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Introduction

By

Hyang Sook KlM and Ryoichi Takagi

We denote by Pn(C) an rc-dimensional complex projective space with the

Fubini-Study metric of constant holomorphic sectional curvature 4c and M a real

hypersurface in Pn(C) with the induced metric.

The problem with respect to the type number t,thatis, the rank of the second

fundamental form of real hypersurfaces in Pn(C) has been studied by many

geometers ([1], [2], [3] and [4] etc.). The second named author [4] proved that

there is a point p on M such that t(p)>2 and M. Kimura and S. Maeda [2] gave

an example of real hypersurface in Pn(C) satisfying t = 2, which is non-complete.

Recently, Y. J. Suh [3] showed that there is a point p on a complete real

hypersurface M in Pn(C) (n>3) such that t(p)>3.

In thispaper we shallprove the following

MAIN THEOREM. Let M be a complete real hypersurface in Pn{C). Then

there existsa point p on M such that t(p)> n .

1 Preliminaries,,

Hereafter let Mn(c) (n>2) be a complex space form with the metric of

constant holomorphic sectional curvature Ac and M be a real hypersurface in

Mn(c). Choose a local fieldof orthonormal frames {ei,-~,e2n}in Mn(c) such that

ei,---,e2n_]are tangent to M. We use the following convention on the range of

indices unless otherwise stated: A,B,---= ＼,---,2nand i,j,---= l,---,2n-l. We

denote by 9A and 6AB the canonical 1-forms and the connection forms

respectively. Then they satisfy

(1.1) deA+ieABAeB=o, 9AB+eBA=o
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We restrictthe forms under consideration to M. Then we have #,, =0 and by

Cartan'slemma we may writeas

(1-2) h^^lhvOj.h^hj,

The quadratic form X h^ ･Oj is called the second fundamental form of M for

e2 . Moreover, the curvature forms 0.. of M are defined by

(1.3) e,=^,+Z0,,A^,

We denote by J the complex structure of Mn{c). Let (･/,-,■,/*)be the almost

contact metric structure of M, i.e.,J(ei)= JJJjjej+fje2n.Then (Jtj,fk)satisfies

JU =/･/, Su, 2fJtt = 0,
(1.4)

I/.2=l, J.+J^O.

The parallelism of J implies

(1.5)

dJ,j=1(^0,4-JjtOJ-fffij+fjh,

The equationsof Gauss and Codazzi aregiven by

(1.6) eu = 0,a0, + c6.,A0j+c!(/,,/, + JuJu)0k a6,

(i.7) <ty.= - x 0.a 0..+cxai7, + //,,)c.a ek,

respectively.

2. Formulas.

Let M be a real hypersurface in Mn(c), c^O. In this section, we assume that

the rank of the second fundamental form is not larger than m on an open set U. In

the sequel, we use the following convention on the range of indices:

a,b,---= l,---,m and r,s,---= m + l,---,2n-l. Then for an arbitrary point p in U we

can take a local fieldof orthonormal frames {ei,---,e2n_i}on a neiborhood of p

such that the 1-forms </>,can be written as

0r=O.

Here, we put

(2.2) 6, =XA1+ZBJ,
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Taking the exterior derivative of 0r =0 and using (1.7) and (2.1), we have

£KA a ear - c£(/,/,+ f,jrjye,a e. = o,

which, together with (2.2). implies

(2.3)

(2.4)

(2.5)

m,A-rh - KAn,) - cfjrh + cfbjra
- 2cfrjab= o,

^KKs ~cfjrx + cfjm - 2cfrJas= 0,

fJr,-f,Jr<+2fJ=0.

The above equation (2.5) is equivalent to

(2.6) fJ,=O.
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Similarly, taking the exterior derivative of 4>cl-JJhah0h and making use of

(1.1),(1.7), (2.1), (2.2) and (2.4), we get

l[dhah -m(A-h+KAr,-^KArA-cfhJtA+cfcJah0c

-2cfJhc0c) + cl(fhJar0r - frlAr + HAM A 6b = 0,

(2.7)
dhah - i(hacech + hhcdca-1 KcAcrher)

+cyL<jbjarer-frjaber+2fajbfir) = o (mod Ra)

Now, we quote two Lemmas.

LEMMA 2.1 ([3]). Assume that Jrs{p)= 0 at a point p on M. Then t(p)>n-l

Furthermore, the equality holds if and only if fa = 0 and Jab = 0 at p.

Here, we denote by T the maximal value of the type number t.

LEMMA 2.2 (T31V If J =0 on U. then T>n on U.

PROOF. If T< n, then owing to Lemma 2.1, we see that T = n-l, fa=0 and

Jah =0 on (/. For a suitable choice of a field {er} of orthonormal frames, we

can set /2lI_,= 1 and fr = 0 for r = n,---,2n-2. Then, by means of (1.5), we get

where we have used (2.1). Thus, taking account of (2.2), we find Bu2n_{s=0.

On the other hand, if we put r = 2n-＼ and s±2n-＼ in (2.4), then we have

7 = 0 for s*2n-l, which contradicts the fact thatrank J = In - 2. □

Remark. Lemma 2.2 was proved in [3] but the proofisincomplete.
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In the remainder of this section, we shall obtain further formulas. First of

all,we define the open set VT by

VT = {pzM＼t(p) = T}.

Next, in order to prove our theorem we shalllead a contradiction by assuming

the following:

(2.8) V/?eVr, ＼/U(p),3qeU(p) such that JJq)*0,

where U{p) denotes a neighborhood of a point p.

Moreover, we consider the open set V-fdefined by

V; = {peVT |Jrx(p) *0}.

Since V/ is dense subset of VT by the assumption (2.8), any equality obtained on

Vj holds also on VT. Hence, we may assume V-f= VT whenever we treat

equalities.Therefore, from (2.6) it follows that fr =0 on VT. Consequently, we

may set /, = 1 and fa=0 for a = 2,---,T. This and (1.4) show

(2.9) ^i≪=0, Jir=0.

Furthermore, the fact that dfa =0 and dfr =0 tellsus

(2.io) eUl=-uajh,

(2-11) Aim=lhahJhr,

(2.12) Bln=0,

where we have used (1.5), (2.1) and (2.2).

From (2.4), we have

(2-13) ZhilhBhrs=cfJrs.

On the other hand, if we take the exterior derivative of (2.10) and make use

of (1.3)~(1.7),(2.1), (2.2),(2.7) and (2.9)^(2.13), then we find

c0, a ea = x JarhheAhrddd a ee+2c x jahjhdeda 0,.

Pick out the coefficients of 0ca0{ in the above equation. Then from (1.4) and

(2.3) we can get

and so

(2.14) l
lh

0
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This and (2.10) give
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(2.15) Ola=O.

Moreover, from (2.12) and (2.13) it follows that(cf.[3])

(2.16) det(hah)= O (a,b = 2,-~,T).

Thus, for a suitable choice of a field{ea} of orthonormal frames, we may set

(2.17) Kh=Xa8ah (a,b = 2,-,T).

Combining (2.17) with (2.16), we can set A2=0. Since det(hah) = -hf2Xi---XT, it

follows that

(2.18) hn * 0 and haa = Xa * 0 (a = 3,―,T)

because det(hab) does not vanish on VT.

On the other hand, the equation (2.11), together with (2.9) and (2.17), yields

(2.19) Alr2=0.

Now,puta = 2 and b>3 in (2.3). Then, using (2.11), (2.17) and (2.18), we

find

(2.20)

Similarly, put a

A,,2=V^ (b>3).

1 and b = 2 in (2.3) and use (2.8). Then we obtain

It follows from (2.11), (2.17), (2.19) and (2.20) that the above equation can be

(2.21) hnA2r2 = hl2lh{jar-hn I hUlJar -cJ2r

We put a = 2 and b>3 in (2.7) and take account of (2.14), (2.15) and (2.17).

Then we have

MM-*i2X^/s0 (modOJ,

which, together with (2.9),(2.11) and (2.18), leads to

(2.22) 9h2=hl2yZJhrer (mod0a) for b>3.

Last, put a = 1 and b = 2 in (2.7). Then from (2.14) and (2.15) it follows that

dh]2-l(h]h0h2-lh]hAhr20r) + 2clJ2rer=O (mod 0a).

Combining this equation with (2.9), (2.15) and (2.19)~(2.22), we get a kev
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equation

(2.23)

3 Lemmas.
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dh,2+(hn2+c)lJ2r0r=O (mod 6a)

In this section, we use the same notion as one in section 2 unless otherwise

stated. From now on, we suppose that M is complete. For simplicity, we put

F-hn. Then the equation (2.23) is equivalent to

(3.1) dF +{F2+c)YdJ2r0r=Q (mod 6a)

Here, we note that J2r ^0 everywhere on VT because of (2.9),(2.14) and the

fact that rank / = In - 2.

Let p be any point of VT and let a: / ―≫VT be a maximal integral curve of the

unit vector field Xi2fer on H- through p. Assume that / has an infimum or a

superemum, say ta.Then we have

Lemma 3.1.

limfc,Ifl(a(O)*O (a = 3,---,T)

Proof. Put a = b(> 3) in (2.7). Then from (2.14), we get

dhaa-21haceca+lhai.Acnidr=O (mod da).

From (2.9),(2.11), (2.15) and (2.17), it follows that

(3.2) ^flfl+fcuuI(/ifliyflr+ 41J0r=O (mod 9a).

We restrictthe forms under consideration to a. Then G.21 becomes

Lemma 3.2.

dK,
%,･/,,+ A_)J2r=Q, re/.

lim F(a(O)

/->/,

= 0

□

dt ""

On the other hand, since M is complete, there exists a limit point lim,^ a(t)

on M. Suppose that lim,^, h (oc(t))= 0. Then from the above differential

equation, we have h, =0 on VT. This contradicts the fact(2.18).

PROOF. Assume that lim F(a(f))*0. Owing to Lemma 3.1 and the

definition of the open set VT, we see that a(tn)eVT, which contradicts the
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maximaiity of the integral curve a
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□

4. The proof of Main Theorem.

In this section, we keep the notion in sections 2 and 3. Put tx=inf/(>― °°)

and t0 =sup/(<oo). Then there are four possibilitiesof an open interval (f,,?0).

Namely, the interval /is one of the following:

(1) -oo<fpf0<oo,

(2) -oo = rpr0<oo,

(3) -oo<fpf0=oo,

(4) -oo = t],t0=oo.

On the other hand, by virtue of (3.1) the function F defined on an open interval

(t.Jn) satisfies

(3.3)
dF

F2+c
+ dt = O.

Here, we considerthe case where c>0. Then solvingthisdifferentialequation

(3.3").we have

(3.4) F(a(t)) = -VctanVc(/-?2),

where t2=t{ or t0in the cases (1)~(3)and t2is some constant in the case (4).

In order to prove our theorem, it sufficesto show that we lead a contradiction

at any case because of Lemma 2.2 and the assumption (2.8).

Combining Lemma 3.2 with the fact that J2r*0 everywhere on VT, we see

that the case (1) can not occur. In fact,owing to Lemma 3.2 it is seen that there

exists a real number t' such that tx<t' <t0, dF = 0 at a(t') Then the differential

equation (3.3) gives J2r =0. This contradicts.

Moreover, in the cases (2)~(4) we note that the function tan of the solution

(3.4) can not be defined for all teR but F(a(t)) is defined on {tx,tQ),where /, or

t0 is co. Thus, from Lemma 3.2 it follows that the cases (2)~(4) can not occur

too.

It comoletes the oroof of Main Theorem.

Remark. In the case where c < 0, solving the differentialequation (3.1) we

(1) F(a(t)) = k,

(2) F(a(t)) = ktonh(k(t + d)),
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(3) F(a(t)) = kco＼h(k(t+ d)),

where k = ■＼J―cand d is real number. Therefore we can not apply the above

arguments to this case.

Open Question.

Does there exist a complete real hypersurface M in Pn(C) such that t(p)= n

for a point p on M?
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