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ON A SPECTRAL PROPERTY OF ANALYTIC

OPERATORS

By

In Ho Jeon*, Jin Chun KlM** and Woo Young Lee*

Abstract. If T e £(X) then T is analyticif and only if (A-T)"'

has a pole for at least a A eo(T). Furthermore, every analytic

operatorhas a non-trivialinvariantsubspace.

1. Introduction

An operator T is called algebraic if there exists a non-zero polynomial p such

that p(T) - O(cf.[l],[2]).As a natural extension of algebraicity, Halmos ([5]

Problem 97) introduced the concept of analyticity (only for a quasinilpotent

operator). In this paper we formulate the definition of analyticity of bounded

linear operators and then give a spectral property of analytic operators.

Throughout thispaper suppose X is a Banach space and write !£(X) for the

set of all bounded linear operators on X. If Tg^E(X), write p(T) and (j(T) for

the resolvent set and the spectrum of T, respectively. If K is a subset of C, write

K ,dK, accK and for the closure, the topological boundary, the accumulation

points and the isolated points of K, respectively. If there exists an integer k such

that (Tkyl(0) = (Tk+ryl(0), we say that T has finite ascent. In that case the

smallest such integer k is denoted by a(T). If there exists an integer k such that

Tk (X) = Tk+V(X), we say that T has finite descent. In that case the smallest such

integer k is denoted by d{T). It is known ([1], [4]) that for every compact K cC

and open Qid K there exists an open set A such that

(i) KaAczA^Q;

(ii) A has at most a finitenumber of components {R/}"=l;

(iii)every component <E>.has a boundary formed by a finitenumber of simple

rectifiableJordan curves F,..;
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(Iv) KnT- =0 for all i,j

Then

r = ur.

is called a Cauchy (or an admissible) contour contained in O ＼K and surrounding

K. We recall thatif T e !£(X) and if/is analytic on an open neighborhood Q. of

<J(T) then we define

f(T) =
I
f{X)(X-TyxdX,

where T is a Cauchy contour contained in Q. ＼g(T) and surrounding d(T)

2. Analytic operators

We begin with:

Definition 1. An operator T e X(X) will be called analytic if there exists a

non-zero function / analytic on an open neighborhood Q of <J(T) such that

f(T) = 0.

Evidently,we have

(2.1) T is algebraic => T is analytic.

However the converse of (2.1)is not true in general: for example, consider a

Riesz operatorwhose spectrum isinfinite(see below Corollary4).

Analyticity gaurantees the existence of an isolated point of the spectrum.

LEMMA 2. If T e !£(X) is analytic then o(T) has an isolatedpoint.

PROOF. Suppose T is analytic. Thus there exists a non-zero function /

analytic on an open neighborhood of o{T) such that f(T) - 0. Then the spectral

mapping theorem implies that all spectral values of T are zeros of/. Thus, if all

spectral values of T are accumulation points of <J(T) then it follows from the

Identity Theorem in the elementary complex analysis that / = 0 on o(J), which

leads a r.nnfradirtinn

The converse of Lemma 2 is not truein general.We however have:

Theorem 3. // Te£(X), then T is analyticif and only if (X-T)~] has a
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pole for at least a le o{T).

381

PROOF. (<=): Without loss of generality, suppose that A = 0 is a pole of

(A - T)~lof order n*0. Thus a{T) = d(T) = n * 0 and hence X can be written by

([3], [4])

X=T"(X)R(T"y](0).

In this case we can find a Riesz projection Pn corresponding to 0: namely,

^

0

*0
(X-TyxdX

where Bo is an open disk of center 0 which contains no other points of o(T). We

also have

TP0=PJ, F0-'(0) = r(X), and P0(X) = (Tnyl(0).

Thus we see that T"P0=0. In particular, the Riesz projection Po is equal to

f(T), where/is a function which takes the value 1 on Bo and the value 0 on an

open neighborhood Q ＼Bo of the complement o(T) ＼{0} such that Bo n

Q ＼Bo = 0. If we define /: Q -≫C by setting

/(A)=A"/a)

then / is analytic on O and does not vanish on Bo, and f(T) = 0. This says that

r is analytic,

(=≫):Suppose Tis analytic. Thus there exists a non-zero function g analytic

on an open neighborhood Q of o(T) such that g(T) = 0. In view of Lemma 2, we

may assume without loss of generality that 0 e isoa(T). Then there is an open

disk Bo of center 0 which contains no other points of o(T) and g does not vanish

on BQ. Also, we may assume that J5onO＼Z?o=0. If Po is the corresponding

Riesz projection as above, then the spectral mapping theorem implies that TP0 is

quasinilpotent. Since TP0 - P0T, it follows that T is reduced by the decomposition

Fo(X)0Po~'(O).Thus P0(X) is invariant under (A-7)"1 for A e p (T) and hence

under e(T). Therefore, bv the functional calculus.

R = g{T)＼P()(X)=g{T＼Pi)iX))= g(TPQ).

This says that TP0 is analytic because cr(7P0) = {0} and g is non-zero on Bo. But,

since the only analytic quasinilpotent operator is nilpotent (cf. [5] Problem 97), it

follows that TnPn - 0 for some neN. If we define h:Q-^C by setting
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h{X) =
if AeQ＼B0

if AeB0

then h is analytic on Q and the functional calculus gives

1- Po = Th(T) = h(T)T.

We thus have

T" =Tn(l-P0) = Tn+'h(T) = h(T)T"+l,

which implies

T"(X) = Tn+'h(T)(X) c T"+i(X) c Tn(X)

and

cr r1 (0) = (h(T)r+l )-■(0) 2 (r+1)-'(0) 2 (r r1 cox

which says that a(T) = d(T) = n*0. Thus A = 0 is a pole of (A-T)"1 of order

COROLLARY 4. Every Riesz operator having non-zero spectral values is

analytic.

PROOF. If Te!£(X) is a Riesz operator then T- X has finiteascent and

finitedescent for every non-zero A (cf. [3] (3.1)). Thus the result follows from

Theorem 3.

COROLLARY 5. // Te!£(X) is analytic then aT + b is analytic for any

a(*0),beC.

PROOF. This follows from the fact that if (X-T)~] has a pole then so does

{(b + afy-iaT + b)}-1.

COROLLARY 6. Every analytic operator has a non-trivialinvariant subspace.

Proof. Suppose T is analytic.If o(T) = {X), then it follows from Theorem

3 that T- A is nilpotent, so that Thas a non-trivialinvariant subspace. If a(T) is

not a singleton set the range of the Riesz projection for an isolated point of a(T)

is a non-trivialinvariant subspace for T.

THEOREM 7. // Te!£(X) is analytic and N e !£(X) is nilpotent commuting

with T, then T+N is also analytic.
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PROOF. Without loss of generality suppose that A = 0 is a pole of (A-T)"1

of order n ±0 .Thus we can write T as a 2x2 operator matrix:

T = ＼ ＼:T"(X)RT-"(0) >T"(X)RT-"(0),
|_0 T2＼

where Txis invertible and T2 is nilpotent. Since NT = 77V,N can be also written

as the following operator matrix:

w= ＼:T"(X)Rt-"(0)―>r(i)er"(0).
[0 7V2J

We note that TV, and N2 are both nilpotent, TlNl = N{T{ and T2N2 = N2T2. It thus

follows T{+ N{ isinvertible and T2 + N2 is nilpotent.Therefore we can conclude

that T+N has finiteascent and finitedescent, and hence by Theorem 3, T+N is

analytic.

It is well known that similarity preserves algebraicity. We can prove more:

THEOREM 8. Similaritypreserves analyticity.

PROOF. Let S,TeX(X) be similar;thus there is an invertibleoperator

Ue£(X) such that S = U~]TU. Suppose T is analytic,say, f(T) = 0 for a non-

zero function/analytic on an open neighborhood Q of o{T). If F is a Cauchy

contour containedin Q＼ o{T) and surrounding g(T) then it follows from the

functionalcalculusand the factthat o(S) = R(T) that

f(S) = f(U-lTU) = U~lf(T)U = 0,

which says thatS is analytic.

3. Concluding remarks

(a) Let Tie£(Xi),i = ＼,2.Even if Tx and T2 are both analytic, 7^07; may

not be analytic. For example, if N is nilpotent on i2 and U is the unilateral shift

on i2, then 7j:=N0(2 + £/) and T2:=(2 + N)RU are both analytic. But

o(T＼RT2) has no isolated points and therefore 7] <&T2 is not analytic. Of course,

if R{T＼)n(j{T2) = 0 then T{RT2 is analytic whenever the one of them is analytic.

(b) It is known ([4] Theorem II.4.1) that if T e <£(X) and if O is a

neigborhood of <J(T) then there exists e > 0 such that a(S) a Q for any operator

S in !£(X) with ||T-S||<£ (This property is called the "upper semicontinuity of

spectra"). Thus we might conjecture that the set of all analytic operators on X is

an open subset of i£(X). But this is not true in general. For example, let
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W: £2 ―> £2 be defined by setting

(3.1) W(£1,4,£3,-.0 = (0,^2/2,4/3,--s4/>V--).

Then W is quasinilpotent but not nilpotent. Now consider the operators

Tn = W" : £2 -> £2 for each n e N.

Then each Tn is not analytic and Tn ―> 0, while 0 is analytic.

(c) The topological boundary of the set of algebraic operators may not be

analytic operators. For example, consider the operators Sn :£2-*l2 defined by

setting

5II(^l,^2,^,-") = (O,|l,|2/2,-",^II/≪,O,O,--0 for each neN.

Then each Sn is nilpotent and hence algebraic. However observe that Sn―*W,

where W is defined as in (3.1).

(d) From the punctured neighborhood theorem ([4], [8]), we can see that if

T g £{X) then

(3.2) <9<T(r)＼cre(r)*0=>risanalytic,

where Ge{T) denotes the essential spectrum of T. We tried to extend (3.2) to the

absence of index:

(3.3) iso o{T) n Q(T) * 0 => T is analytic,

where Q(T) denotes the set of all AeC such that T-X is 'decomposably

regular', in the sense ([6], [7]) that there is T'x e !£(X) for which

T-X = (T-X)T^{T-X) and T'x is invertible. However, unfortunately, (3.3) fails.

For example, consider the operator

where W is defined as in (3.1). Then T is decomposably regular with the

invertible operator

ro /]

and 0 is the isolated point of o(T). However T is quasinilpotent, and hence itis

not analytic.

(e) The obvious extension of polynomials in an operator seems to be "infinite

polynomials", more precisely, power seies; that is, if / is a non-zero analytic

function on a simply connected domain (or an open disk) containing o{T), then
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we would like to call T an analytic operator when f(T) - 0. However, this

definition does not make sense (If we concern with only quasinilpotent then the

argument of Halmos ([5] Problem 97) make sense.): in that case, in fact,

analyticityis equivalent to algebraicity.To see this,appeal to Theorem 3. If T is

analyticin the above sense then by Theorem 3, T has a finitespectrum, for whose

elements, (X-T)~l has poles. Thus, via an argument of Riesz projection, T may

be expressed as

T = Txc ･･･c Tn,

where if <r(7;)= {A,.},then 7)-A,, is nilpotent for each i = l,---,n.Then 7) is

algebraic and hence T is algebraic. (Perhaps Aupetit ([1] P.67) would assert this

factin the above viewpoint.)
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