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ON A SPECTRAL PROPERTY OF ANALYTIC
OPERATORS

By

In Ho JEON*, Jin Chun KIM** and Woo Young LEE*

Abstract. If Te $(X) then T is analytic if and only if (A-T)"'
has a pole for at least a Aeo(7). Furthermore, every analytic

operator has a non-trivial invariant subspace.

1. Introduction

An operator T is called algebraic if there exists a non-zero polynomial p such
that p(T)=0(cf.[1],[2]). As a natural extension of algebraicity, Halmos ([5]
Problem 97) introduced the concept of analyticity (only for a quasinilpotent
operator). In this paper we formulate the definition of analyticity of bounded
linear operators and then give a spectral property of analytic operators.

Throughout this paper suppose X is a Banach space and write $(X) for the
set of all bounded linear operators on X. If Te $£(X), write p(T) and o(T) for
the resolvent set and the spectrum of T, respectively. If K is a subset of C, write
K ,0K, accK and for the closure, the topological boundary, the accumulation
points and the isolated points of K, respectively. If there exists an integer k such
that (T)™'(0) =(T**")™"(0), we say that T has finite ascent. In that case the
smallest such integer k is denoted by a(7). If there exists an integer k such that
T*(X)=T*""(X), we say that T has finite descent. In that case the smallest such
integer k is denoted by d(7). It is known ([1], [4]) that for every compact K c C
and open £ O K there exists an open set A such that

(i) KcAc AcQ:

(i) A has at most a finite number of components {(I),};’d ;

(iii) every component ®, has a boundary formed by a finite number of simple
rectifiable Jordan curves I';;
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(iv) KNI, =0 forall i,j.
Then
I'= g)_l—‘,.j
LJ

is called a Cauchy (or an admissible) contour contained in Q\ K and surrounding
K. We recall that if T e £(X) and if f is analytic on an open neighborhood Q of
o(T) then we define

-1 -
f(T)—zm._[rf(/l)(/l T)" da,

where T is a Cauchy contour contained in Q \ 6(7T) and surrounding (7).

2. Analytic operators

We begin with:

DEFINITION 1. An operator 7 € £(X) will be called analytic if there exists a
non-zero function f analytic on an open neighborhood Q of o(T) such that
f(T)=0.

Evidently, we have
2.1 T is algebraic = T is analytic.

However the converse of (2.1) is not true in general: for example, consider a
Riesz operator whose spectrum is infinite (see below Corollary 4).
Analyticity gaurantees the existence of an isolated point of the spectrum.

LEMMA 2. If T € £(X) is analytic then o(T) has an isolated point.

PROOF.  Suppose T is analytic. Thus there exists a non-zero function f
analytic on an open neighborhood of ¢(T) such that f(T)=0. Then the spectral
mapping theorem implies that all spectral values of T are zeros of f. Thus, if all
spectral values of T are accumulation points of o(7) then it follows from the
Identity Theorem in the elementary complex analysis that f =0 on o(T), which
leads a contradiction.

The converse of Lemma 2 is not true in general. We however have:

THEOREM 3. If T e %(X), then T is analytic if and only if (A-T)" has a
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pole for at least a Aeo(T).

PROOF. («): Without loss of generality, suppose that A=0 is a pole of
(A=T)" of order n# 0. Thus a(T)=d(T)=n#0 and hence X can be written by
([31, [4D

X=T"(X)®(T")"(0).

In this case we can find a Riesz projection F, corresponding to 0: namely,

R=-L] -1 'a,

T 2m Y
where B, is an open disk of center 0 which contains no other points of o(T). We
also have

TP, =BT, P, (0)=T"(X), and P,(X)=(T")"(0).

Thus we see that 7"P,=0. In particular, the Riesz projection P, is equal to
S(T), where f is a function which takes the value 1 on B, and the value 0 on an
open neighborhood Q\ B, of the complement &(7T)\{0} such that B, N

Q\ B, =0.1f we define f:Q — C by setting
Fy=Af)

then f is analytic on Q and does not vanish on B,, and f(T)zO. This says that
T is analytic.,

(=): Suppose T is analytic. Thus there exists a non-zero function g analytic
on an open neighborhood Q of o(T) such that g(T)=0. In view of Lemma 2, we
may assume without loss of generality that 0 € isoo(T). Then there is an open
disk B, of center 0 which contains no other points of o(T) and g does not vanish
on B. Also, we may assume that B,nQ\ B, =0. If F, is the corresponding
Riesz projection as above, then the spectral mapping theorem implies that TP, is
quasinilpotent. Since 7F, = P,T, it follows that 7 is reduced by the decomposition
B(X)® P(,“'(O). Thus Fy(X) is invariant under (A-7T)" for de p (T) and hence
under g(T). Therefore, by the functional calculus,

0=8(T)| 5, x,= 8(T] 5, x,) = &(TR)).
This says that TF, is analytic because o(TF,)={0} and g is non-zero on B,. But,

since the only analytic quasinilpotent operator is nilpotent (cf. [5] Problem 97), it
follows that T"F, =0 for some ne N. If we define h:Q — C by setting
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I\A if 1eQ\B,
h(A) = )
0 if A€B,

then £ is analytic on Q and the functional calculus gives

1-F =Th(T)=nT)T.

We thus have
T"=T"(1-P)=T""W(T)=hT)T"",
which implies
T"(X)=T"WTYX)c T (X)c T"(X)
and
(T")7(0) = (KT (0) 2(T™) ™ (0) 2(T")(0),

which says that a(T)=d(T)=n#0. Thus A=0 is a pole of (A-T)"' of order
n#0.

COROLLARY 4. Every Riesz operator having non-zero spectral values is
analytic.

PROOF. If Te &£(X) is a Riesz operator then T—A has finite ascent and
finite descent for every non-zero A (cf. [3] (3.1)). Thus the result follows from
Theorem 3.

COROLLARY 5. If Te %(X) is analytic then aT+b is analytic for any
a(z0),beC.

PROOF. This follows from the fact that if (A—T)"' has a pole then so does
{(b+aA)—(aT +b)}".

COROLLARY 6. Every analytic operator has a non-trivial invariant subspace.

PROOF. Suppose T is analytic. If o(T)={A}, then it follows from Theorem
3 that T — 4 is nilpotent, so that 7 has a non-trivial invariant subspace. If o(T) is
not a singleton set the range of the Riesz projection for an isolated point of o(T)
is a non-trivial invariant subspace for 7.

THEOREM 7. If T e $(X) is analytic and N € £(X) is nilpotent commuting
with T, then T+N is also analytic.
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PROOF. Without loss of generality suppose that =0 is a pole of (A-T)""'
of order n# 0. Thus we can write 7T as a 2x2 operator matrix:
7, 0
T= [0 n] T(X)ST"(0)—TYUX)DT " (0),
where 7| is invertible and 7, is nilpotent. Since NT = TN, N can be also written
as the following operator matrix:
N, 0 :
N = {O Nj T (X)ST"(0)—> T (X)DT7"(0).
We note that N, and N, are both nilpotent, TN, = N\T, and T,N, = N,T,. It thus
follows T, + N, is invertible and T, + N, is nilpotent. Therefore we can conclude
that 7+N has finite ascent and finite descent, and hence by Theorem 3, T+N is

analytic.
It is well known that similarity preserves algebraicity. We can prove more:

THEOREM 8. Similarity preserves analyticity.

PROOF. Let S,7e€ $(X) be similar; thus there is an invertible operator
U e £(X) such that S=U"'TU. Suppose T is analytic, say, f(T)=0 for a non-
zero function f analytic on an open neighborhood & of o(T). If T is a Cauchy
contour contained in Q\o(7T) and surrounding o(7T) then it follows from the
functional calculus and the fact that ¢(S)=0c(T) that

fS$)=fU'TU)=U"f(T)U =0,

which says that § is analytic.

3. Concluding remarks

(a) Let T e£(X,),i=1,2. Even if T, and T, are both analytic, 7, ®7, may
not be analytic. For example, if N is nilpotent on ¢, and U is the unilateral shift
on (,, then T,=N®2+U) and T, = (2+N)®U are both analytic. But
o(T, ®T,) has no isolated points and therefore 7, ®T, is not analytic. Of course,
if o(T,)no(T,)=0 then T, ®T, is analytic whenever the one of them is analytic.

(b) It is known ([4] Theorem I[.4.1) that if Te¥(X) and if £ is a
neigborhood of &(T) then there exists € >0 such that ¢(S) cQ for any operator
S in £(X) with |T-S|l< & (This property is called the “upper semicontinuity of
spectra”). Thus we might conjecture that the set of all analytic operators on X is
an open subset of £(X). But this is not true in general. For example, let
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W: ¢, — ¢, be defined by setting
(3.D W(&.85. 80 =(0,6,,8,/2,8,13,-.8, I n,--).
Then W is quasinilpotent but not nilpotent. Now consider the operators
T,=W":{,—>{, foreachneN.
Then each T, is not analytic and 7, — 0, while O is analytic.
(c) The topological boundary of the set of algebraic operators may not be

analytic operators. For example, consider the operators S, :¢, — ¢, defined by
setting

S,,(épég,ézs“') =(0»§1s§2 /2,"',5” /n,0,0,‘--) foreachne N.

Then each S, is nilpotent and hence algebraic. However observe that §, - W,
where W is defined as in (3.1).
(d) From the punctured neighborhood theorem ({41, [8]), we can see that if

T € £(X) then
(3.2) do(T)\ 0,(T) # 0 =T is analytic,

where ¢,(7T) denotes the essential spectrum of 7. We tried to extend (3.2) to the
absence of index:

(3.3) iso 6(T)yNQ(T) # 0 = T is analytic,

where Q(T) denotes the set of all AeC such that T—A is ‘decomposably
regular’, in the sense ([6], [7]) that there is T7;e¥(X) for which
T-A=(T-A)T/(T-2) and T} is invertible. However, unfortunately, (3.3) fails.
For example, consider the operator

W o0
r=| | LeL-Ler,

where W is defined as in (3.1). Then T is decomposably regular with the

T,OI
°lr of

and O is the isolated point of ¢(T). However T is quasinilpotent, and hence it is

invertible operator

not analytic.

(e) The obvious extension of polynomials in an operator seems to be “infinite
polynomials”, more precisely, power seies; that is, if f is a non-zero analytic
function on a simply connected domain (or an open disk) containing o(T), then
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we would like to call 7 an analytic operator when f(7T)=0. However, this
definition does not make sense (If we concern with only quasinilpotent then the
argument of Halmos ({5] Problem 97) make sense.): in that case, in fact,
analyticity is equivalent to algebraicity. To see this, appeal to Theorem 3. If T is
analytic in the above sense then by Theorem 3, T has a finite spectrum, for whose
elements, (A —T)' has poles. Thus, via an argument of Riesz projection, T may
be expressed as

T=T& 0T,

where if o(T)={A;}, then T, -2, is nilpotent for each i=1,---,n. Then T is
algebraic and hence T is algebraic. (Perhaps Aupetit ([1] P.67) would assert this
fact in the above viewpoint.)
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