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Abstract. We treat Killing-transversally symmetric spaces

(briefly, KTS-spaces), that is, Riemannian manifolds equipped with

a complete unit Killing vector field such that the reflections with

respect to the flow lines of that field can be extended to global

isometries. Such manifolds are homogeneous spaces equipped with a

naturally reductive homogeneous structure and they provide a rich

set of examples of reflection spaces. We prove that each simply

connected reducible KTS-space M is a Riemannian product of a

symmetric space AT and a special kind of KTS-space M", called a

contact KTS-space. Such a particular manifold M" is an

irreducible, odd-dimensional principal G1 -bundle over a Hermitian

symmetric space. The main purpose of the paper is to give a

classificationof thisspecial class of manifolds M".

1. Introduction

A Riemannian manifold (M,g) Is said to be a locally Killing-transversally

symmetric space (briefly, a locally KTS-space) if it is equipped with a

Riemannian foliation whose leaves are generated by a unit Killing vector field t,

and such that the local reflections with respect to these leaves are isometries. It is

said to be a globally KTS-space if £ is complete and if the local isometric

reflections can be extended to global ones. Several aspects of the geometry of

these spaces have been treatedin [7]―[13] where a lot of examples are given.
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The motivation for the consideration of this class of Riemannian manifolds

stems from the study of two particular classes of manifolds. On the one hand,

these spaces form a subclass of the class of manifolds equipped with a

transversally symmetric Riemannian foliation [27], [28] and on the other hand,

they extend the class of {locally or globally) (p-symmetric spaces. The latter ones

are considered in contact geometry [25], [30] where they play a similar role as

the Hermitian symmetric spaces in Kahler geometry. Their classification is

treatedin [3], [4], [15], [20]. (See also [6] for a survey, more details and further

references.)

It is worthwhile to note that the globally KTS-spaces provide a large class of

examples of reflection spaces. The latter ones were introduced and studied in

[21].

The main purpose of thispaper is to discuss the classificationof the (globally)

KTS-spaces. Such a space is necessarily a homogeneous space endowed with a

naturally reductive homogeneous structure(see Section 2).In Section 5 we prove

that a reducible simply connected KTS-space M is a Riemannian product of a

Riemannian symmetric space M' and a KTS-space M" of a special type, namely

such that the dual one-form 7] of t,is a contact form on M". Such spaces M"

are called contact KTS-spaces. They are always irreducible and odd-

dimensional. In Section 2 we show that KTS-spaces are principal G1-bundles

over a symmetric space. In Section 3 we prove that for a simply connected

contact KTS-space the base space of the fibration is always a Hermitian

symmetric space. This fact is used in Section 4 where we treat the construction

and the classificationof the contact KTS-spaces in detail. Section 2 also contains

some preliminary material.

2. Locally and globally KIHIng-traesversally symmetric spaces

Let (M, g) be an n-dimensional, smooth, connected Riemannian manifold with

n>2. V denotes the Levi Civita connection and R the associated Riemannian

curvature tensor defined by

R - V -fV VI1XUV ~ v [U,V] L v (/≫v y J

for all £/,V e 36(Af), the Lie algebra of C°°vector fields on M.

Further, let ^ be a unit Killing vector field on (M,g) and "^ the flow

generated by it. It is a Riemannian flow which is called an isometric flow [26].

The leaves of this Riemannian foliation are geodesies and moreover, a geodesic

which is orthogonal to the flow field £at one of its points is orthogonal to it at all

of its points. Such geodesies are called transversal (or horizontal) geodesies.
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Further, the foliation is locally a Riemannian submersion. So, let me(M,g) and

let °libe a small open neighborhood of m such that t,is regular on °U . Then the

map 7T:°U―>GU' = °U/^ is a submersion. Let g' denote the metric on °＼idefined

by

g'(X',Y') = g(X'*,Y'*)

for X',F'eI(°li') where X'*,Y'* denote the horizontal lifts of X',Y' with

respect to the (n-1)-dimensional horizontal distribution of °IT determined by the

one-form ry on M given by

U e 3E(M). Then the Levi Civita connection V of g' is determined by

X'J'el^).

Next, we may use the O'Neill tensors A and T to study the flow $,. See [22]

for more detrails (and also [1], [24], [26]). In our case T = 0 since the leaves are

geodesies. For the integrability tensor A we have

A^ = V^, A^U = 0,

AXY = <yxY)v = -AYX, g{AxY,$) = -g(Ax£,Y)

where Ue£(M) and X,Y are horizontal vectors fields, v denotes the vertical

component. Further, put

HU = -AVZ

and define the (0, 2)-tensor field h by

h(U,V) = g(HU,V),

U,V e £(M). Since % is a Killing field, h is clearly skew-symmetric. Then we

obtain

AxY = h(X,Y)Z =
±ri([X,Y])Z

for all horizontal fields X, Y. This yields

(2.1) h = -di).

Here we note that A = 0, or equivalently h = 0, if and only if the horizontal

distribution is integrable and in that case, since T = 0, (M,g) is locally a product

of an (n - 1)-dimensional manifold and a line. Further, V and V' are related by
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(2.2) V Y'* =(V'X,Y')* +h(X'*,Y'*)l;

Using the given formulas we obtain easily

Lemma 2.1. We have

(V^h)(X,Y) = g((V1;A)xY,& = 0,

R(X,Y,Z,O = (Vzh)(X,Y),

R(X, £ Y,£)= g(HX, HY) = -g(H2X, Y)

for all horizontal X, Y, Z.

Since //£= 0, it follows that the sectional curvature K(X,£) = 0 for all

horizontal X if and only if h = 0. Moreover, K(X,E,) > 0 for all X if and only if H

has maximal rank n - 1 in which case n is necessarily odd. This is equivalent to

the statement that 7]is a contact form. A flow $L with this property is called a

contact flow and a flow $. such that /?(X,Y,Z,%) = 0 for all horizontal X, Y, Z is

said to be a normal flow [8],[12].

PROPOSITION 2.1. Let ^ be an isometricflow on (M,g). Then ^ is normal

ifand onlyif

(V.HW = g(HU, HV)% + T](V)H2U

forall U.V(=?f(M"i.

Further, for a normal flow the curvature tensor satisfiesthe identities

RUV^ = J](V)H2U-T](U)H2V,

R^V = g(HU,HV)^ + r](V)H2U,

U, V g3l(M) . This and (2.2) yield that the curvature tensors of V and V are

related bv

(2.3) (R'XV.Z')*
-RX".*Y≫

Z'*-g(HY'*,Z'*)HX'*

+g(HX'*, Z'* )HY'* + 2g(HX'*, Y'* )HZ'*,

for all X'J',Zf *£(%') [8].

Now, let H' be the tensor field of type (1,1) on °M/ determined by

H'X' = 7C*(HX'*), X'e£(°!r). Then H' is skew-symmetric with respect to g'
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(Vx#t H)Y'* = ((V'X.H')Y')* + g(HX'*,HY'* )£.

Using thisand Proposition 2.1 we derive that ^ is normal if and only if V'H' = 0

(see also [8]) and then we have

(2.4) R'H,X,Y,+R'X,H,Y,=O

for X',Y'£%(%').

Next, let(M,g) be equipped with an isometric flow ^ and define the tensoi

field7 of type (1,2) by

(2.5) TVV = g(HU, V)£+ n(U)HV - tj(V)HU

for all tangent U,V. (Note that this T is unrelated to the O'Neill tensor.) Then

we have TVU = 0. Moreover, V = V - T defines a metric connection which is

called the canonical connection of the isometric flow $* [8]. Its torsion K is

given by K = -2T and its geodesies are the same as those of V. A direel

computation shows that£and r＼are V -parallel.Further, ^ is normal if and onl)

i-f V7T ―A TQ1 Till n*>Ain tinicrxicawia Piovo

(2.6)
Ruv - Ruv +[TV,TV]- 2TT

In what follows we define now the locally and globally Killing-transversally

symmetric spaces. Therefore, let me M and let a be the flow line of £through it.

A local diffeomorphism sm of M defined in a neighborhood °ltof m is said to be

the (local) reflection with respect to o if for every transversal geodesic y(s),

where y(0) liesin the intersection of °ltand o, we have

(sm°y)(s) = y(-s)

for all s with y(±s)e6ll, s being the arc length of y. Then Sm =sm< (m) is given

Sm=(-I + 27iR%)(m)

and itis a linear isometry. Moreover, sm satisfies

^=expmo5m°exp;n'.

First xm(*atafe*

DEFINITION 2.1. A locally Killing-transversally symmetric space (briefly a

locally KTS-space) is a Riemannian manifold (M,g) equipped with an isometric

flow $＼ such that the local reflection sm with respect to the flow line through it is



326 j. c. Gonzalez-Davila, M. C. GonzAlez-Davila and L. Vanhecke

a (local) isometry for all m e M. In what follows we will denote (M,g,is^) by

(M,g,£).

For the locally KTS-spaces we have the following characterizations by using

the curvature tensor R and the canonical connection.

PROPOSITION 2.2 [8]. The following statements are equivalent for an

(M,g,&:

(i) (M,g,%) is a locally KTS-space;

(ii)

(iii

^ is normal and (VXR)(X,Y,X,Y) = O for allhorizontalX, Y;

)VR = VH = 0 (or equivalent^, Vr = VH = 0).

PROPOSITION 2.3 [10]. Let ^ be a contact flow on (M,g). Then (M,g,£) is

a locally KTS-space if and only if ^ is normal and

(VXR)(X,HX,X,HX) = O

for all horizontal X.

PROPOSITION 2.4 [8]. Let ^ be a normal flow on (M,g). Then (M,g,%) is a

locally KTS-space if and only if each base space °li'of a local Riemannian

submersion n :°li―≫°li'= °lt/1 is a locallysymmetric space.

Locally KTS-spaces are locallyhomogeneous spaces. More precisely,using

the theory of homogeneous structuresstudiedin [29],we have

PROPOSITION 2.5 [8]. (M,g,£) is a locally KTS-space if and only if the

tensorfieldT definesa homogeneous structureon it.

Note that,because TVU = 0, T determines then a naturally reductive structure

[29].

Secondly, we consider

Definition 2.2. Let (M,g) be a Riemannian manifold and | a nowhere

vanishing complete Killing vector fieldon M. Then (M,g,£) is said to be a

(globally)Killing-transversallysymmetric space (briefly,a KTS-space) if and

onlyif each localreflections can be extended to a globalisometry.

Note that thisimplies that £is a unit vector field.

Clearly, any KTS-space is a locally KTS-space. Further, we have
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THEOREM 2.1 [7]. A complete, connected,simply connected locally KTS-

space is a KTS-space.

From this we get at once

Corollary 2.1. Let M be the universalcovering of a complete locally

KTS-space (M,g,%) and T the covering map. Then (M,g = x＼*g,%),where

theliftof£,is a KTS-space.

I is

It is worthwhile to note here that the consideration of KTS-spaces was

motivated by the study of (p-symmetric spaces. These spaces were introduced by

Takahashi [25] in Sasakian geometry where they may be considered as the

analogs of Hermitian symmetric spaces in Kahler geometry. These manifolds are

Sasakian spaces with a characteristic vector field £ which generates a one-

parameter group of global isometries and such that the local reflections with

respect to the integral curves of this field t, can be extended to global

automorphisms of the contact metric structure.Sasakian space forms are the most

simple examples but there are a lot more. (We refer to [2], [32], [3], [6], [15]

for more information and further references.) Further, they provide examples of

KTS-spaces and moreover, if (M,g,%) is a (^-symmetric space, then also

(M,c~2g,c^) is a KTS-space for any non-vanishing constant c. Conversely, it is

proved in [8] that if (M,g,%) is a KTS-space with K(X,%) = c2 *Q for all

horizontal X, then (M,c2g,c~i%) is equipped with a ^symmetric structure having

c~'£as characteristic vector field.

In the rest of the paper a lot of other examples will be given but we will now

describe some easy ones. First,it is clear that any Euclidean space is a KTS-

space by considering an arbitrary unit parallel vector fieldas Killing vector field.

Further, all odd-dimensional spheres S2k+＼r) are also KTS-spaces. To see this,

consider S2k+i(r) as a hypersphere in Ck+] and put £,= JN where N is a unit

normal vector field of the hypersphere and J the natural complex structure of

Ck+i.(See for examole 121.)In thiscontext we have

PROPOSITION 2.6 [7]. Let (M,g) he an irreducible simply connected

symmetric space and $* an isometricflow on it.Then (M,g,%) is a KTS-space if

and onlyif(M,g) isisometrictoan odd-dimensional sphere.

Next, using Definition 2.2 we obtain the following list of examples:

(i) (M, xM2,g,(£0)) where (Af,,g,,|) is a KTS-space, (M2,g2) a

symmetric space and g the product metric. For (m,,m2)e M, xM, the reflection
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is given by

(pl,p2)^(sli(pl),sl2(p2))

where slm is the reflection with respect to the flow line of t,through m, on M,

and s2m îs the geodesic symmetry with center m2 on M9;

(ii) (MxR,g,(£,Q)) and (MxS',g,(£,0)) where (Af,g,|) is a KTS-space;

(iii)fAf xil,g,fo,-7-11 and (Mx5',^,(0,|)) where (M,g) is a symmetric
V V at))

and £a unit tangent vector fieldon S1.

Now we shall focus our attention on the homogeneity of the KTS-spaces. Let

A(M) denote the group of all isometries of (M,g,%) leaving £invariant, that is,

the automorphisms of the KTS-space (M,g,%). Itis a closed subgroup of the full

isometry group 3(M,g) and hence a Lie group. Since the reflections sm preserve

£for all me M, sm e A(M). Further, let G1 be the one-parameter group of global

transformations y/tgenerated by the vector field£.Then G1 is a Lie subgroup of

A(M) which belongs to its center. We have

THEOREM 2.2. // (Af,g,£) is a KTS-space, then A(M) acts transitivelyon

M.

PROOF. Since the group of isometries generated by all global reflections

with respect to the flow lines and also G1 belong to A(M), the proof is essentially

the same as that given in [81 for the local version. ■

Using Proposition 2.5 and the note following it,we have

THEOREM 2.3. A simply connected KTS-space is a naturally reductive

homogeneous space.

Since M is connected, the identity component G = AO(M) of A(M) acts

transitivelyon M too and M can be identified with the coset manifold G/K, where

K is the isotropy subgroup of G at some point oe M, under the diffeomorphism

gK-＼ g(o), geG. Let (G,k) be the universal covering of G. Then G is a Lie

group and ft:G ―≫G is a Lie group homomorphism. Denote by K the identity

component of n'](K). Then G/K is simply connected. The map

WiG/K^G/K given by x＼(gK) = 7t(g)K is differentiate and onto. If on G/K

we consider the metric tensor T*g, then T is a local isometry and (G/ K,*?) is

a covering of M (see, for example, [14, p. 74]). So, M = G/K and from

Corollary 2.1 we get that (M = G/K,g,£) is a KTS-space. Note that, since it. is
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an isomorphism, K coincides with the connected subgroup of G associated with

the Lie algebra f of K.

The orbit space M' = MI£ of a KTS-space (M,g,%) admits a unique

structure of a differentiate manifold such that the natural projection n: M ―> M'

is a submersion. In fact, M' may be identified in a natural way with the coset

space G/K-G1 and G/K^G/K-G* is a submersion. Note that t, is a regular

vector field.

The Lie group G1 is isomorphic to either the circle group S{ or to R

depending on whether the leaves are compact or not. Here we identify Sl with

the set {e2mt ,t e R}. If G1 is a circle and / is the length of the integral curves of
<j;,

then Sl acts freely on M on the right by

(2.7) m≪≪2*=^W

for each me M . If G1 is isomorphic to R, we identify the action of teR on M

with that of yt eG1. In both cases M is a principal fibre bundle over M' with

structural group G1. The corresponding fundamental vector field q generated by

dldt for G1 - Sl is given by

(2.8) S0≫) =
4

(m°e2ltit)= lt;m

at ≫=0

and in that case /"'?]defines a connection form on M. For G{
~

R, c,= % and then

r]is a connection form. Moreover, in the first case, using (2.1) and the fact that

S[ is Abelian. the usual structure eauation is reduced to

H dri = -±h

where O is the curvature form. Now, let h' be the (0,2)-tensor fieldon M' given

by

h'{X',Y') = g'(H'X',Y')

for all X',Yf e!{M'). Then h = x*(h') and the characteristic class eM,(M)e

H2(M'.Z) of Mover M' (see I"!71) satisfies

(2.9) e*'(M)=
[-■}*']

In what follows we shallconsider the KTS-space (M,g,%) as a principalbundle

over M' = M/% with the descriptiongiven above.

Theorem 2.4. Let (M,g,B) be a KTS-space. Then the base space (M',g')
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is a symmetric space. The geodesic symmetry s

(2.10) on = n° s

/

at m' = 7t(m), me M, satisfies

PROOF. (2.10) is a consistent definition of s'n,,m' e M' and we derive

from it on TmM'. Further, since

(2.11) s m*
X'*

where X' e£(M'), we see that s

required result follows. ■

Ill' is an isometry with respect to g'. So the

We finish thissection with a uniqueness result for KTS-spaces which will be

used later.

PROPOSITION 2.7. Let (Af,,g,,£,)and (M2,g2,^2) be simply connected KTS-

spaces over a symmetric space (M',gf) which have the same field H' on Mf.

Then thereexistsan isometry f :(M,,g,) ―≫(M,,g2) such that /*£,-^ <^2.

Proof. Let o, eM, and o2 e M2 be such that tt,(o,) = tt2O2). since nx and

/r2are Riemannian submersions, the endomorphism L: To Ml ―>^M2 defined by

where X' e TK
{o )M',

is an isometry and moreover

(2.12) LoH,=H2oL.

Using the homogeneous structures T, and T2 defined as in (2.5), we obtain

and hence,

where U,VeT

LKX

IT u - T TV

(U,V) = KJLU,LV)

M. and K, (respectively K2) is the torsion of the canonical_,.

^

__OI...I __,
^---J

connection V, (respectively V2).

Further, (2.12) and (2.3) yield

LRWVW = R2LULVLW

and hence, with (2.6):

LRWVW = R2LULVLW.

Moreover, applying Proposition 2.2, we have V,^, = V2K2 = V,R, = V2i?9 = 0. So
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there exists a unique affine isomorphism/of M, onto M2 such that /^ = L [18].

In addition, since V, and V2 are metric and L is an isometry,/ is an isometry.

Finally, since £, and £2 are Killing vector fields, we obtain /*£,= £2 which

nomniete.s the nroof. H

3. Contact KTS-spaces

Let (M, g) be a Riemannian manifold equipped with a contact flow ^. From

now on we willconsider contactKTS-spaces.

Ihtret*i/oracaii/o

Proposition 3.1 [13]. Let ^ be a normal contact flow on a simply

connected, complete Riemannian manifold (M,g). Then (M,g,%) is a (contact)

KTS-space if and only if it is a naturallyreductive homogeneous space with

invariantunitvectorfieldt.

Further,using[31, Proposition6.10],we get

PROPOSITION 3.2. A contact KTS-space M is an irreducibleRiemannian

manifoldand itshomogeneous holonomy group coincideswith the group SO(n) of

allisomp.trip.s(n = dim M).

Next, we consider the symmetric base space (M' = MIt,,g') of a contact

KTS-space (M,g,%). Let A(M') denote the group of all its H'-preserving

isometries. Since it is a closed subgroup of S(M'), it is a Lie transformation

group of M'. Since the reflectionsare //-preserving it follows, using (2.11), that

H' is invariant under the geodesic symmetries of M'. Hence A(M') contains all

the symmetries and so, it acts transitivelyon AT. Moreover, 3f,(M') is semi-

simple if and only if AO(M') is semi-simple and in this case AO(M') = 3(,(M')

(see [14, proof of Lemma 4.3, Chapter VIII]). For a more detailed study we start

with the rase nf an irrednrihie M' We have

THEOREM 3.1. Let (M,g,%) be a contact KTS-space such that the base

space (M',g') is an irreducible symmetric space. Then the sectionalcurvature

K(X,%), X horizontal,is a non-vanishing constant k = c2>0. Moreover,

(M,c2g,c~lH,c~i%,cT])is a (p-symmetric space over the Hermitian symmetric

snace (M''.c2'p'.c'xH'＼.
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Proof. M' may be represented as G/K where G = ZO(M') is semi-simple

and acts effectivelyon M', and K is compact [14, Theorem 4.1, Chapter V]. Let

g = f cm be the canonical decomposition of the Lie algebra Cj of G. Under the

identification of m with To,M', o' being the coset K, H'o, defines a linear

endomorphism of m which we extend to Q by Hro,X = 0 for X e f. We shall prove

that Wo, is a derivation of Q, thatis,

H'O,[X,Y] = [H'O,X,Y] + [X, H'O,Y],

X, Yeq. First, this identity is trivialfor X,Yef. For Xef and Y e m it is

satisfied since H' is Ad(JT)-mvariant. Finally, let X,Fern. Since R'XY=

-adm([X,Y]), (2.4) yields

arfm[H'O.X,Y] + adm[X, H;,,Y]= 0.

Now, using the fact that the representation f-≫aJm(f) is faithful,we get from

this:

[H'o,X,Y] + [X,H'o.Y] = 0

and so, H'o,is a derivation.

Now, since G is semi-simple, every derivation of $ is inner [5, Corollaire 3,

p. 73]. So there is an element ZoeQ such that H'o,= ad(Zo). As H'o,is of

maximal rank n-l = dimM', Zo e f and consequently, Zo is in the center of I.

Now, using [18, Proposition 7.5, Chapter XI] we get that q is simple and applying

[18, Theorem 9.6, Chapter XI] M' admits an invariant Hermitian structure.From

[14, Proposition 6.2, Chapter VIII] the center Z(K) of K is one-dimensional and

analyticallyisomorphic to the circle group. The complex structure Jo, on m can

be expressed as Jo, = adm(Zi) where Z, belongs to the center of I. Then, there

exists a non-vanishing constant c such that Zo=cZi and so H'),=cJo,. Thus,

(M',g',c~lH') is a Hermitian symmetric space. Then, using Lemma 2.1, we get

K{X,t;) = c2 for all horizontal X. The rest follows now by direct computation or

as in [8, Theorem 3.2] and so (M',c2g,c~lH,c~l£,cri)is a (p-symmetric space. ■

Remark 3.1. Note thatif in the situation of Theorem 3.1, M fibers over M'

such that we have a principal S1-bundle and if ≪f>denotes the Kahler form of

(M',g',J) (that is, <S>(X',Yf)= g'(JX',Y'), X',Y' e %(M')), then the characteristic

class eM,{M) coincides with the cohomology class [-yO] where /is the length of

the fibers.

Further we prove
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THEOREM 3.2. The base space (M',gf) of a simply connected contact KTS-

space (M,g,%) is a (simply connected) Hermitian symmetric space. Moreover, if

M' = Mq x A/,'x ･･･x M'r is its de Rham decomposition
and 'M ,■,/ = 0,･･･,r, are the

smooth distributions on M obtained by the horizontal lifts of the tangent vectors to

M;, then, for each meM, %t(m) = W0(m)@Wl(m)R---RWr(m) is an H-

invariant orthogonal decomposition of the horizontal subspace W (m) and each

sectional curvature K(W ,.£). / = !･･･. r. is a nositive constant.

Proof. Let (M,g,%) be a simply connected contact KTS-space over a

symmetric space M'. From the existence of local sections of the submersion

K: M ―>M' and from the fact that the fibers are connected one gets that M' is

also simply connected. Let G = Ao(M') and let K denote the isotropy subgroup of

G at some point o' of AT. If (&,*＼) is the universal covering group of G and K

the identity component of *F~!(K),then M' = GIK.

Next, let M' = Mn x M,' x ･･･x M' be the de Rham decomposition of M' where

Mq is a Euclidean space and M[,---,M'r are irreducible symmetric spaces.

Further, G and K admit decompositions G = Go x G, x---xGr and ^" = ^ox

Ar,x-"X^rr such that M?=Gj/ Kj, /= 0,1,･･-,/-.Consider also the compact and

non-compact factors M'+ and Mi of M'. Then M' = M0'xM'xM', G = GQx

G+xG_,K = KoxK+xK_ and M'Q=GJ KQ,M'+=GJ K+,M'_=G_IK_. Let

ni, m0, m+, nt_ denote the eigenspaces for the eigenvalue -1 of o* where cris

the automorphism of G given by o ＼g＼-^>$'o,gs'o,.As usual these eigenspaces may

be identifiedwith tangent spaces to AT, M'Q, M'+, Mi and tn = m0 c m+ c m_.

Since H'o,:m.-^va is Ad(^T)-invariant, it follows that m0, m+, m_ are

invariant under H'o,(see proof of Proposition 4.4 in Chapter VIII of [14]). As

G+ and G_ are semi-simple Lie groups and H'o,is of maximal rank, it follows as

in the proof of Theorem 3.1, that there is a Z. e Z(!_,) and a Z e Z(f ) such that

o'|m = adm+(Z+) and H'o>_ =adm_(Z_). But, Z++Z_= Zx+--- + Zr where

Zj eZ(tj), j = l,---,r,and thisyields

H'o.=H'o,mQXadmi(Zl)x-xadmr(Zr).

So, each Mj = Gj I Kj admits an invariant Hermitian structure

exist non-vanishing constants c,,---,c such that

(3.1)
admi(Zj) = CjJj

Then thelinearoperatoron m+ cm_ given by

―ad^iZ^x-xj-ad^iZ,)

JJ and there



334 J. C. Gonzalez-Davila, M. C. Gonzalez-Davila and L. Vanhecke

defines an almost complex structure on M'+xM!_. Hence, taking also into account

that the dimension of M^ is even, we have a Hermitian structure on M'. Lemma

2.1 yields that the sectional curvatures K(3t .,t) = c], j = 1,･･･,r. ■

4. Construction of contact KTS-spaces

In thissection we will construct several classes of contact KTS-spaces which

will play a fundamental role in the classification.

4.1. Contact KTS-spaces over Irreducible Hermitian

symmetric spaces

Let M' = G/K be an n'-dimensionalirreducibleHermitian symmetric space

where G is a connected simple Lie group with trivial center and acting

effectively on AT, and K connected and compact. Let cj= fctn~ be the

canonical decomposition of the Lie algebra Q. Since all G-invariant Riemannian

metrics on AT coincide up to a constant factor, we assume that, under the

identification of m~ with TOM', o' being the coset K, the Riemannian metric on

M' is given by (3B _ where B is the Killing form of Q. P < 0 if G is compact and

fi> 0 if G is non-compact. The center of f is one-dimensional and there exists a

Zo gZ(I) such that Jo =ad (Zo) defines the corresponding complex structure j

on M'. Since f is compact, we have f = t)RRZo where I) is the compact semi-

simple subalgebra [f,f]. Let HczK be the connected subgroup associated to &.

Then H is also compact and M = G/H is a manifold with m = m~
c RZO as

tangent space at the origin. Moreover, the canonical projection n:M-^M'

defines a principal Sx -bundle.

Using [15] (see also [16], [25]), M = G/H is a globally <p-symmetric space

and an invariant Sasakian structure on M is determined by the Ad(J＼)-invariant

tensors (,?,,≪?>,,£,,??,)on in where go is the inner product PB on nx~,

go(£o,%o) = 1 and by supposing that the decomposition x＼＼~@RZ0 is orthogonal,

(po=adm(Zo), %o=-(l/2n'P)Zo and where T]o is the one-form on m such that

T/0(^0) = l, ?]o(m~) = 0. Similarly, one can define, for each c(=R-{0}, an

invariant Sasakian structure determined by the Ad(H)-invariant tensors (po,c~2^o

and the inner product (,) defined by c2pB on m~, (c~2^o,c'2^o) = l and by

supposing that n＼~@R,Zo is on orthogomal, decomposition. With this structure

M fibers again over AT with Riemannian metric given by c2j3B . Now, from

Theorem 3.1, we can construct KTS-structures on M which makes from k a

Riemannian submersion. More specifically, these structures are given by

(4.1)
(< ,,)1

2n'c(3
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where the inner product gc is defined as go with gc(Zc,%c) = l. Here, H' = cJo

and the sectional curvature K(X,%) = c2 for all horizontal X.

Let H and K be the connected subgroups of G, the universal covering of G,

associated to the Lie algebras f) and f,respectively. Then the universal covering

M of M may be written as G/H and AT as G/K. In this case M is a principal

fiberbundle over M' via the above construction with group KIH. Note that H is

also compact since & is compact and semi-simple. On M we get the

corresponding KTS-structures (gc,%c) (see Corollary 2.1).

So. usine Prooosition 2.7 and Theorem 3.1 we obtain

THEOREM 4.1. Let (Mf = GIK,e' = BB,J) be an n'-dimensional irreducible

Hermitian symmetric space. Then each simply connected KTS-space over

{M',g') isisomorphic to (M = GIH,gcl) for some ceJ?-{0}

When G is compact, then G is also compact [14, Theorem 6.9, p. 133]) and

so, k:M^M' is a principal S'-bundle. The length of the fibers on (M,g(.,|c.)

depends on c. In fact, if lc, and lc,are the lengths of the integral curves of |(. and

£,.,in (M,g..) and (M,e..,), resoectivelv, then we have

(4.2)

(2.8) yields that the fundamental vector fields generated by d/dt and its

connection forms coincide up to sign for all non-zero c. Note that (M,g_c,^_c)

corresponds, in the additive group of all principal S1-bundles over M', with the

inverse element of (M.g..,£.).

Remark 4.1. To work with the characteristic class eM,(M) we shall fix

the scalar fi"< 0 such that the corresponding Kahler form <£>°satisfies

ew,(M) = [-(l/2;r)O"]. From Remark 3.1 it then follows that the length of the

fibers of the simply connected ^symmetric space (M,g°,ip",£,",f＼°)over

(M',g' = P"B) is precisely 2n. Moreover, using (4.2), the length /(.of the fibers

of the KTS-space (M, £..,£.)satisfies

/.
27TC/3

P"

Now, let Gn be the cyclic subgroup of S] of order n. Then the quotient space

MIGn is a principal Sl-bundle over M' (see [17, p. 37]) and it is a KTS-space

with the natural structure that (gc,^c) induces on MIGn. We will use the same

notation for this induced structure. It follows from I"17, Theorem 111 that all
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principalfiberbundles over M' with structuralgroup S1 are of the form M/Gn,

neZ. Using the isomorphism between the additive group of all principal S1-

bundles over M' and the second cohomology group H2(M',Z) of M' with

integer coefficients,it follows that eM,{MIGn) = neM,{M). From Remark 3.1 it

follows that the length of the integral curves of |(. on (M/Gn,gc) is lcIn where

lc denotes the corresponding length on (M,gc). The fundamental vector field

qn on MIGn satisfiesqn =(l/n)q where q is that on M.

Finally, we consider the case of a Hermitian symmetric space M' of non-

compact type. Then M fibers over M' defining a principal Rx -bundle (see [15,

Section II.5.2]).Now, let Z[l] denote the subgroup of R generated by an element

1<=R, />0. If / > 0, then MIZ[l] is a principal 51-bundle over M' and

(|t.,|c),ce≪-{0), again defines on M/Z[l]

case, the length of the fibers on (M/ZI71,

a class of KTS-structures. In this

g ,£) is independent of c, more

precisely it is equal to /.However, from (2.8),(2.9) and Remark 3.1 we find that

the fundamental vector field gand the characteristicclass eM,(M/ Z[l]) are given

by c = ll and eM.(M/Z[l]) = [-(c/l)Q>].

4.2. Contact KTS-spaces over Hermltlan symmetric spaces

of compact type

Let M'+=G/K be a Hermitian symmetric space of compact type and

M'+= M'x---xM'r its de Rham decomposition into irreducible factors. Then

M( = Gj I Kn i = l,--,r , where each G(.is a connected, compact, simple Lie group

with trivial center. The Riemannian metric on M'+ is of the form

<,>= piB]l---lprBr where Bi is the Killing form of G, and j3,.<Q. From

Theorem 4.1 we get that the simply connected contact KTS-spaces over each M-

are given by M,. = G. /Hj,gc.,|c..X c(.gJ{-{0}, where gc denotes the unique

invariant metric determined by (/3,-fl;and ^ ) following the construction given in

Section 4.1. We identify these principal 51-bundles with the product manifolds

M[ x ･･ ･ x Mi x ･■･ x M ' as principal S]-bundles over M'+. From [17, Theorem 11]

since M'+=G/K and K is compact, {M;, / = l,---,r}generate the group of all

principal S1-bundles over M'+ or equivalently,the set of their characteristic

classes(eM,(M,.),/ = l,---,r}generates H2(M'+,Z).

Let {M+,g,%) be a KTS-space which fibers over M'. If M+ is a principal

Rx -bundle, then, for each /> 0, M+ /Z[l] is a principal S1'-bundle and so, we may

suppose that(up to a covering) M+ is a principal circle bundle over M^. Let /

denote the length of its fibers.Then there existintegers n,,---,nrsuch that



sj,m2s2l ,---,mrs
･

)

(4.3)
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eM,(M+) =
inieM,(Mi)

Now, from Remark 4.1 we have

eM;(M,)-

＼-±

p*

I

3

■ 1_
In

p>:＼
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= l,---,r,where p.t denotes the projection of M'+ onto Mf. So, using Theorem

.2.we eet

eM'+(M+) =[-M-Rs c,P*Ri
'
=＼t^eu:(M:)

and hence, by comparing thiswith (4.3), we obtain

(4.4)

(4.5)

(4.6)

where

M

Cj

Tr ' denotes

,/Gfl|x-xMr/Gn is defined by

(4.7) (m,,---,mr)($2,---,sr) =

Taking into account Remark 4.1 this may also be written as

denotes the length of the fibers of the c-symmetricwiicic i; uciiulcs me lengm or me noers or me (jo-symmetnc space

(M,.,gn q>t,
I,.,

?),.)over (M/,^,.5,.)･ From Lemma 2.1 and Theorem 3.2 we get that

K(%n%) = c} for each ie{l,--,r} and so

KWnS) =(W

Moreover, the (1, l)-tensor H' on Mf+ satisfies

,,
In.

T
lnr

THf = ―LJ, x---x―±J_

Now, suppose that M+ is a principal circle bundle over M'+ with

characteristic class eM,+(M+) = £f=,H;ew,(Af(.). Then, for each />0, M+ carries a

KTS-structure (#,,£,) over M' where the length of its integral curves is

precisely /.In fact, from [17, Theorem 5 and Theorem 11] M may be written as

M+=(M]/Gtti x---xMr/Gn)/Tr-1

the (r-l)-dimensional torus and the action of Tr~l on

("■n
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Let p:MJGlhx---xMrIGn ―≫M+ be the canonical projection and put

[(m,,---,m )]= p(m,,-･-,/≪).Then the action of S1 on M is given by

[(ml,---,mr)]s = [(mls,---,mr)] = ---= [(ml,---,mrs)]

and the projection n : M+ ―≫M'+ is defined by n °p = nx x ･･･ x nr where ni

i = !,'■･,ris the projection of Mj IGn onto M[. So, the fundamental vector field g

generated by d/dt on M+ is determined by <;= p≪<;(.for any ie{l,---,r}, where c)i

denotes the fundamental vector field on MtIGlv. From (2.8) we have

?,.=(/,./≪,.)!,･and so,

Now, put |, = (1//)<;,/ being an arbitrary positive real number. Then, by choosing

c; as in (4.5) for 1 < / < r, we get

(4.8) z=ip&

Each one-form (nj Ilj)f＼jis a connection form on MiIGn and hence, {111)7],.

where f],is the unique differentialform on M+ such that

p*?),=<:,?],x---xc,4,

defines a connection form on M+ (see [17]). (4.8) yields 7],(t;,)= l. Moreover.

for I'el(M^) we have

X'*=p^(p{*XT,---,(pr*X'f).

Now, we denote by g, the unique Riemannian metric on M+ such thai

g,(£,,Z,) = 1, %, is orthogonal to ker 7],and n:M+->M'+ becomes a Riemannian

submersion. Then %,is a unit Killing vector fieldon (M+,g,) and the length of its

integral curves is precisely /.

For each m = [(mp---,mr)]e M+ there is a unique function sm : M+ ―>M+

satisfying

where 5,'Ndenotes the reflection of MjIGn at m(..It then follows easily that ^w

is the reflection at m and hence (M+,g,,^,) is a contact KTS-space.

Thus, using Proposition 2.7 and (4.4),(4.6) we may conclude

THEOREM 4.2. Let M'+ be a Hermitian symmetric space of compact type

and M'+ = M,'x---xM' itsde Rham decomposition.Then each simply connected

contact KTS-space over M' is isomorphic, for some / > 0 and non-vanishine
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integers nx,---,nr,to {M+,g,,t)l) where

M+ = (Mi I Gni x ･･･x Mr I Gn> )/ T'-{.

The sectional curvature K(K,.,<§,)on M+, i = l,---,r(where ffliis defined as in

Theorem 3.2)is constant and satisfies

w,-,f,)=
( inB"

2nfii

where ft"is the negative scalar such that the corresponding Kdhler form <E>"on

M; verifies eM,{M,) =
＼-^R"＼

Remark 4.2. Theorem 4.2 gives the existence of contact KTS-spaces over

an arbitrary Hermitian symmetric space of compact type. However, for (p-

symmetric spaces such existence is subjected to certain restrictionson the metrics

of the base spaces (see [15, Theorem A]).

Let Mf^-GIK be an irreducible Hermitian symmetric space of compact

type. On M'+ we consider the Riemannian metrics g, and g-, determined by

f5lB and j82fi,respectively, where B is the Killing form of the Lie algebra g of

G. If /?,//?2is an irrational number, then it follows from [15, Proposition III.2]

or directly from (4.4) that there do not exist any ^symmetric space which fibers

over the product symmetric space (M+,gi)x(M+,g2).

We also have thatfor p] t-(32 the quotient space

(M+xM+)/Sl

is a contact KTS-space but it does not admit a structure of a ^-symmetric space

over M'.xMi (see [15]).

4.3. Contact KTS-spaces over Hermitian symmetric spaces

of non-compact and of Euclidean type

Let M'_ be a Hermitian symmetric space of non-compact type and

M'_ =M,'x-xM' itsde Rham decomposition.In a similarway as in Section 4.2

we getthe cosetspace

M' =(M?x---xM')/Rr~l

as a simply connected principalRl -bundle over AT where the action of Rr ' on

,x---xMr is defined by



THEOREM 4.3. Let M'_ be a Hermitian symmetric space of non-compact type

with the de Rham decomposition M'_ = M{ x ･･･x Mr. Then each simply connected

contact KTS-space over M'_ is isomorphic to

(M_=(M]x---xMr)/Rr-l,g,%)

where the KTS-structures (g,£,)defined as above depend on the r real parameters

cx,---,cr.

From (4.9) it follows that for each / > 0 the characteristic class of the principal

S1-bundle M_/Z[l] over M'_ satisfies

1=2

Next, let H(p,l), p>＼, be the connected, simply connected nilpotent Lie

group of (real) matrices of the form
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(gc ,|c..)on Mr The fundamental vector fieldq generated by dldt on

Note that this action,just as that given by (4.7), depends on the KTS-struct

determined by

(m],---,mr)(t2,---,tr) =
(mltti,m2(-t2),---,mr(-tr)).

V (=2 J

ction, just as that given by (4.7), depends on the

. The fundamental vector field g generated by M_ is

ure

for any /6 {1,･･･,/･}where p denotes the canonical projection p:Mxx

･･■xMr ―>M_. We put | = g. Again, we define the connection form 7]on M_ as

the unique differentialform on M_ such that

If g denotes the Riemannian metric on M_ constructed as in Section 4.2, we get

that (Af_,g,£)is a KTS-space. From (2.1) it follows that the corresponding (0,2)-

tensor h is determined by

n*h = h x---xh

and consequently, for the (l,l)-tensor H' on M'_ we get

(4.9) H' = cxJxx---xcrJr.

Thus, from Proposition 2.7 and Theorem 3.2 we have
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thatis, the (2/?+l)-dimensional Heisenberg group. Denote by yk,yp+k,z, ＼<k< p,

the coordinate functions on H{p,＼) defined by

yk(A) = < . yP+M) = <? , z(A) = ar2

for anv A e H(d.I) .Then we have

THEOREM 4.4. The simply connected contact KTS-spaces over the

Euclidean space E2p are isomorphic to (//(/?,l),gAA , £,= dldz) where

(4.10) 8 *.,-*■,

p

I

k=]

＼

2

and A,,---,A are positive real parameters.

PROOF. It follows from Proposition 2.7 that the different simply connected

KTS-spaces over a given symmetric space M' are related to the possible parallel

skew-symmetric tensor fields E' on M' where as mentioned before H'X' =

7Z^(HX'*). On E2p we can choose a coordinate system (xl,---,x2p)such that H'

is defined bv

(4.11) H A-

dx.
= A*t H'

dx ~ ^

it'"

A-

dxk

~TTy2≫4K )

d

where /i,,---,/xpare positive real numbers.

Then, using [8], it follows that (H(p,l),gX]...x,% = d/dz) is a KTS-space.

With the projection n :H(p, 1)―>E2p given by

y＼>-

H(p,l) is a principal I?1-bundle which is a Riemannian submersion and the

corresponding tensor field H' on E2p coincides with that given in (4.11) putting

lik =At/2, k = l,---,p. ■
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The characteristic class of the principal S'-bundle H(p,＼)/Z＼l~＼over E2p is

given, in terms of the coordinate system (xl,---,x2 ) on E2p by

eElp(H{p,l)/Z[l])= -jfKdxk Adxp+k

1 k=＼

Finally, consider the Hermitian symmetric space M' ―E2p xM', Since

H(p,l) and M_ are principal.R1-bundlesover E2p and M'_,respectively,the

manifold

N = (H(p,l)xM_)/R

is a simply connected principalRl-bundle over M' as in the non-compact case.

Following the notationsas above, the(0,2)-tensorfieldh' on M' is givenby

(p ＼

hf = I Xkdxk a dx
k

x c,O, x ･･ ･ x crOr.

Hence, using again Proposition 2.7 we obtain that each simply connected contact

KTS-space over M' is isomorphic to (N,g£) where the family of KTS-structures

(g,%) now depends on the p + r parameters A,,･･･,A ,c,,･･･,cr.

4.4 Contact KTS-spaces over a Hermitlan symmetric space

Let M' = E2p x M'_ x M'+ be a simply connected Hermitian symmetric space

where E2p, M'_ and M'+ are, respectively, of Euclidean, non-compact and

compact type. Let M'_ - M[x---xM'q and ^ = M^+lx-xMr' be the decompo-

sitionsinto irreducible Hermitian symmetric spaces of M'_ and M'+. Consider

also the contact KTS-space (M+,#,,£,) over M+ where M+ is the following

quotient manifold (see Theorem 4.2):

M+ = (Mq+X I GVi x--xMrIGn)l Tr-"-1

and where / > 0 is the length of the fibers. The coset space N/Z[l] where

N = (H(p,l)xM_)/R is also a principal Sl-bundle with the same length / for its

fibers.Then for each / > 0 we construct non-isomorphic contact KTS-structures

on the manifold

M = (N/Z[l]xM+)/Sl

considered as principal S1-bundles over M' = E2p xM'_xM'+.

Using the method given in Section 4.2, we may obtain KTS-structure (g,£)

such thatthe corresponding tensor field h' of type (0,2) is given by

(p ＼
h' = I Akdxk Adx

k
＼k=i J

X
fic&xnc^jO^j

1=1 y=l
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So we obtain, by Proposition 2.7,

Theorem 4.5. Let M' = E2p xM'_xM'+ be

symmetric space and M'_ = M[ x ･･･x M'q and M+

343

a simply connected Hermitian

= M'q+l x-xW' the de Rham

decompositionsof M'_ and M'+ respectively.Then each simply connected contact

KTS-space over Mr is isomorphic, for some / > 0 and some non-vanishing

integers≪,.,,･･･,≪,,to (M,g,E) where

M = (N/Z[l]xM+)/Sl,

N = (H(p,l)xM_)/R and M+ = (Mq+l IG,V| x ･･･x Mr IGHr)/ 7"""'"1.The family of

KTS-structures (g,E,)depends on the p + q parameters A,,---,A ,c,,---,c.

5. The de Rham decomposition for KTS-spaces

The main purpose of thisfinalsectionis to prove

Theorem 5.1. Let (M,g,%) be a simply connected KTS-space. Then (M,g)

is irreducible if and only if T]is a contact form. In thiscase dim M = n is neces-

sarily odd. Further, ifrankH = Ik < n - 1, then M is a directproduct

{M,g) = {M',g')x(M",g")

where (M',g',%) is an irreducible KTS-space of dimension 2k +1 and (M",g")

is a symmetric snace.

To prove thisresult we shall need the following two lemmas. The firstone is

the KTS-version of Proposition 3.1 of [20] for cp-symmetric spaces and its proof

is similar.So we omit it.(See also [131).

Lemma 5.1. Let (M,g,^) be a simply connected KTS-space and let V be

the canonical connection of the isometric flow $L. Then there is a coset

representation of M in the form M = G/GO such that

(i) G is a connected Lie group with G c A{M);

(ii)there is an Ad(Go)-invariant decomposition g = gocm of the Lie algebra

Q of G adapted to the naturally reductive homogeneous space (GIGo,g) for

which V is the canonical connection of the second kind.
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Next, we state

LEMMA 5.2 [19]. Let (M,g) = GlGo he a simply connected naturally

reductive space with an adapted canonical connection V. Suppose that the

tangent space V = TOM at the origin admits an orthogonal decomposition

V = VJc V2 such thatitstorsionand curvaturetensorssatisfy

fori - 1,2 and all X,Y,Z gV where nx and n2 denote the canonicalprojections.

Then M is a direct product (M,g) = (M],gl)x(M2,g2) with dimMt = dimVj,

i = 1,2.Here, thefactors (M(.,g()are again naturallyreductive.

Now, we are ready for the

Proof OF Theorem 5.1. From Lemma 5.1 it follows that (M,g) = G/Go is

a naturally reductive homogeneous space with G-invariant vector field £and the

canonical connection V of the flow ^ as canonical connection.

First, we suppose that the one-form 7]is not a contact form and hence, that

rank H = 2k < n -1. We shall prove that (M,g) satisfiesthe conditions of Lemma

5.2. Since H is skew-symmetric V = TOM admits an orthonormal basis

{X],---,X7k,X2, ,,---,X ,,£} and there exist real numbers A.,---,A.such that

H X, ― A|X2 , H()X2 ― ―A＼XX

HoX2k-l
~

HoX2k+＼ =

K %2k HoX2k = ~^k^2k-＼

Now, put Vj = span{X,,--,X2t,<f;o},V2 = span{X2t+1,---,X,,_,}.Since K = -2T

with the expression for T given in Section 2, we get that Ko(Xa,Xh)

Ko(Xa,%(>), l<a, b<2k, belong to V,. For 2k + l<h, l<n-lwe get

K(Xh,Xl) = K(Xh,XJ = K(Xh,L) = O.

Hence

nXKo (X,Y)) = Ko(KiX,7TiY)

and

and

for all X, Y e V. Further, for 1 < a,b,c < 2k we get that RoXaXhXc e V{. Indeed, let

U e V, such that Xc = HOU. Since RXiXh-K = 0 we obtain
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X

<>XaXh c
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x K(U, t ) =
＼
K(RoX x U, L) = HRX x U

RoX,X.L = Ro^X,Xj =0
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for 1 < /,/< n -1. Next, we show that R
Y v

= 0 for ＼<a<2k , 2k + ＼<h<n-l.
XaXh

To see this,put Xa = HU, U e Vl.Then, using the second Bianchi identity for V ,

we get

<>X X,

= J_

2

r> _Jj? 4-1?
I

0

oK,,(U,l, )Xh ~ 9
＼

oK,,(Xh 4,, )U
"*■

≪/?,,([/,X,,)^,, j

U

So, if 2k +1 < /, m < n -1, we have RoXXXm e V2. All thisthen yields

7r,.(J?xrZ)= itX7r;r;r,Z.

Thus, from Lemma 5.2, we conclude that (M,g) is a direct product

{M',g')x(M",g"). Moreover, if R' denotes the curvature tensor of (M',g'), we

get

R'(X, Y, X,£)= R(X, Y,X, |) = 0

for all horizontal vector X, Y on M'. Moreover, 7}is a contact form on M'

because rankH = rankf/|M, = 2k = dimM' -1. So, using Proposition 3.1, we obtain

that(M',g',£) is a contact KTS-space. On the other hand, since

Ko(Xh,X,) = 0, 21c+ l<h, l<n-l,

we get that (M",g") is a symmetric space [19,(12)].

The converse follows at once from Proposition 3.2. ■

COROLLARY 5.1. Let (M,g,E,)be a simply connected KTS-space. Then we

have thefollowing de Rham decomposition:

M = MoxM]x---xMkx Mk+X

where Mo is a Euclidean space, Ml,---,Mk are irreduciblesymmetric spaces and

Mk+iis a contact KTS-space. Moreover, M fibersover the symmetric space

M' = M0 x M, x ･･･x M. x M,',

where ML, is the simply connected Hermitian symmetric space Mk ./£
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