REGULAR RETRACTIONS ONTO FINITE DIMENSIONAL CONVEX SETS AND THE AR-PROPERTY FOR ROBERTS SPACES

By

Nguyen To NHU, Nguyen NHUY and Tran Van AN

Abstract. It is proved that if X is an n-dimensional closed convex subset in a linear metric space E, then there is a retraction $r: E \to X$ such that $||x - r(x)|| \le 2(n+1)||x - X||$ for every $x \in E$. This fact is applied to study the AR-property in linear metric spaces. We identify a class of Roberts spaces with the AR-property. We also give a direct proof that for every $p \in [0,1), L_p$ is a needle point space.

1. Introduction.

Following Roberts [R1] [R2], let us say that a non-zero point a of a linear metric space X is a *needle point* iff for every $\varepsilon > 0$, there exists a finite set $A(a,\varepsilon) = \{a_1,\dots,a_m\}$, satisfying the following conditions:

(1) $||a_i|| < \varepsilon$ for every $i = 1, \dots, m$;

(2) for every $b \in A^+(a,\varepsilon)$, there is an $\alpha \in [0,1]$ such that $||b - \alpha a|| < \varepsilon$ where $A^+ = \operatorname{conv}(A \cup \{\theta\})$;

(3) $a = \frac{1}{m}(a_1 + \dots + a_m).$

We say that X is a *needle point space* iff X is complete separable linear metric space in which every non-zero point is a needle point. Roberts [R2] has shown that for every $p \in [0,1)$ the space L_p is a needle point space. We recall that the spaces L_p , $0 \le p < 1$, are defined by

$$L_p = \left\{ f: [0,1] \to \mathbf{R}; \int_0^1 |f(t)|^p \, dt < \infty \right\} \text{ for } 0 < p < 1,$$

and

This paper was financially supported by the National Basic Research Program in Natural Sciences. Received May 6, 1994

$$L_0 = \left\{ f: [0,1] \to \mathbf{R}; \int_0^1 \frac{|f(t)|}{1+|f(t)|} dt < \infty \right\}.$$

Other examples of needle point spaces were given in [R1] [KP] [KPR].

Roberts [R2], see also [KPR], showed that if X is a needle point space then for any summable sequence $s = \{s_n\}$ of positive numbers there is a compact convex set C(s) without any extreme points. Therefore, the classical theorem of Krein and Milman [KM] fails to be true for non-locally convex linear metric spaces. We shall describe Roberts' method of constructing C(s).

Let $s = \{s_n\}$ be a summable sequence of positive numbers. Let a_0 be a nonzero point of X. Using the needle point space property of X, we choose by induction, a sequence $\{A_n(s)\}$ of finite subsets of X, where $A_0(s) = \{a_0\}$, with the following properties:

(4) $||a|| < \varepsilon_n$ for every $a \in A_n(s)$; where

- (5) $\varepsilon_n = [m(n-1)]^{-1} s_n$, and $m(n) = \text{card } A_n(s);$
- (6) If $A_n(s) = \{a_1^n, \dots, a_{m(n)}^n\}$ then $A_{n+1}(s)$ is defined by the formula

$$A_{n+1}(s) = \bigcup_{i=1}^{m(n)} A(a_i^n, \mathcal{E}_{n+1}),$$

where $A(a_i^n, \varepsilon_{n+1}), i = 1, \dots, m(n)$, are determined by the needle point property of a_i^n , see (1)-(3).

We define

(7)
$$C(s) = \overline{\bigcup_{n=1}^{\infty} \hat{A}_n}(s) \subset X$$
; where $\hat{A} = \operatorname{conv}(A^+ \cup (-A^+))$, see (2).

Roberts showed in [R2] that C(s) is a compact convex set with no extreme points. We call C(s) a *Roberts space*.

In [NT1], see also [N1], it was shown that every needle point space contains a compact convex AR-set without any extreme points. However, the results of [NT1] and [N1] do not indicate which of Roberts spaces are AR. So far, it is shown that all Roberts spaces have the fixed point property, see [NT2]. Nevertheless, the AR-property for Roberts spaces is still being questioned. Several readers of the papers [NT1] and [N1] have asked the authors to classify Roberts spaces with the AR-property: This would be very important for further study of the AR-property for Roberts spaces. In this note, we identify a class of Roberts spaces with the AR-property. Namely, we shall show that, instead of $\varepsilon_n = (m(n-1))^{-1}s_n$, see (5), we take $\varepsilon_n = (m(n-1))^{-2}s_n$, then the resulting Roberts space $C^*(s)$, defined by (7), is an AR.

NOTATION AND CONVENTIONS. By a linear metric space we mean a

282

topological linear space X which is metrizable. We equip X with an F-norm $\|\cdot\|$ such that, see [Re],

$$\|\lambda x\| \le \|x\|$$
 for every $x \in X$ and $\lambda \in \mathbb{R}$ with $|\lambda| \le 1$.

Let A be a subset of a linear metric space X. For $x \in X$ we write

$$||x - A|| = \inf \{||x - y|| : y \in A\};$$

and for $a, b \in X$, we write:

$$[a, b] = \{ \alpha a + (1 - \alpha)b : \alpha \in [0, 1] \}.$$

2. Regular Retractions onto Finite Dimensional Convex Sets

In this section we establish the following fact which is an extension of [NT2, Lemma 1].

PROPOSITION 1. Let X be an n-dimensional closed convex set in a linear metric space E. Then there is a continuous retraction $r: E \to X$ such that

(8) $||x - r(x)|| \le 2(n+1)||x - X||$ for every $x \in E$.

PROOF. Let $\{U_s, a_s\}_{s \in S}$ denote a Dugundji system for $E \setminus X$, that is a family $\{U_s, a_s\}_{s \in S}$ with the following properties, see [BP, P. 58],:

(i) $U_s \subset E \setminus X$ and $a_s \in X$ for every $s \in S$;

- (ii) $\{U_s\}_{s\in S}$ is a locally finite open cover of $E \setminus X$;
- (iii) $||x a_s|| \le 2||x X||$ for every $x \in U_s$.

Let $\{\lambda_s\}_{s\in S}$ be a locally finite partition of unity inscribed into $\{U_s\}_{s\in S}$. We define $r: E \to X$ by Dugundji formula:

$$r(x) = \begin{cases} x & \text{if } x \in X; \\ \sum_{s \in S} \lambda_s(x) a_s & \text{if } x \in E \setminus X. \end{cases}$$

Observe that the continuity of r follows from (8). Let us verify (8). Denote $A = \{a_s : s \in S\}$. Then we have $r(x) \in \text{conv } A$ for every $x \in E \setminus X$. Let A(x) denote a subset of A of *smallest cardinality* so that $r(x) \in \text{conv } A(x)$. It is easy to see that

(9) card $A(x) \le k+1$, where $k = \dim \text{span } A(x)$.

In fact assume that card $A(x) \ge k+2$. Since dim span A(x) = k there exist $a_0, \dots, a_k \in A(x)$ such that $\operatorname{Int} A_k \neq \emptyset$, where $A_k = \operatorname{conv} A_k^0, A_k^0 = \{a_0, \dots, a_k\}$ and Int A denotes the interior of A relative to the space $E(x) = \operatorname{span} A(x)$.

Let $B_k^0 = A(x) \setminus A_k^0$ and $B_k = \operatorname{conv} B_k^0$. Since card $A_k^0 = k + 1 < \operatorname{card} A(x)$, we

have $r(x) \notin A_k$. Therefore there exist $a \in A_k$, $b \in B_k$ so that $r(x) \in [a,b]$.

Since Int $A_k \neq \emptyset$ and $r(x) \notin A_k$, there exists a face S of the simplex A_k such that $[a,b] \cap S \neq \emptyset$. Let $S = \operatorname{conv} S^0$, where $S^0 \subset A_k^0$ and card $S^0 < k+1$. Since $r(x) \notin A_k$ we have $r(x) \in \operatorname{conv} (S \cup B_k) = \operatorname{conv} (S^0 \cup B^0_k)$. Observe that

 $S^0 \cup B_k^0 \subset A(x)$ and card $(S^0 \cup B_k^0) < \operatorname{card}(A_k^0 \cup B_k^0) = \operatorname{card} A(x)$.

This contradiction proves (9).

Let $A(x) = \{a_0, \dots, a_k\}$. Then we have $r(x) = \sum_{i=0}^k \lambda_i a_i$, where $a_i \in A(x)$, i = 0, \dots , 1 and $\sum_{i=0}^k \lambda_i = 1$.

Then from (iii) we have

$$\|r(x) - x\| \le \left\| \sum_{i=0}^{k} \lambda_{i} a_{i} - x \right\|$$

$$\le \sum_{i=0}^{k} \|\lambda_{i} (a_{i} - x)\|$$

$$\le \sum_{i=0}^{k} \|a_{i} - x\|$$

$$\le 2(k+1)\|x - X\| \le 2(n+1)\|x - X\|.$$

The proposition is proved.

Now we are going to apply Proposition 1 to obtain several results on the ARproperty in linear metric spaces.

Following [N2], a convex set X has the locally convex approximation property, the LCAP, iff there exist a sequence of convex subsets $\{X_n\}$ of X such that each X_n can be affinely embedded into a locally convex space and a sequence of continuous maps $f_n: X \to X_n$ such that for some summable sequence $\{s_n\}$ of positive numbers we have

(LC)
$$\lim_{n \to \infty} \inf (s_n)^{-1} ||x - f_n(x)|| = 0$$
 for every $x \in X$.

It was proved in [N2] that any convex set with LCAP is an AR.

In [N1] it was said that a convex set X has the finite dimensional approximation property, the FDAP, iff there exists a sequence of continuous maps $\{f_n\}$ from X into finite dimensional subsets X_n of X such that for some summable sequence $\{s_n\}$ of positive numbers we have

(FD)
$$\lim_{n \to \infty} \inf (s_n)^{-1} (1 + \dim X_n) ||x - f_n(x)|| = 0$$
 for every $x \in X$.

It was proved in [N1] that if a convex set X has the FDAP then any convex subset of X is an AR.

From Proposition 1, we get the following result:

284

COROLLARY 1. Let X be a convex set in a linear metric space. Assume that there exists a sequence of finite dimensional convex subsets $\{X_n\}$ of X such that for some summable sequence $\{s_n\}$ of positive numbers we have

(10) $\liminf (s_n)^{-1} (1 + \dim X_n)^k ||x - X_n|| = 0$ for every $x \in X$.

Then

(i) if k = 1 then X is an AR;

(ii) if k = 2 then every convex subset of X is an AR.

PROOF. Since $X_n, n \in N$, are finite dimensional convex sets, we have dim $X_n = \dim \overline{X_n}$, where \overline{Y} denotes the closure of Y in X. Therefore we may assume that X_n is closed in X for every $n \in N$. From Proposition 1, it follows that condition (10) for k = 1 implies that X has the LCAP and for k = 2 implies that X has the FDAP.

QUESTION 1. Does condition (10) for k = 1 imply that every convex subset of X is an AR?

3. The AR-Property for Roberts Spaces

Now we define $C^*(s)$ in the same way as C(s), see (7). The only difference is that, instead of $\varepsilon_n = (m(n-1))^{-1}s_n$, see (5), we take $\varepsilon_n = (m(n-1))^{-2}s_n$. We shall prove that the resulting Roberts space $C^*(s)$, defined by (7), is an AR. First we show:

CLAIM 1. $||x - \hat{A}_n(s)|| < 2\sum_{i=n}^{\infty} (m(i))^{-1} s_{i+1}$ for every $x \in C^*(s)$ and $n \in N$.

PROOF. Let $A_n(s) = \{a_1^n, \dots, a_{m(n)}^n\}$. Observe that for every $x \in A_{n+1}^+(s)$ there exist $b_i \in A^+(a_1^n, \varepsilon_{n+1})$ and $\lambda_i \ge 0, i = 1, \dots, m(n)$, with $\sum_{i=1}^{m(n)} \lambda_i \le 1$ such that $x = \sum_{i=1}^{m(n)} \lambda_i b_i$, see (6).

By (2) for every $i = 1, \dots, m(n)$ there is an $\alpha_i \in [0, 1]$ such that

$$||b_i - \alpha_i a_i^n|| < \varepsilon_{n+1} = (m(n))^{-2} s_{n+1}.$$

Let $y = \sum_{i=1}^{m(n)} \alpha_i \lambda_i a_i^n \in A_n^+(s)$. Then we get

$$|x - y|| \le \sum_{i=1}^{m(n)} ||b_i - \alpha_i a_i^n|| \le m(n)\varepsilon_{n+1}$$

= $m(n)(m(n))^{-2} s_{n+1} = (m(n))^{-1} s_{n+1}$

Therefore

Nguyen To NHU, Nguyen NHUY and Tran Van AN

$$||x - A_n^+(s)|| \le (m(n))^{-1} s_{n+1}$$
 for every $x \in A_{n+1}^+(s)$.

It follows that

$$\|x \in \hat{A}_n(s)\| \le 2(m(n))^{-1} s_{n+1}$$
 for every $x \in \hat{A}_{n-1}(s)$.

By induction we have

$$||x - \hat{A}_n(s)|| \le 2 \sum_{i=n}^{n+k} (m(i))^{-1} s_{i+1}$$
 for every $x \in \hat{A}_{n+k}(s)$ and $k \in N$

Consequently, the claim follows from the above inequality.

THEOREM 1. $C^*(s)$ is an AR.

PROOF. We aim to verify condition (i) of Corollary 1. Observe that $\{m(n)\}\$ is an increasing sequence. Therefore from Claim 1 we get

(11) $||x - A_n(s)|| < 2(m(n))^{-1} s_{n+1}$ for every $x \in C^*(s)$ and $n \in N$; where $S_n = \sum_{i=n}^{\infty} s_i$.

Since $\{s_i\}$ is summable, $S_n \to 0$ as $n \to \infty$. It follows that there exists a sequence $\{n_k\} \subset N$ such that $S_{n_k} k^{-1} 2^{-k}$ for every $k \in N$. Therefore from (11) we get, for $x \in C^*(s)$ and $k \in N$

$$\|x - \hat{A}_{n_k}(s)\| < 2(m(n_k))^{-1} S_{n_k} < 2(m(n_k))^{-1} k^{-1} 2^{-k}.$$

It follows that

$$(1+m(n_k))2^k ||x-\hat{A}_{n_k}(s)|| < 3k^{-1}$$
 for every $k \in N$.

Since dim $\hat{A}_{n_k}(s) \le m(n_k)$ and $\{2^{-k}\}$ is a summable sequence we infer that the sequence $\{\hat{A}_{n_k}(s)\}$ satisfies condition (i) of Corollary 1. Consequently, Theorem 1 is proved.

4. The Needle Point Space Property for $L_p, p \in [0,1)$

As we have seen, if we have a needle point space at hands, it is not hard to construct a compact convex set with no extreme points. However, it is quite difficult to give an example of a needle point space. Roberts [R2] showed that for every $p \in [0,1)$, the space L_p is a needle point space. However, the proof of Roberts [R2] as well as other proofs given in [KP] [KPR] (see also [Re]) do not provide a direct proof that the spaces L_p , $0 \le p < 1$, are needle point spaces. (In [R2] it was proved that $L_p(Q)$, where $Q = [0,1]^{\infty}$ is the Hilbert cube, is a needle point space and since Q is isomorphic (in measure) to [0,1], it follows that L_p is a

286

needle point space). It would be nicer if we could have a clear picture of a Roberts space directly in L_p . In this section, we give such a direct proof.

First we show:

CLAIM 2. For every $n \in N$, there exists a sequence $\{S_k^n, k = 1, 2, \dots\}$ of measurable sets in [0,1] with the following properties:

(12) $\mu(S_k^n) = n^{-1}$ for every $k \in N$;

(13) $\mu(S_k^n \cap S_j^n) = n^{-2}$ for every $k \neq j$.

(μ denotes the Lebesgue measure on [0,1]).

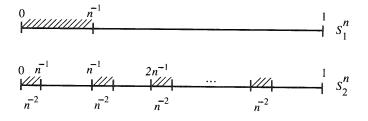
PROOF. For $n \in N$ and I = [a, b], we define

$$S^{n}(I) = [a, a + n^{-1}(b - a)].$$

For every $k \in N$, let π_k denote the partition of [0,1] into n^{k-1} equal subintervals of length n^{-k+1} . We define S_k^n by the formula:

$$S_k^n = \bigcup_{I \in \pi_k} S^n(I)$$
, see Figure 1.

It is easy to see that the sequence $\{S_k^n, k = 1, 2, \dots\}$ satisfies the required conditions. The claim is proved.



Denote $a_k^n = n\chi_{S_k^n}$ for every $k \in N$, where χ_A is the characteristic function of

We have the following simple observation:

CLAIM 3.
$$\int_{0}^{1} (a_{k}^{n} - 1)(a_{j}^{n} - 1) dt = 0$$
 for every $k \neq j$.

PROOF. From (12) (13) we get

Α.

Nguyen To NHU, Nguyen NHUY and Tran Van AN

$$\int_{0}^{1} (a_{k}^{n} - 1)(a_{j}^{n} - 1) dt = \int_{0}^{1} (a_{k}^{n} a_{j}^{n} - a_{k}^{n} - a_{j}^{n} + 1) dt$$

=
$$\int_{0}^{1} (n^{2} \chi_{S_{k}^{n} \cap S_{j}^{n}} - n \chi_{S_{k}^{n}} - n \chi_{S_{j}^{n}} + 1) dt$$

=
$$n^{2} \mu (S_{k}^{n} \cap S_{j}^{n}) - n \mu (S_{k}^{n}) - n \mu (S_{j}^{n}) + 1$$

=
$$1 - 1 - 1 + 1 = 0$$
.

The claim is proved.

From Claim 3 and from Jensen's inequality we get

(14)
$$\left\|\sum_{i=1}^{k} \alpha_{i}(a_{i}^{n}-1)\right\| \leq \left(\int_{0}^{1} \left(\sum_{i=1}^{k} (\alpha_{i}(a_{i}^{n}-1))\right)^{2}\right)^{p/2}$$
$$= \left(\int_{0}^{1} \left(\sum_{i=1}^{k} (\alpha_{i}(a_{i}^{n}-1))\right)^{2}\right)^{p/2}$$

for any finite sequence $\alpha_i \ge 0, i = 1, \dots, k$ with $\sum_{i=1}^k \alpha_i \le 1$.

From (14) we obtain the following fact, which implies the needle point space property for the spaces L_p , $0 \le p < 1$, see [R2] [KP].

PROPOSITION 2. For any $\varepsilon > 0$ and a > 0 there exist an $n \in N$ and b, 0 < b < a, such that for any finitely non-zero sequence $\{\alpha_i\}$ with $\alpha_i \ge 0$ and $\sum \alpha_i \le 1$ we have $\|\sum_{\alpha_i \ge a} \alpha_i a_i^n\| < \varepsilon$ and $\|\sum_{x_i \le b} \alpha_i (a_i^n - 1)\| < \varepsilon$.

REMARK. Observe that the AR-property for the first-known example of a compact convex set with no extreme points, constructed by Roberts [R1], has been established in [NST]. However, the AR-problem for Roberts spaces has not yet been answered even for the spaces L_p , $0 \le p < 1$.

References

- [BP] C. Bessaga and A. Pelczynski, Selected topics in infinite dimensional topology, Warsawa 1975.
- [KM] M. G. Krein and D. P. Milman, On extreme points of regular convex sets, Studia Math. 9 (1940), 133-138.
- [KP] N. J. Kalton and N. T. Peck, A re-examination of Roberts' example of compact convex sets with no extreme points. Math. Ann. 253 (1980), 89–101.

[KPR] N. J. Kalton, N. T. Peck and J. W. Roberts, An F-space sampler, London Math. Soc. Lecture Note Series 89 (1984).

- [K1] V. Klee, Shrinkable neighbourhoods in Hausdorff linear spaces, Math. Ann. 141 (1960), 281-285.
- [K2] V. Klee, Laray-Schauder theory without local convexity, Math. Ann. 141 (1960), 286–296.
- [N1] Nguyen To Nhu, The finite dimensional approximation property and the AR-property in needle point spaces, J. London Math. Soc. (To appear).

- [N2] Nguyen To Nhu, Admissibility, the locally convex approximation property an the ARproperty in linear metric spaces, Proc. Amer. Math. Soc.123(1995), 3233 – 3241.
- [NST] Nguyen To Nhu, Jose M. R. Sanjurjo and Tran Van An, The AR-property for Roberts' sample of a compact convex set with no extreme points, Proc. Amer. Math. Soc. (To appear).
- [NT1] Nguyen To Nhu and Le Hoang Tri, Every needle point space contains a compact convex ARset with no extreme points, Proc. Amer. Math. Soc. **120** (1994), 1261–1265.
- [NT2] Nguyen To Nhu and Le Hoang Tri, No Roberts space is a counter-example to Schauder's conjecture, Topology 33 (1994), 371-378.
- [R1] J. W. Roberts, A compact convex set with no extreme points, Studia Math. 60 (1977), 255– 266.
- [R2] J. W. Roberts, Pathological compact convex sets in the spaces L_p . The altgeld Book, University of Illinois, 1976.
- [Re] S. Rolewicz, Metric linear spaces, Warszawa 1972; Second publication, Warszawa 1982.

Nguyen To Nhu Institute of Mathematics P.O. Box 631, Bo Ho, Hanoi Vietnam Current address: Department of Mathematical Sciences New Mexico State University Box 30001, Dept. 3MB Las Cruces, NM 88003 – 8001 USA Nguyen Nhuy and Tran Van An Department of Mathematics University of Vinh, Nghetinh Vietnam