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ON ISOMETRY OF A COMPLETE RIEMANNIAN
MANIFOLD TO A SPHERE

By

Yongfan ZHENG

0. Intreduction

In this paper, we obtain some conditions for a complete Riemannian manifold
to be isometric to a sphere. This is to expand the following theorems for a
compact Riemannian manifold M into the case where M is complete and not
necessarily compact.

THEOREM A (Yano [6]). If M isa compact orientable Riemannian manifold
of dimension n>2 with constant scalar curvature and admits a non-isometric con-
formal vector field X: L xg=2pg such that

©.1) SMG(dp, do)dV =0,

then M is isometric to a sphere.

As a corollary of this theorem, the condition (0.1) may be replaced by
Lx|R|?=0 or Lx|K|*=0 (see [3, 6, 8]).

1. Notations and Preliminaries

Throughout this paper, by a Riemannian manifold we always mean an n-
dimensional connected and oriented manifold covered by a system of local co-
ordinates {x%} (=1, 2, ---, n) and furnished with a Riemannian metric tensor
g=g;dx’®dx*. We use the Einstein summation convention with respect to
repeated indices. Furthermore, geometric objects and some functions appeared
in this paper are always assumed to be smooth, unless otherwise stated.

Let M be an n-dimensional Riemannian manifold with a metric tensor g.
We use the standard notation for the covariant derivative V, the exterior dif-
ferential d, the codifferential d, the Laplacian A and the volume element dV of

M. We denote by <,> and | | the inner product and the norm induced in
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fibers of various tensor bundles by the metric g of M. In this paper, we
identify a I1-form with its dual vector field with respect to g and they are
represented by the same letter.

By .Ly we mean the operators of Lie derivation with respect to a vector
field X on M. A vector field (or an infinitesimal transformation) X on M is
said to be conformal if it satisfies £ yg=2pg for some function p on M. In
particular, X is isometric if p is identically zero.

We denote by K,;» and R;; local components of the curvature tensor K
and the Ricci tensor R of M respectively, and by » the scalar curvature of M.
We put

1.1 Gji:Rji—(r/n)gji;
(1.2 ijih:Kkjih—' {7’/"(”—1)}(gkhgji—gjhgki)-
Then the tensor G measures the deviation of M from an Einstein manifold and

the tensor Z that from a manifold of constant curvature.
The following theorem proved by Obata [4] is well known.

THEOREM B. If a complete Riemannian manifold M of dimension n = 2
admits a nonconstant function o such that VWp+k*pg=0, where k is a positive
constant, then M is isometric to an n-sphere of radius 1/k.

By using this theorem and the above geometric objects, Obata [4], Yano
6, 7, 8], Hsiung [3] and others have obtained some conditions for a compact
Riemannain manifold admitting a conformal vector field to be isometric to a
sphere. One of these results is Theorem A in the introduction.

The following formulae are well known (see [8]). These were prepared
in order to prove Theorem A and others.

(1.3) <G, £>=G,g""=0,

where g?* are the contravariant components of g defined by g’*g;.=di.

(1.4) Zjin8" =Gy,

(L.5) |G*=|R|*—1/n)r*,

(1.6) | Z1?=|K |*—{2/n(n—D)}r*,

(1.7 0G=—g"V,Gdx'=—{(n—2)/2n}dr.

Let X be a conformal vector field on M, that is, it satisfies

(1.8) ngjizvjxi‘Fvin:ngjiy
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where p is a function, and then we have

(1.9) o=—(1/m)dX=(1/n)V.X",

(1.10) Lxr=2n—1)Ap—2pr,

(1.11) Lx|GP=—2(n—2)]WVp, Gy—4p|G|?,
(1.12) Ly|Z|*=—8(IVp, G>—4p|Z|.

Now, we assume that M is complete. Let f be the geodesic distance func-
tion from a fixed point on M and B(¢) the geodesic ball of radius ¢, i.e.,

(1.13) Bty={xeM|f(x)<t}

for t>0. Then there exists a Lipschitz continuous function w, on M satisfying
the following properties :

(1.14) 0w (x)<1, xeM,

(1.15) w(x)=1, xeB@),

(1.16) supp w,C B(2t),

(1.17) w, —>1 (f — o0),

(1.18) ldw | =C/t almost everywhere on M,

where C is a positive constant independent of ¢ (see [1, 2, 9]).

2. Main Results

THEOREM 1. Let M be a complete Riemannian manifold of dimension n=2,
and admit a non-constant function p such that Ap=nkp for some non-zero constant
k. If p satisfies that

@1 lim infSM<R—(n—l)kg, wid p®Rd pydV =0,
and has first derivatives in LY M), then M is isometric to a sphere.

Especially, if R(dp, dp)=(n—1)k|dp|?, then we get the condition (2.1) in
Theorem 1. Thus we obtain the following

COROLLARY. Let M be a complete Riemannian manifold of dimension n=2,
aud admit a non-constant function p such that Ap=nkp for some non-zero constant
k. If the Ricci curvature of M in the direction dp is not less than (n—1) k and
p has first derivatives in L*(M), then M is isometric to a sphere.
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REMARK 1. In Theorem 1, if M is compact, then automatically the first
derivatives of p are in L*M) and lirtn infSM<R~—(n—l)kg, widpRdp>dV=
SM<R—(n—l)kg, dpo@dp>dV. From the proof of Theorem 1 it follows that

the assumption SMIdeZdV<+oo may be replaced by
H 2 2 —
2.2) %LIE“/”SBW ldp|*dV=0
as in the case of [5].
As a special case of Theorem 1, we assert the following

THEOREM 2. Let M be a complete Riemannain manifold of dimension n=>2
with non-zero constant scalar curvature, and admit a non-isometric comformal
vector field X: Lxg=2pg. If p satisfies that
2.3) fim inng<w%G, dp@dp>dV =0,

tsoo

and has first derivatives in L*(M), then M is isometric to a sphere.

PROOF OF THEOREM 2. It follows from (1.10) that Ap=nkp, k being the
nonzero conatant r/n(n—1). Then we have completed the proof of Theorem 2
as an application of Theorem 1. [

REMARK 2. From the comment in Remark 1 we can consider that Theorem
2 is a generalization of Theorem A.

THEOREM 3. Let M be a complete Riemannain manifold of dimension n>2
with non-zero constant scalar curvature, and admit a non-isometric comformal
vector field X: Lxg=2pg. If Lx|R|*=0 (or Lx|K|*=0) and p has first deri-
vative in L*(M), then M is isometric to a sphere.

REMARK 3. Here we remark the following fact concerning constant scalar
curvatures.

PROPOSITION. Let M be a complete Riemannian manifold M with constant
scalar curvature v, and admit a non-isometric conformal vector field X: £ yg=
20g. If p has first derivatives in LY M), then v is non-negative.

3. Proof of Theorems

In this section, we give the proofs of the theorems mentioned in §2. We
need the lemma below.
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LEMMA. Let M be a complete Riemannian manifold, and admit a non-trivial
solution p of the partial differential equation Ap=kp for some constant k. If o
has first derivatives in L} M), then k is non-negative. (see also [10]).

PrOOF. We can easily find that
3.1 o(wipdp)=—wildp|*+wipAp—<w,pdp, 2dw,> a.e.on M.

We integrate the both sides of (3.1) over B(2¢). Since Stokes’ theorem holds
for Lipschitz differential forms and w,=0 on the boundary 9aB(2t) of B(2f), the
left hand becomes zero:

SB<2L)6(1U%pdp)dV:—S w%<pdp, N>dS=0,

adB(2t)

where N and dS are the unit normal to 0B(2t) and the volume element of
0B(2t) respectively. Then we see

3.2) gmmwfldplde—kS )w%pZdV+g . Cwiodp, 2dwdV=0.

B(2t B(

From Schwartz’s inequality and (1.18), we have

Smu; {wipdp, 2dw>dV {

/2

g“mzw (wtp)de}”zUBm) <dp, Zdw5>2dV]

1/2

g[gm) (wlp)ng]mUB(mélldp 12 d1w, | ZdV]

e 2C 1/2
é[SBm)(w“o)?dV] ‘ l‘ﬁ[gmznldp'zdv] '

Now we suppose that % is negative. Using the fundamental inequality

2ab:—(«/ja —:7%—]?-— )Z—kaz—%bzg—kaz—%bz,

we get the following:

3.3

sz)<wtpdp, 2dwt>dV|

1 2 gy ACP .
=3[ty P07 1007

Then it follows from (3.2) combined with (3.3) that

27Ci 2 > 2 2 _l S 22 >
TR SB(zt)ldpl dV:SB(et)w”dpl av 2 k B(zz;wlp dv=0.
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Furthermore, from (1.16), we also have

2C?

3.4 ~ g

1
2 2 2 2,2
SMldp| dVZSthldpl dV~——2 kSMw;p dvV=0.
Since SMldp|2dV<00, letting t—oo in (3.4), we have

1, .
1 3 2 2 H 2,2
Ozlxminfgﬂlwtid‘ol dv 3 k llrtriinfSMw,p av

1
2]V — = 2
ZSMIdpldV ZkSMp dvV=0.

Then we see that p==0 on M. This contradicts the hypothesis. Therefore £
must be nonnegative. [

The previous proposition is immediately proved by (1.10) and this lemma.
Let us prove Theorem 1.

PROOF OF THEOREM 1. Let 7; be the inner product operator with respect
to a vector field { on M, that is, operating it to a (0, 2)-type tensor T, then
we get the 1-form #T={T;dx".

The second equality can be shown by direct computation :

(3.5) 5{w%z’c(.£’cg —I—%&C-g)}

n—
n

=(ac+" =2 aot, wit) 2R, wi®D

—%}wc(.fcg+%6C-g)lz—<i’;g+%6£~g, 2wzdw:®C>
a.e. on M,

for any vector field £ on M. Integrating the both sides of (3.5) over B(2f) and

applying Stokes’ theorem, we have

n—
n

(3.6) o:Sm“<Ac+ 2 aat, w%C>dV~SB(m<2R, LRV

_ig
2 JBen

Putting {=dp in (3.6) and using Adp=dAp=nkdp, it follows that

wi(Lag+ 200g)| V=, (reg+Zat-g, 2wdwl)av.

3.7) OZSB(M)U?—(n—l)kg, wid o®d p>dV

], 0E T+ og PV 4 TVp-+kpg, 2widwi@dp>dV .

B(2
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From Schwartz’s inequality and (1.18), we have

3.8) lSB(m<VVp+kpg, 2w.dw®dp>dV |

A

SB(Zt) |lw(VWp+kpg)l-2ldw .KdpldV

1/2

IA

1/2
[gB(zn le(VVp—{—kpg)lde:I [453(20 }dw,@dp\de]

1 2 2 ]
é?[gm lw (VTp+kpg)| dV+4SE(m | dw.Rd p|2dV
1 , 2 4c .
gf[gBm)lu,(Wp—{—kpg)] v+ gwnum dv]
Then it follows from (3.7) combined with (3.8) that
20 , o ,
; gm“ \dol dvggw)m (n—Dkg, widoRdp>dV
+lg wi|VWVo+kog|*dV
2 VB ° ’

Furthermore, from (1.16), we also have

2C*

3.9

1
ngdpldeng<R—(n—1)kg, w?dp@dde—i—Eng%IVVp-i—kpglde.

Since SM]dp|2dV<oo and lirtn inng<R—(n—1)kg, widpRdpydV =0, letting t—
oo in (3.9), we see

1

(3.10) ogli?nnfSM<R—(n—1)kg, wid p®dp>dV +

lim infS W VVp+kpg]*dV

1 2y >
= SMIVVp+kpg| dV=0.

Hence we have
(3.11) Wo-+kpg=0 on M.

This combined with Theorem B and Lemma completes the proof of Theorem 1.
O

Theorem 3 is proved below as an application of Theorem 2.

PrOOF OF THEOREM 3. Since the scalar curvature r is constant, we first
note that £ x|G|?=0[resp. .L x| Z|*=0] is equivalent to L x| R|*=0 [resp. .L x| K |*
=0].

The next equality can be shown by direct computation :
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(3.12) —0(wipiq,G)=<w.pG, 2dw,Qdp>+<{wiG, dpRdp)
+<wipG, Wpe) a.e. on M.

Integrating the both sides of (3.12) over B(2f), applying Stokes’ theorem,
and using (1.11) and the condition £ x|R|[*=0, we have

—_ y 2
(3.13) O—SB(“)(LL“OG, 2dwt®dp>dV+gB(m<ugG, dp®dp>dV

2 2,2 2
o n—ZSBm)w‘p [Gl*dV.

Hence we know the inequality

1
(14 [wipG, 2w@dp)| S 7 lwipG+n—2)12dw.Rdp]?
4(n—2)C*
n—2 t?
Then it follows from (3.13) combined with (3.14) and also (1.16) that

4(n—2)C*
t2

=

wip?| G|+ dpl®.

(3.15) SM<w%G, dp®dp>dV2—ngMw%p2|G\2dV*

— [, 120170V

Letting t—oo in (3.15), we see

(3.16) ligrlinfSM<w%G, do®dpydVz= 5 1i£r_3°ionfSMw%p2 1G12dV 20,

n—
Then we get the condition (2.3) in Theorem 2.

Similarly, using (1.12) and the condition .£yx|K|*=0 in place of (1.11) and
L x|R|?*=0, we can obtain the condition (2.3). Thus we can apply Theorem 2,
thereby completing the proof of Theorem 3. O
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