the choice of the
weight, all of those examples have negligible boundary with an arbitrary weight.
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