
TSUKUBA J. MATH.

Vol. 18 No. 1 (1994), 135-143

ON ISOMETRY OF A COMPLETE RIEMANNIAN

MANIFOLD TO A SPHERE

By

Yongfan Zheng

0. Introduction

In this paper, we obtain some conditions for a complete Riemannian manifold

to be isometric to a sphere. This is to expand the following theorems for a

compact Riemannian manifold M into the case where M is complete and not

necessarily compact.

Theorem A (Yano [6]). // M is a compact orientable Riemannian manifold

of dimension n>2 with constant scalar curvature and admits a non-isometric con-

formal vector field X: Xxg=2pg such that

(0.1) f G(dp, dp)dV^0,

JM

then M is isometric to a sphere.

As a corollary of this theorem, the condition (0.1) may be replaced by

Xx＼R＼2=0 or Xx＼K＼2=0 (see [3, 6, 8]).

1. Notations and Preliminaries

Throughout this paper, by a Riemannian manifold we always mean an n-

dimensional connected and oriented manifold covered by a system of local co-

ordinates {x1} (i=l, 2, ■■■, n) and furnished with a Riemannian metric tensor

g ―g^dx^dx1. We use the Einstein summation convention with respect to

repeated indices. Furthermore, geometric objects and some functions appeared

in this paper are always assumed to be smooth, unless otherwise stated.

Let M be an n-dimensional Riemannian manifold with a metric tensor g.

We use the standard notation for the covariant derivative 1, the exterior dif-

ferential d, the codifferential d, the Laplacian A and the volume element dV of

M. We denote by < , > and | | the inner product and the norm induced in
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fibers of various tensor bundles by the metric g of M. In this paper, we

identify a 1-form with its dual vector field with respect to g and they are

represented by the same letter.

By X x we mean the operators of Lie derivation with respect to a vector

field X on M. A vector field(or an infinitesimal transformation) X on M is

said to be conformal if it satisfiesXxg=2pg for some function p on M. In

particular,X is isometric if p is identically zero.

We denote by Kkjih and RJt local components of the curvature tensor K

and the Ricci tensor R of M respectively, and by r the scalar curvature of M.

We put

(1.1) G^Ra-ir/rOgn,

(1-2) Zkjih=Kkiih―{r/n{n ―l)}{gkhgii―g}hgki).

Then the tensor G measures the deviation of M from an Einstein manifold and

the tensor Z that from a manifold of constant curvature.

The following theorem proved by Obata [4] is well known.

Theorem B. // a complete Riemannian manifold M of dimension n ^ 2

admits a nonconstant function p such that Wp-{-k2pg=0, where k is a positive

constant, then M is isometric to an n-sphere of radius 1/k.

By using thistheorem and the above geometric objects,Obata [4], Yano

[6,7, 8], Hsiung [3] and others have obtained some conditionsfor a compact

Riemannain manifold admitting a conformal vector fieldto be isometric to a

sphere. One of these resultsis Theorem A in the introduction.

The followingformulae are well known (see [8]). These were prepared

in order to prove Theorem A and others.

(1.3) <G, g)=Gjig^=0,

where gji are the contravariantcomponents of g definedby gjigik―^i-

(1.4) Zkiihg*h=Giit

(1.5) ＼G＼2=＼R＼2-(l/n)r2,

(1.6) ＼Z＼2=＼K＼2-{2/n(n-l)}r2,

(1.7) dG = -gkjlkGjidxi=-{{n-2)/2n}dr.

Let X be a conformal vector fieldon M, thatis,it satisfies

(1.8) -Cxgjt=VjXt+ViXj=2pgji,
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where p is a function, and then we have

(1.9) P=-(l/n)8X=a/ny7iXi,

(1.10) Xxr=2(n-l)Ap-2pr,

(1.11) Xx＼G＼2=-2{n-2)(llp, G>-4|0|Gr,

(1.12) JTA.|Z|2=-8<77|0, O-4/olZI2.

Now, we assume that M is complete. Let / be the geodesic distance func-

tion from a fixed point on M and B{t) the geodesic ball of radius t,i.e.,

(1.13) B(t)={xeEM＼f(x)^t}

for £>0. Then there exists a Lipschitz continuous function wt on M satisfying

the following properties:

(1.14) 0^wt(x)^l, *<=M,

(1.15) wt(x) = l, xt=B(t),

(1.16) suppw£c5(20,

(1.17) wt―>1 (/->oo),

(1.18) ＼dwt＼^C/t almost everywhere on M,

where C is a positive constant independent of t (see [1, 2, 9]).

2. Main Results

Theorem 1. Let M be a complete Riemannian manifold of dimension n^2,

and admit a non-constant function p such that Ap―nkp for some non-zero constant

k. If p satisfiesthat

(2.1) lim infl <R-(n-l)kg, w2tdpRdp)dV^O,
M.

and has firstderivativesin L2(M), then M is isometric to a sphere.

Especially,if R(dp, dp)^(n―l)k＼dp＼2, then we get the condition (2.1) in

Theorem 1. Thus we obtain the following

Corollary. Let M be a complete Riemannian manifold of dimension n^2,

aud admit a non-constant function p such that Ap―nkp for some non-zero constant

k. If the Ricci curvature of M in the direction dp is not less than (n ―1) k and

p has firstderivativesin L＼M), then M is isometric to a sphere.
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Remark 1. In Theorem 1, if M is compact, then automatically the first

derivatives of p are in L2(M) and lim inf

J

f
<R-(n-i)kg, w*tdp<g>dp>dV=
JM

(R ―(n ―l)kg, dp0dp}dV. From the proof of Theorem 1 it follows that

the assumption I ＼dp＼2dV< + °°may be replaced by
JM

(2.2)

as in the case of [5]

lim(lA2)[ ＼dp＼*dV=O

J_kx> jBCit)

As a specialcase of Theorem 1, we assert the following

THEOREM 2. Let M be a complete Riemannain manifold of dimension n^2

with non-zero constantscalar curvature,and admit a non-isometriccomformal

vectorfieldX: Sxg―^pg- If P satisfiesthat

(2.3)
f

hm infl iw＼G, dpRdp>dV^O,

and has firstderivativesin L2(M), then M is isometricto a sphere.

Proof of Theorem 2. It follows from (1.10) that Ap―nkp, k being the

nonzero conatant r/n(n ―1). Then we have completed the proof of Theorem 2

as an applicationof Theorem 1. □

Remark 2. From the comment in Remark 1 we can considerthat Theorem

2 is a generalizationof Theorem A.

Theorem 3. Let M be a complete Riemannain manifold of dimension n>2

with non-zero constant scalar curvature, and admit a non-isometric comformal

vector field X: Xxg=2pg. If Xx＼R＼2=0 (or Xx＼K＼2=0) and p has firstderi-

vative in LHM), then M is isometric to a sphere.

Remark 3. Here we remark the following fact concerning constant scalar

curvatures.

Proposition. Let M be a complete Riemannian manifold M with constant

scalar curvature r, and admit a non-isometric conformal vector field X: XxS―

2/02". // p has firstderivativesin LHM), then r is non-negative.

3. Proof of Theorems

In this section, we give the proofs of the theorems mentioned in §2. We

nppfl the lf≫mma hpinw
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Lemma. Let M be a complete Riemannian manifold, and admit a non-trivial

solution p of the partial differentialequation Ap=kp for some constant k. If p

has firstderivativesin L2(M), then k is non-negative, (see also [10]).

Proof. We can easily find that

(3.1) d{w＼pdp)= ―w＼＼dp＼2-＼-w＼pAp―{wtpdp,2dwt) a.e. on M.

We integrate the both sides of (3.1) over B{2t). Since Stokes' theorem holds

for Lipschitz differentialforms and wt=0 on the boundary dB(2t) of B{2t), the

left hand becomes zero:

f 8{w＼pdp)dV=-

JB(2£) J3B(2J)
wKpdo, N>dS=O,

where N and dS are the unit normal to dB(2t) and the volume element of

95(20 respectively. Then we see

(3.2)

JB(2£)

w*t＼dp＼*dV-k
JB(2£)

w2tp2dV + [ (wtpdp,2dwt}dV=0.

From Schwartz'sinequalityand (1.18),we have

f <wtpdp, 2dwt}dV

JB(Zt)

rr ~ii/2rf 11/2
d (wtpYdV＼ <dp,2dwtydV＼

rr ii/2rr ii/2
^ {wtpYdV＼ 4|^|2|^£|W
LJBC20 J LJB(2t) J

rr ii/2 2C rr ni/2

LjB(2≪) J ? LJS(2O J

Now we suppose that k is negative. Using the fundamental inequality

2a4=_(v-*≪--7lr≫)1

we get the following:

(3.3)
f
(w

JB(2£)

%

-ka2-^b2<-ka2-^
k

b2

tpdp, 2dwtydV

＼-k[ {wtpYdV-A^＼ ＼dp＼*dv]

Then it follows from (3.2) combined with (3.3) that

~ kt2 JB(2£)
＼dp＼*dV>＼ w＼＼dp＼2dV-＼k[ w2tp2dV^0.

B(2t) Z JB(Zt)
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Furthermore, from (1.16),we also have

(3.4)

Since ＼ ＼dp＼

JM

2C2

kf
f ＼dp＼2dV^[ w*＼dp＼*dV-^k[ w2tp2dV^0.

2dV<oo, letting t-^oo in (3.4), we have

O^liminff
t-oo J

-"■Jjf

w2t＼dp＼2dV-irk liminff w＼pldV

＼dp＼*dV~k f p2dV>0.

Then we see that p=0 on M. This contradicts the hypothesis. Therefore k

must be nonnegative. □

The previous proposition is immediately proved by (1.10) and thislemma.

Let us prove Theorem 1.

Proof of Theorem 1. Let ir be the inner product operator with respect

to a vector field£ on M, that is, operating it to a (0, 2)-type tensor T, then

we get the 1-form i{r=Z>jTjidxi.

The second equality can be shown by direct computation :

(3.5)

l

_

~2
WtfXzg +

ldZ'g) *-(jC&
+ ^K'g, 2wtdwtRC)

a.e. on M,

for any vector field£ on M. Integrating the both sides of (3.5) over B(2t) and

applying Stokes' theorem, we have

(3.6) 0=

jBCSt)

1

2

I^H+^-dK, w^)dv~＼BWi<2R≫ ≫>X<8RdV

JS(2£)

wt(£zg+^K-g)＼*dV-[ lxzg + -K-g, 2wtdwt^)dV.

> n /i jB(2t)＼ ft I

Putting Z―dp in (3.6)and using Adp=dAp=nkdp, it follows that

(3.7) 0=f <R-(n-l)kg, w＼dpRdp>dV
JS(2£)

+ ( w＼＼Hp+kpg＼*dV+＼ (llp+kpg,2wtdwtRdPydV.
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From Schwartz's inequality and (1.18), we have

(3.8) f (Hp+kpg, 2wtdwt(3dp>dV

JB(2t)

^f ＼wt{llp+ kpg)＼-2＼dwtRdp＼dV

JB(2t)

^＼[ ＼wt{llp+kpg)＼*dv'＼l*U[ ＼dwtRdp＼*dv＼'Z

^＼＼[ ＼wt(Hp + kpg)＼*dV+±[ ＼dwtRdp＼*dV~＼

^4-K ＼wtVnp+kpg)＼*dV+^r[ ＼dP＼*dv]

I LjB(2J) r JJ3(2t) J

Then it follows from (3.7) combined with (3.8) that

2C2

JB(2t)

＼dp＼2dV^＼ <R-(n-l)kg, w＼dpRdp>dV

B(Zt)

+ 2
JB(2£)

Furthermore, from (1.16),we alsohave

(3.9)

＼＼llp+ kpg＼*dV.
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2C2c r i r
-s-l ＼dp＼2dV^＼ <R-(n-l)kg,w2tdpRdp>dV+^r＼ w＼＼Hp + kpg＼*dV.

I J M Jit Z J M

Since
f
＼dp＼*dV<oo and liminff <R-(n-l)kg, w2tdpRdp)dV^0, letting f―

oo in (3.9), we see

(3.10) O^liminff (R-(n-l)kg, w2tdpRdp)dV +
^-liminft

w＼＼llp + kpg＼2dV
J-.0O JM O £->ooJM

^-M W?p + kPg＼*dV2:0.

Hence we have

(3.11) Wp + kpg=Q on M.

This combined with Theorem B and Lemma completes the proof of Theorem 1.

□

Theorem 3 is proved below as an application of Theorem 2.

Proof of Theorem 3. Since the scalar curvature r is constant, we first

note that J7x|G|2=0 [resp. J7x|^l2=0] is equivalent to Xx＼R＼2=0 [resp. XX＼K |2

=0].

The next equality can be shown by direct computation :
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(3.12)
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d(w＼pidf,G)=(wtpG,2dwtRdp} + <w2tG,dp$)dp>

+ (w＼pG,llpy a.e.on M.

Integrating the both sides of (3.12) over B(2t), applying Stokes' theorem,

and using (1.11) and the condition Xx＼R＼2z=R, we have

(3.13)

[1]

[2]

0=f <wtpG, 2dwtRdp}dV +

JS(2O
w2tp2＼G＼2dV.

jB(2t)
(w＼G, dpRdp)dV

＼wtpG＼2+(n-2)＼2dwt(g)dp＼2

<: w2tp*＼G＼2 +
4(n-2)C2

t2
＼dpV

^(,-,l≪K.

r

liminfi w

t-,oo J M
?,o2|G|W^Q.

2

m-2

Hence we know the inequality

(3.14) ＼<wtpG, 2dwtRdp)＼^
_J_

1
^=2

Then it follows from (3.13) combined with (3.14) and also (1.16) that

(3.15) ＼u<w＼G,dp^dp-ydV^^^^wlp^G^dV

Letting£->ooin (3.15),we see

(3.16) liminff (w＼G, dpRdp>dV^ =

Then we get the condition (2.3) in Theorem 2.

Similarly, using (1.12) and the condition XX＼K＼2=Q in place of (1.11) and

Xx＼R＼2=0, we can obtain the condition (2.3). Thus we can apply Theorem 2,

thereby completing the proof of Theorem 3. □
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