THE TYPE NUMBER OF REAL HYPERSURFACES IN $P_{n}(C)$

Dedicated to Professor Tsunero Takahashi on his sixtieth birthday

By

Hyang Sook Kim and Ryoichi Takagi

Introduction

We denote by $P_{n}(\mathbb{C})$ an n-dimensional complex projective space with the Fubini-Study metric of constant holomorphic sectional curvature $4 c$ and M a real hypersurface in $P_{n}(\boldsymbol{C})$ with the induced metric.

The problem with respect to the type number t, that is, the rank of the second fundamental form of real hypersurfaces in $P_{n}(\boldsymbol{C})$ has been studied by many geometers ([1], [2], [3] and [4] etc.). The second named author [4] proved that there is a point p on M such that $t(p) \geq 2$ and M . Kimura and S . Maeda [2] gave an example of real hypersurface in $P_{n}(C)$ satisfying $t=2$, which is non-complete. Recently, Y. J. Suh [3] showed that there is a point p on a complete real hypersurface M in $P_{n}(\mathbb{C})(n \geq 3)$ such that $t(p) \geq 3$.

In this paper we shall prove the following
MAIN THEOREM. Let M be a complete real hypersurface in $P_{n}(C)$. Then there exists a point p on M such that $t(p) \geq n$.

1. Preliminaries.

Hereafter let $M_{n}(c)(n \geq 2)$ be a complex space form with the metric of constant holomorphic sectional curvature $4 c$ and M be a real hypersurface in $M_{n}(c)$. Choose a local field of orthonormal frames $\left\{e_{1}, \cdots, e_{2 n}\right\}$ in $M_{n}(c)$ such that $e_{1}, \cdots, e_{2 n-1}$ are tangent to M. We use the following convention on the range of indices unless otherwise stated: $A, B, \cdots=1, \cdots, 2 n$ and $i, j, \cdots=1, \cdots, 2 n-1$. We denote by θ_{A} and $\theta_{A B}$ the canonical 1 -forms and the connection forms respectively. Then they satisfy

$$
\begin{equation*}
d \theta_{A}+\sum \theta_{A B} \wedge \theta_{B}=0, \quad \theta_{A B}+\theta_{B A}=0 \tag{1.1}
\end{equation*}
$$

The first author is supported by KOSEF
Received July 4, 1994.
Revised October 25, 1994.

We restrict the forms under consideration to M. Then we have $\theta_{2 n}=0$ and by Cartan's lemma we may write as

$$
\begin{equation*}
\phi_{i} \equiv \theta_{2 n, i}=\sum h_{i j} \theta_{j}, h_{i j}=h_{j i} \tag{1.2}
\end{equation*}
$$

The quadratic form $\sum h_{i j} \theta_{i} \cdot \theta_{j}$ is called the second fundamental form of M for $e_{2 n}$. Moreover, the curvature forms $\Theta_{i j}$ of M are defined by

$$
\begin{equation*}
\Theta_{i j}=d \theta_{i j}+\sum \theta_{i k} \wedge \theta_{k j} \tag{1.3}
\end{equation*}
$$

We denote by \tilde{J} the complex structure of $M_{n}(c)$. Let $\left(J_{i j}, f_{k}\right)$ be the almost contact metric structure of M, i.e., $\tilde{J}\left(e_{i}\right)=\sum J_{j i} e_{j}+f_{i} e_{2 n}$. Then $\left(J_{i j}, f_{k}\right)$ satisfies

$$
\begin{align*}
& \sum J_{i k} J_{k j}=f_{i} f_{j}-\delta_{i j}, \sum f_{j} J_{j i}=0, \\
& \sum f_{i}^{2}=1, \quad J_{i j}+J_{j i}=0 . \tag{1.4}
\end{align*}
$$

The parallelism of \tilde{J} implies

$$
\begin{align*}
& d J_{i j}=\sum\left(J_{i k} \theta_{k j}-J_{j k} \theta_{k i}\right)-f_{i} \phi_{j}+f_{j} \phi_{i}, \\
& d f_{i}=\sum\left(f_{j} \theta_{j i}-J_{j i} \phi_{j}\right) . \tag{1.5}
\end{align*}
$$

The equations of Gauss and Codazzi are given by

$$
\begin{gather*}
\Theta_{i j}=\phi_{i} \wedge \phi_{j}+c \theta_{i} \wedge \theta_{j}+c \sum\left(J_{i k} J_{j l}+J_{i j} J_{k l}\right) \theta_{k} \wedge \theta_{l} \tag{1.6}\\
d \phi_{i}=-\sum \phi_{j} \wedge \phi_{j i}+c \sum\left(f_{i} J_{j k}+f_{j} J_{i k}\right) \theta_{j} \wedge \theta_{k} \tag{1.7}
\end{gather*}
$$

respectively.

2. Formulas.

Let M be a real hypersurface in $M_{n}(c), c \neq 0$. In this section, we assume that the rank of the second fundamental form is not larger than m on an open set U. In the sequel, we use the following convention on the range of indices: $a, b, \cdots=1, \cdots, m$ and $r, s, \cdots=m+1, \cdots, 2 n-1$. Then for an arbitrary point p in U we can take a local field of orthonormal frames $\left\{e_{1}, \cdots, e_{2 n-1}\right\}$ on a neiborhood of p such that the 1 -forms ϕ_{i} can be written as

$$
\begin{align*}
\phi_{a} & =\sum h_{a b} \theta_{b}, h_{a b}=h_{b a}, \\
\phi_{r} & =0 . \tag{2.1}
\end{align*}
$$

Here, we put

$$
\begin{equation*}
\theta_{a r}=\sum A_{a r b} \theta_{b}+\sum B_{a r r} \theta_{s} \tag{2.2}
\end{equation*}
$$

Taking the exterior derivative of $\phi_{r}=0$ and using (1.7) and (2.1), we have

$$
\sum h_{a b} \theta_{b} \wedge \theta_{a r}-c \sum\left(f_{r} J_{i j}+f_{i} J_{r j}\right) \theta_{i} \wedge \theta_{j}=0
$$

which, together with (2.2), implies

$$
\begin{gather*}
\sum\left(h_{a c} A_{c r b}-h_{b c} A_{c r a}\right)-c f_{a} J_{r b}+c f_{b} J_{r a}-2 c f_{r} J_{a b}=0 \tag{2.3}\\
\sum h_{a b} B_{b r s}-c f_{a} J_{r s}+c f_{s} J_{r a}-2 c f_{r} J_{a s}=0 \tag{2.4}\\
f_{s} J_{r t}-f_{t} J_{r s}+2 f_{r} J_{s t}=0 \tag{2.5}
\end{gather*}
$$

The above equation (2.5) is equivalent to

$$
\begin{equation*}
f_{r} J_{s t}=0 \tag{2.6}
\end{equation*}
$$

Similarly, taking the exterior derivative of $\phi_{a}=\sum h_{a b} \theta_{b}$ and making use of (1.1), (1.7), (2.1), (2.2) and (2.4), we get

$$
\begin{aligned}
& \sum\left\{d h_{a b}-\sum\left(h_{a c} \theta_{c b}+h_{b c} \theta_{c a}-\sum h_{a c} A_{c r b} \theta_{r}-c f_{b} J_{a c} \theta_{c}+c f_{c} J_{a b} \theta_{c}\right.\right. \\
& \left.\left.-2 c f_{a} J_{b c} \theta_{c}\right)+c \sum\left(f_{b} J_{a r} \theta_{r}-f_{r} J_{a b} \theta_{r}+2 f_{a} J_{b r} \theta_{r}\right)\right\} \wedge \theta_{b}=0,
\end{aligned}
$$

which yields

$$
\begin{align*}
& d h_{a b}-\sum\left(h_{a c} \theta_{c b}+h_{b c} \theta_{c a}-\sum h_{a c} A_{c r b} \theta_{r}\right) \tag{2.7}\\
& \quad+c \sum\left(f_{b} J_{a r} \theta_{r}-f_{r} J_{a b} \theta_{r}+2 f_{a} J_{b r} \theta_{r}\right) \equiv 0\left(\bmod \theta_{a}\right)
\end{align*}
$$

Now, we quote two Lemmas.
Lemma 2.1 ([3]). Assume that $J_{r s}(p)=0$ at a point p on M. Then $t(p) \geq n-1$. Furthermore, the equality holds if and only if $f_{a}=0$ and $J_{a b}=0$ at p.

Here, we denote by T the maximal value of the type number t.
Lemma 2.2 ([3]). If $J_{r s}=0$ on U, then $T \geq n$ on U.
Proof. If $T<n$, then owing to Lemma 2.1, we see that $T=n-1, f_{a}=0$ and $J_{a b}=0$ on U. For a suitable choice of a field $\left\{e_{r}\right\}$ of orthonormal frames, we can set $f_{2 n-1}=1$ and $f_{r}=0$ for $r=n, \cdots, 2 n-2$. Then, by means of (1.5), we get

$$
0=d f_{a}=\theta_{2 n-1, u .}
$$

where we have used (2.1). Thus, taking account of (2.2), we find $B_{a, 2 n-1, s}=0$. On the other hand, if we put $r=2 n-1$ and $s \neq 2 n-1$ in (2.4), then we have $J_{a s}=0$ for $s \neq 2 n-1$, which contradicts the fact that rank $J=2 n-2$.

REMARK. Lemma 2.2 was proved in [3] but the proof is incomplete.

In the remainder of this section, we shall obtain further formulas. First of all, we define the open set V_{T} by

$$
V_{T}=\{p \in M \mid t(p)=T\} .
$$

Next, in order to prove our theorem we shall lead a contradiction by assuming the following:

$$
\begin{equation*}
\forall p \in V_{T}, \forall U(p), \exists q \in U(p) \text { such that } J_{r s}(q) \neq 0, \tag{2.8}
\end{equation*}
$$

where $U(p)$ denotes a neighborhood of a point p.
Moreover, we consider the open set V_{T}^{\prime} defined by

$$
V_{T}^{\prime}=\left\{p \in V_{T} \mid J_{r s}(p) \neq 0\right\}
$$

Since V_{T}^{\prime} is dense subset of V_{T} by the assumption (2.8), any equality obtained on V_{T}^{\prime} holds also on V_{T}. Hence, we may assume $V_{T}^{\prime}=V_{T}$ whenever we treat equalities. Therefore, from (2.6) it follows that $f_{r}=0$ on V_{T}. Consequently, we may set $f_{1}=1$ and $f_{a}=0$ for $a=2, \cdots, T$. This and (1.4) show

$$
\begin{equation*}
J_{1 a}=0, J_{1 r}=0 \tag{2.9}
\end{equation*}
$$

Furthermore, the fact that $d f_{a}=0$ and $d f_{r}=0$ tells us

$$
\begin{gather*}
\theta_{1 a}=-\sum J_{a b} \phi_{b}, \tag{2.10}\\
A_{1 r a}=\sum h_{a b} J_{b r}, \\
B_{1 r s}=0,
\end{gather*}
$$

where we have used (1.5), (2.1) and (2.2).
From (2.4), we have

$$
\begin{equation*}
\sum h_{a b} B_{b r s}=c f_{a} J_{r s} \tag{2.13}
\end{equation*}
$$

On the other hand, if we take the exterior derivative of (2.10) and make use of (1.3)~(1.7), (2.1), (2.2), (2.7) and (2.9)~(2.13), then we find

$$
c \theta_{1} \wedge \theta_{a}=\sum J_{a r} h_{b e} A_{b r d} \theta_{d} \wedge \theta_{e}+2 c \sum J_{a b} J_{b d} \theta_{d} \wedge \theta_{1}
$$

Pick out the coefficients of $\theta_{c} \wedge \theta_{1}$ in the above equation. Then from (1.4) and (2.3) we can get

$$
\sum J_{a b} J_{b c}=0
$$

and so

$$
\begin{equation*}
J_{a b}=0 . \tag{2.14}
\end{equation*}
$$

This and (2.10) give

$$
\begin{equation*}
\theta_{1 a}=0 . \tag{2.15}
\end{equation*}
$$

Moreover, from (2.12) and (2.13) it follows that (cf.[3])

$$
\begin{equation*}
\operatorname{det}\left(h_{a b}\right)=0 \quad(a, b=2, \cdots, T) \tag{2.16}
\end{equation*}
$$

Thus, for a suitable choice of a field $\left\{e_{a}\right\}$ of orthonormal frames, we may set

$$
\begin{equation*}
h_{a b}=\lambda_{a} \delta_{a b} \quad(a, b=2, \cdots, T) \tag{2.17}
\end{equation*}
$$

Combining (2.17) with (2.16), we can set $\lambda_{2}=0$. Since $\operatorname{det}\left(h_{a b}\right)=-h_{12}^{2} \lambda_{3} \cdots \lambda_{T}$, it follows that

$$
\begin{equation*}
h_{12} \neq 0 \quad \text { and } h_{a a}=\lambda_{a} \neq 0 \quad(a=3, \cdots, T) \tag{2.18}
\end{equation*}
$$

because $\operatorname{det}\left(h_{a b}\right)$ does not vanish on V_{T}.
On the other hand, the equation (2.11), together with (2.9) and (2.17), yields

$$
\begin{equation*}
A_{1 r 2}=0 \tag{2.19}
\end{equation*}
$$

Now, put $a=2$ and $b \geq 3$ in (2.3). Then, using (2.11), (2.17) and (2.18), we find

$$
\begin{equation*}
A_{b r 2}=h_{12} J_{b r}(b \geq 3) \tag{2.20}
\end{equation*}
$$

Similarly, put $a=1$ and $b=2$ in (2.3) and use (2.8). Then we obtain

$$
\Sigma\left(h_{1 a} A_{a r 2}-h_{2 a} A_{a r 1}\right)+c J_{2 r}=0
$$

It follows from (2.11), (2.17), (2.19) and (2.20) that the above equation can be reformed as

$$
\begin{equation*}
h_{12} A_{2 r 2}=h_{12} \sum h_{14} J_{a r}-h_{12} \sum_{a \geq 3} h_{1 a} J_{a r}-c J_{2 r} \tag{2.21}
\end{equation*}
$$

We put $a=2$ and $b \geq 3$ in (2.7) and take account of (2.14), (2.15) and (2.17). Then we have

$$
h_{b b} \theta_{b 2}-h_{12} \sum A_{1 r b} \theta_{r} \equiv 0\left(\bmod \theta_{a}\right),
$$

which, together with $(2.9),(2.11)$ and (2.18), leads to

$$
\begin{equation*}
\theta_{b 2} \equiv h_{12} \sum J_{b r} \theta_{r}\left(\bmod \theta_{a}\right) \text { for } b \geq 3 . \tag{2.22}
\end{equation*}
$$

Last, put $a=1$ and $b=2$ in (2.7). Then from (2.14) and (2.15) it follows that

$$
d h_{12}-\sum\left(h_{1 b} \theta_{b 2}-\sum h_{1 b} A_{b r 2} \theta_{r}\right)+2 c \sum J_{2 r} \theta_{r} \equiv 0\left(\bmod \theta_{a}\right) .
$$

Combining this equation with (2.9), (2.15) and (2.19)~(2.22), we get a key
equation

$$
\begin{equation*}
d h_{12}+\left(h_{12}^{2}+c\right) \sum J_{2 r} \theta_{r} \equiv 0\left(\bmod \theta_{a}\right) \tag{2.23}
\end{equation*}
$$

3. Lemmas.

In this section, we use the same notion as one in section 2 unless otherwise stated. From now on, we suppose that M is complete. For simplicity, we put $F=h_{12}$. Then the equation (2.23) is equivalent to

$$
\begin{equation*}
d F+\left(F^{2}+c\right) \sum J_{2 r} \theta_{r} \equiv 0\left(\bmod \theta_{a}\right) \tag{3.1}
\end{equation*}
$$

Here, we note that $J_{2 r} \neq 0$ everywhere on V_{T} because of (2.9), (2.14) and the fact that rank $J=2 n-2$.

Let p be any point of V_{T} and let $\alpha: I \rightarrow V_{T}$ be a maximal integral curve of the unit vector field $\sum J_{2 r} e_{r}$ on V_{T} through p. Assume that I has an infimum or a superemum, say t_{0}. Then we have

Lemma 3.1.

$$
\lim _{t \rightarrow t_{0}} h_{a u}(\alpha(t)) \neq 0 \quad(a=3, \cdots, T)
$$

Proof. Put $a=b(\geq 3)$ in (2.7). Then from (2.14), we get

$$
d h_{a a}-2 \sum h_{u c} \theta_{c a}+\sum h_{u c} A_{c r a} \theta_{r} \equiv 0\left(\bmod \theta_{a}\right)
$$

From (2.9), (2.11), (2.15) and (2.17), it follows that

$$
\begin{equation*}
d h_{a u}+h_{a u} \sum\left(h_{a 1} J_{a r}+A_{a r a}\right) \theta_{r} \equiv 0\left(\bmod \theta_{a}\right) . \tag{3.2}
\end{equation*}
$$

We restrict the forms under consideration to α. Then (3.2) becomes

$$
\frac{d h_{a u}}{d t}+h_{a u} \Sigma\left(h_{a l} J_{a r}+A_{a r a}\right) J_{2 r}=0, t \in I .
$$

On the other hand, since M is complete, there exists a limit point $\lim _{t \rightarrow t_{0}} \alpha(t)$ on M. Suppose that $\lim _{t \rightarrow t_{0}} h_{a s}(\alpha(t))=0$. Then from the above differential equation, we have $h_{a \alpha}=0$ on V_{T}. This contradicts the fact (2.18).

Lemma 3.2.

$$
\lim _{t \rightarrow t_{0}} F(\alpha(t))=0 .
$$

Proof. Assume that $\lim _{t \rightarrow t_{0}} F(\alpha(t)) \neq 0$. Owing to Lemma 3.1 and the definition of the open set V_{T}, we see that $\alpha\left(t_{0}\right) \in V_{T}$, which contradicts the
maximality of the integral curve α.

4. The proof of Main Theorem.

In this section, we keep the notion in sections 2 and 3. Put $t_{1}=\inf I(\geq-\infty)$ and $t_{0}=\sup I(\leq \infty)$. Then there are four possibilities of an open interval $\left(t_{1}, t_{0}\right)$. Namely, the interval I is one of the following:
(1) $-\infty<t_{1}, t_{0}<\infty$,
(2) $-\infty=t_{1}, t_{0}<\infty$,
(3) $-\infty<t_{1}, t_{0}=\infty$,
(4) $-\infty=t_{1}, t_{0}=\infty$.

On the other hand, by virtue of (3.1) the function F defined on an open interval $\left(t_{1}, t_{0}\right)$ satisfies

$$
\begin{equation*}
\frac{d F}{F^{2}+c}+d t=0 \tag{3.3}
\end{equation*}
$$

Here, we consider the case where $c>0$. Then solving this differential equation (3.3), we have

$$
\begin{equation*}
F(\alpha(t))=-\sqrt{c} \tan \sqrt{c}\left(t-t_{2}\right) \tag{3.4}
\end{equation*}
$$

where $t_{2}=t_{1}$ or t_{0} in the cases (1)~(3) and t_{2} is some constant in the case (4).
In order to prove our theorem, it suffices to show that we lead a contradiction at any case because of Lemma 2.2 and the assumption (2.8).

Combining Lemma 3.2 with the fact that $J_{2 r} \neq 0$ everywhere on V_{T}, we see that the case (1) can not occur. In fact, owing to Lemma 3.2 it is seen that there exists a real number t^{\prime} such that $t_{1}<t^{\prime}<t_{0}, d F=0$ at $\alpha\left(t^{\prime}\right)$ Then the differential equation (3.3) gives $J_{2 r}=0$. This contradicts.

Moreover, in the cases (2)~(4) we note that the function \tan of the solution (3.4) can not be defined for all $t \in \mathbb{R}$ but $F(\alpha(t))$ is defined on $\left(t_{1}, t_{0}\right)$, where t_{1} or t_{0} is ∞. Thus, from Lemma 3.2 it follows that the cases (2)~(4) can not occur too.

It completes the proof of Main Theorem.
Remark. In the case where $c<0$, solving the differential equation (3.1) we have
(1) $F(\alpha(t)) \equiv k$,
(2) $F(\alpha(t))=k \tanh (k(t+d))$,
(3) $F(\alpha(t))=k \operatorname{coth}(k(t+d))$,
where $k=\sqrt{-c}$ and d is real number. Therefore we can not apply the above arguments to this case.

Open Question.

Does there exist a complete real hypersurface M in $P_{n}(\mathbb{C})$ such that $t(p)=n$ for a point p on M ?

References

[1] T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481-499.
[2] M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space, Math. Z. 202 (1989), 299-311.
[3] Y. J. Suh, On type number of real hypersurfaces in $P_{n}(C)$, Tsukuba J. Math. 15 (1991), 99-104.
[4] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506.
[5] -, Real hypersurfaces in a complex projective space with constant principal curvatures, J . Math. Soc. Japan 27 (1975), 43-53.
[6] , Real hypersurfaces in a complex projective space with constant principal curvatures II, J. Math. Soc. Japan 27 (1975), 507-516.

[^0]
[^0]: Department of Mathematics and Informatics Chiba University
 Chiba-shi, 263,
 Japan
 and
 Department of Mathematics
 Inje University
 Kimhae-shi, 621-749,
 Korea

 Department of Mathematics and Informatics
 Chiba University
 Chiba-shi, 263,
 Japan

