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SOME REMARKS ON ORDINARY ABELIAN VARIETIES

By

Ryuji Sasaki

Let k be an algebraically closed fieldof positive characteristicp. Let X be an

abelian variety over k, of dimension g. If p" (O^a^g) is the separable degree of

the isogeny px '■X―+X defined by x>―>px, then a is called the ^-rank of X.

Suppose />-rank of X is equal to g; such an abelian variety is said to be ordinary.

Let L be an ample invertible sheaf on X and P the Poincare invertible sheaf on

the product XxX of X and the dual abelian variety X of X. For any closed

point a of X, we put P＼xxia>=Pa- In the present paper we have two main pur-

poses, one of which is to prove Theorem 3.3,which asserts:

Assume p>2. Then the canonical map

E r(L(8)PB+/J)(8)r(Lp-1(g)P_a+r)― r(Lp^p,+r)

≪e(£p)(fc)

is surjectivefor any closed points /3and j of X, where (Xp)(k) denotes the group

of the closed points of Zp = ker(^i).

The other is to give a simple proof of Theorem 4.1,which was firstproved

by T. Sekiguchi [12], using the lifting theory of abelian varieties. The theorem

asserts:

Assume p ―2. Then for any closed points /3 and j, there exists a non-empty

open subset U of X such that the canonical map

r(L2Rpa+e)RnL*Rp^a+r) ― /＼lww

is surjectivefor all closed points a of U.

By virtue of these theorems, we see that the following theorem ([11], Main

Theorem) holds as long as X is ordinary, even if char k―p is 2 or 3.

// #7,3: X―>P{T{U)) is the canonical embedding of X into the protective

space, then the image varietyis ideal-theoreticallyan intersectionof cubics.

C*)H. Morikawa [3] showed this to be the case for generic abelian varieties of

any characteristic.In view of a result of P. Norman and F. Oort [7] to the effect

that generic abelian varieties are ordinary, we get another proof of this statement.

In §1, we recall some fundamental facts from the theory of theta functions in
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abstract geometry, which were established by D. Mumford ([4],[5],[6]). In §2

we shall give a fundamental theta relation from which every theta relationresults

as its special case. The following two sections 3 and 4 are devouted to proving

our main results.

The author had conversation with Dr. T. Sekiguchi during the preparation oi

this paper and obtained some useful suggestions from them, and thanks him foi

asking a question concerning abelian varieties in characteristicp which led the

author to prove the results of this paper.

Notation and Terminology.

Throughout thispaper we fixan algebraicallyclosed fieldk and we are concerned

with schemes over k. For a group scheme G over k and a scheme S over k (resp.

^-algebra R), we denote by G(S) (resp. G(R)) the group of the S-valued (resp. R-

valued) points of G. Since no confusion occurs in this paper, we treat S-valued

points of G as if they were ^-valued points. For a finitegroup scheme F, Fred

(resp. Floa)denotes the maximal reduced subgroup scheme (resp. the identity com-

ponent) of F and F is the dual of F. If X is an abelian variety, then X denotes

the dual abelian variety of X. For an integer n, we denote by nx the isogeny

definedby x ＼―>nx and by Xn the kernel of nx. Let L be an invertible sheaf on

X. Then we define the homomorphism <f>L: X―>X by x i TX*L^)L-1 and

denote the kernel of <j>Lby K(L). The Euler-Poincare characteristici(X, L) is the

square root of the rank of K(L). P denotes the Poincare invertible sheaf on Xx X

and PJaeX) is the pull-back of P via the inclusion Xx{a]―>XxX.

§1. Preliminaries.

Let X be an abelian variety over k and L an ample invertible sheaf on X.

Then we denote by G(L) the group scheme over k defined as follows:

For every ^-scheme S, the S-valued points of G(L) are functoriallyisomorphic to

the group of the pairs (x, <ft),where x is an S-valued point of X, and

<p: L(g)Os―T**(LROS)

is an isomorphism, where T^ : Jx S―>Xx S is the translation by x. It then fits

into an exact sequence of group schemes:

1 ― Gm ― G(L)
i

K(L) ― 1,

where Jl is the canonical surjection. The canonical representation U of G{L) on

r(X, L) = r(L) is given as follows:

C/(,,≪: nLROs) -A r(Tx*(L(g)Os)) ― 1＼LROS)
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for an S-valued point (x, <f>)of G{L).

For any two S-valued points a, b of G(L), aba~lb"1is an S-valued point of Gm

and it depends only on jL(a) and jL(b). Define eL: K(L)xK(L)―>Gm by eL(jL(a),

JL(b))= abcrib~1. Then eL is skew-symmetric and bi-multiplicative. By the defini-

tion of eL, we see that a subgroup H of K{L) satisfiesthe property eL＼HxH= l if

and only if there exists a group section p: H―>G(L) of jL. Such p is called a

lifterof i7 and the image p(H) is called a /ey<?/subgroup of G{L) over /7.

Now we can state the fundamental theorem of Mumford's theorv. which asserts:

Theorem 1.1. {Theta structure theorem). Let L be an ample invertiblesheaf

on an abelian variety X over k. Then F{L) is an irreducibleG(L)-module under the

action U. Moreover, it is the unique irreduciblerepresentation of G(L) for which

Gm acts by its natural character. If II is a maximal subgroup of K(L) such that

eLUxi/ = l, then

dim,(/'(L)/r)= l

where H* is a level subgroup of G{L) over H.

(cf.[4],§1 Th. 2 and [10], Appendix)

Such a subgroup H of K(L) as in Theorem 1.1 is said to be maximal isotropic.

In terms of theta groups, the descent theory of invertible sheaves on abelian

varietiesis translated as follows:

Theorem 1.2. Let n: X―-> Y be an isogeny of abelian varieties and L an

ample invertible sheaf on X. Then there is a natural one-to-one correspondence

between the sets of

(a) isomorphism classes of invertiblesheaves M on Y such that k*M~L, and

(b) homomorphisms a: ker u >G(L) lifting the inclusion ker n >X.

(cf.[6]§23 Th. 2)

For such M as in (a), the corresponding hommorphism a is called the descent data

on L for tcassociated with the descended sheaf M.

Theorem 1.3. Let n: X―>Y be an isogeny of abelian varietiesand L and

M ample invertiblesheaves on X and Y, respectively,stick that n*M^.L. Let a be

the descent data on L associated with M. Then

(1) n~＼K(M))dK(L),

(2) the centralizerG* of a(kerjr)in G(L) isr＼n~1{K(L))~],where j: G(L) >K(L)

is the natural projection,

(3) G(M)~G*/a(ker 7i),canonically.

(cf.[6],§23)
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As for the product of theta groups, we have the following which is proved in

the same method as in T4,§3 Lemma 11.

Proposition 1.4. Let L and M be ample invertiblesheaves on abelian varieties

X and Y, respectively. Let iL : Gm >G(L) and iM '■Gm―>G(M) be the canonical

inclusions. Then we have an exact sequence:

(*/,,i*rl)

1 ･― Gm > G(L)XG(M) ―* G(px*LRPr*M) ―-> 1

where px and pr are projectionsfrom XxY to X and Y, respectively.

We. here rera.11an addition formula of sheaves.

Proposition 1.5 Let L be a symmetric (i.e.,( ―lx)*L~L) invertible sheaf on

an abelian variety X. Let a and b be integers. If we define an isogeny £: Xx

X >XxX by (x, y)> >(x ―by, x+ay), then ive have

eiP^L^P^p^iL^Pe))

-p1*(La+bRPa,f))Rpz*(LaHa +b)(g)Palt-ba)

for any a, fteX(k), where pi is the i-th projection of XxX.

(cf.[9],Lemma 4.1)

Before bringing this section to an end, we give the following lemma, which is

the positive characteristicversion of Lemma 2.1 in [21.

Lemma 1.6. Let K be a field of positive characteristicp and let E(g) be an

elementary abelian p-group of rank g. Suppose {T(a)＼aeE(g)}is a set of independent

variable over K. If we define a pyxpu -matrix M by

M―[T{a―b)＼a,b^EuOy-t:w'

then we have

detAf=( L T(a))v'J.

Proof. If we regard M as the matrix with the coefficientsin Z[Q[---, T{a),

･･･]>where C is a primitive p-th.root of unity in the fieldof the complex numbers,

then we can easily see that

detM= II ( 2 z(a)T(a))

in which E(g)* is the dual group of E(g) (cf.loc. cit.)- Since we can specialize 'Q

to 1 over the canonical homomorphism Z―+Z/{p), we have

detM(in the ring AT---, T{a), -]) = (S T(a))p(l

Q.E.D.
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§2. A fundamental formula of theta relations

We start this section with the following definition.

95

Definition 2.1. Let L be an ample invertible sheaf on an abelian variety X.

Let Hi and H2 be two subgroup schemes of K(L) such that K(L) ―H1@H2. This

decomposition is called a Gopel decomposition of K{L) with respect to eL if eL＼Hi

j res.
xHi=l for i = l,2 and H2―>K(L) ≫(K(L))A *(#i)A is an isomorphism where j

is the canonical isomorphism associated to eL and res.is the restrictionmap.

It is well-known that if K{L) is reduced, then it has always a Gopel decompo-

sition. But, unfortunately, K{L) need not have a Gopel decomposition unless K(L)

is reduced. Take, for instance,an ample invertible sheaf L of degree p on a super-

singular ellipticcurve.

The following argument in this section is a slight generalization of §3 in our

paper [9].

Suppose we are in the following situation:

n
X Y

(*)
L<― M.

Here % is an isogeny of abelian varieties,L and M are ample invertible sheaves

and <fiis an isomorphism x*M―L. Then (n, (p)induces a linear map:

,t*: F(Y, M)-―>I＼X, L).

Let d : ker n―>G(L) be the descent data on L for n associated with M. Then

we have, by Theorem 1.3, the exact sequence:

0 ―> ker n ―> G{Lf ―> G(M) ―> 1,

where G(L)* is the centralizer of <i(ker;r)in G(L) and T is the canonical surjection.

Assume that there exists a Gopel decomposition K{L) = Hi(L)RH2(L) satisfying the

following properties:

( i ) H＼(L)is reduced.

(ii) If we put K1 = ]s&tkV[Hi{L) and K2 = ker nnH2(L), then ker n = K1@Ka.

We then have the following:
y res.

(iii) If we put (Kt)L = ker[K(L) ―-≫■{K(L))A ― (Ki)A]nHj(L) for i,j = l,2 and i*

j, then we have

K{M)^n{{K2Y)RK{{IuY)
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and this is a Gopel decomposition. Put 7r((K2)1)= H1(M) and n((K,)1)= H2(M); hence

Hi(M) is reduced.

Lemma 2.2. There existliftersPi{L):Hi{L)―>G{L) and Pi(M):Hi(M)―>

G(M) for f=l, 2 satisfyingthefollowingproperties:

( i ) pi(L)= d on Ki for 2= 1,2 and

(ii) the followingdiagram is commutative:

≫

rc' = ^＼(K,)
I

Hi(M)

Pi{L)

G(L)*cG(L)

/

> G(M)

Pi{M)

for i,j = i, 2 and ii=j.

Proof. Since pt{L)･ d~l:Kt―≫G{L) factors through Gm, it defines an element

a' of {Ki)＼k). Let a be an element of [/£(L)]A(&)which induces a' in (Ki)A(k). If

≪ corresponds to the homomorphism x'-Hi{L)―>Gm, then yrl "
i0^^)

is equal to d

on Ki and it is also a lifter. As for (ii),we have the equalities Ki = ker 7rn(Kj)L

= ker(Topi(L))f](Kj)J-. Since n' is surjective,there exists a lifter pt(M) such that

it fitsinto the above diagram.

Since H2(L) (resp. H2(M)) is a maximal isotropicsubgroup of K(L) (resp. K(M)),

it follows that there is a unique (up to constant multiple) non-zero element 0(L)[O]

(resp. 0(M)[O]) of T(X, L) (resp. T(F, M)) invariant under the action of p2(L)[H2(L)]

(resp. p2(M)[H2(M)]). Moreover, if we put Un(LuaAL)[0] = 0(L)[a] for asH^LXk)

and UPl(mwO(M)[O] = 0(M)[a] for aeH,(M)(k), then we see that {0(Z,)[a]|dretfi(L)(;fe)}

and {<?(M)[≪]|flfli(M)(A?)}form the bases of I＼X, L) and F(Y, M), respectively.

Such bases are called the canonical bases defined by p/s.

Now we can state our fundamental theta relation. It plays the same role in

this paper as Koizumi's basic formula (cf. [1], Th. 1.3) and Mumford's general

formula (cf.[4],§1, Th. 4).

Theorem 2.3. Under the notation as above, there is a scalar ?.ek* such that

for all ac(K2y(k),

n*(d(M)[7taJ) = Z- £ 0(L)[a+p].

Remark. By suitably choosing our bases, we can always assume 1 = 1. In the

sequel, we will always assume that this has been done.
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Proof. First of all,we note that x* is injective and that its image is the

subspace F(X, L)d<ker<>consisting of the elements of F(X, L) invariant under the

action of d(ker n). Moreover, F(X, L)d(kerir)is a module over G'=G(L)*/d(＼ser n).

In fact, F(X, L)^kein as a G'-moduie is isomorphic to F(Y, M) as G(M)-module.

This means the commutativity of the diagram:

G(L)*xr(X, L)≪ker*3

Txin*)-1

―> r(X, L)d(ker

G(M)Xf(Y, M) >I＼Y, M)

Let us firstprove the assertion for a―0. We may put

jr*(0(M)[O])= Z cv-0{L)[p-＼
p£Hi(L)(k)

with CpSk. Then, for all ^-algebras R and all i?-valued points x of (Ki)1, we get

the following:

f/,!<l)(x)(^P)[0]) = ^((/ro,(t,(≪P)[0])

= 7r*(£/,2ooo^(M)[0])

by the commutativity of the above diagram, and

peiii(L)(ic)

= 2 cP(UP2CLnx,(UPliLnpAL)[0}))

= ZcpeL(x, p)(UPlauAUP2iLuxAL)m))

= ZcP- eL(x, p) ■0(L)ip].

Therefore if cpi=0, then eL(x, p) = l for all i?-valued points x of (i^i)1. Hence/) is

contained in KAk) by the definition of (K^Y. Thus we have

ff*≪?(M)[0])= S cp-0(L)[£].

Since tt*(0(M)[O]) is d(ker 7r)-invariant and d―pi(L) on Ku it follows that

;r*(0(M)[O])=CW S cp-^(L)M)

= S^(^l(i^(L)[/>])

for all qzKi{h). Therefore there is l£k* such that
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As for the assertion in general, apply UniLn,^ with aG(K2)1(k) to this equation.

We see that

= 7r*(UPllMH*aAMM)

= 7t*(0(M)[7ra])

and that

Una^aAX> L d{L)[p-])= X- S 0(L)[p+a].

Thus we have obtained our formula. Q.E.D.

§3. Main theorem I.

In this section, the characteristicof k is not equal to 2. For a section s of an

invertible sheaf M on an abelian variety X, we denote by s(x)(x£X(k)) the image

of s in the fiber M(x). If we choose an isomorphism M(.r)~&, then we can con-

sider s(x) to be a scalar. In what follows, we will always assume that this has

been done.

Proposition 3.1. Let X be an abelian variety over k, L a principal(i.e.,ample

andx(X, L) = l) invertiblesheaf on X and K(Lip-inP~iip3)= Hi@H2, with H, reduced,

a Gopel decomposition. Let Pi be a lifter of Ht to G{Llp-inP~np3)(*"= 1,2) and

wLcP-DCP-2)p3)M aGH,ky the basis of r(L(P-D(P-2)p3)defined by
,Sm

Thm

2 6(L<p-≫(p-vp3)[a + b](0)^0

for some beHi(p-l)(k). Here Hi(n)= ((p-l)(p-2)pz/n)Hi when n＼{p-l)(p-2)p＼

Proof. For simplicity,we put {p~l){p―2)fii―q. Let LQ be a symmetric

ample invertiblesheaf such that La(g)Pa~Lfor some a$X(k). Let £:XxX―>X

XX be theisogeny definedby (x, y)＼―>{x―py,x+p(p―2)y). If we put /3=(/>―

l)pza,then we have

As in§2 if we put

ker Cn{Hi((p-l)p)XlIi}=Ki (£= 1,2),

then we have

a(Kjy] = Hi((p-2)p)xHi(p) iii^j).

Moreover, it followsthat
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is a Gopel decomposition with respect to eu where M―p1*(L0CP'-2:>p)(g)p2*(L0p(g)Pf)).

We put N=p1*(L0cp-lypRPi>)(g)p2*Lq. Let d: kerC―>G(N) be the descent data for

C on iV"associated with M, and G* the centralizer of d(ker Q in G(N). Then there

and

n.f ･ If. _____ v C(T1＼

Pi((p-l)p): Hi((p-l)p) ―> G(U^p(g)Pfi),

Pi(p) : Hi{p) G(LopRP*)

Pi((p-2)p): Hi((p-2)p) ―> G(Low-*>")

such that the following diagram is commutative:

{Hi((p-l)p) x Hi} n C-1{Hi((p-2)p) x Hi(p)}

I

res. of <f>°{pi({p-l)p)XPi')

Hi((p-2)p)xHi(p) ―> G(L0'p-2)P)xG(L0p(g)P^ >
Pi({p―2)p)X pi(p) canonical

G*
I

G(M)

where ^: G(Lolp-i:>p(g)Pp)xG(Lq)―>G* is the canonical homomorphism and that

<!>°{pi{{p--^)P)'Xpi}―d on Ki. Since ker £a{Xp-iXX(p-i)P}, we may assume that

pi'= (H on Hi(p-2). Then we get b^Ht{p-l) (*= 1,2) and a^H^p3) such that

Px'= eLq(blt -)-Pl and /o2/= ei*(≪i+ l'i, -) ･ ^. Let {<?(L≪)[a]},{^(Lo^-^^P/,)^]},

{^(L0(p-2)P)M} and {^(Lop0^)[a]} be the bases denned by p/, pt((p-l)p, pi{{p-2)p)

and pi(p), respectively. Then we get, by Theorem 2.3,

C{O(Up-"p)[c-p(p-irb]00(Lop(^P,)[.c-p(p-l)(p-2)b]}

X d(Wp-1>pRP!))[c-(p-2)p*b+pa]<g)0'(L<l)[b + a]

= S ( £ 0f(Lq)[b + a+d])R0(Up-1>pRPll)[c-(p-2)pib+pd]

d£Hi(p-l)(k)W//i(p)(A") /

for any (c-~(p-2)p*b,b)<E(K,y(k)= {(c-(p-2)P% b^ceH^pXk), hztL{k)}- Let r.

X―>XxX be the inclusion defined by x^―->(x, 0) and J: X―>XxX be the

diagonal morphism. Then 'C°c~J.Hence we have

J*{d(Lo^n[c-p(p-iyb]Rd(LopRPB)[c-p(p~l)(p-2)b]}

= E
(

S 0＼U)lb+a+<m^X0{Up-"vRPt)＼c-(p-2)*b+pd].
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The left hand side of this equation is not the zero section. Hence, for any bzHi(k),

there exists deHi(p―Y)(k) such that

2 Of(Lq)lb+a+d](O)i=O.
a£H＼(p){k)

On the other hand, the relations between p/ and ;h give the following theta rela

tion:

O'(Lq)[b]= eL"(bz,b)■</(L")[6+ ≪i+6iJ

for any b^HAk). Therefore we have the following theta relation:

£ e(Lq)[a+b] = 2 eL9(&2, fl1+61-a-6)^/(L4)[fl+6-a1-6i]
aeHi(p){k) ae/fi(p)(fc)

o ffi(p)(fc)

Hence the left hand side of this equation is not zero at the origin Q.E.D.

Corollary 3.2. Let X and L be as in Proposition3.1. Let K(Hp-≫p)=H1((p-

T)p)RH2((p―l)p), with Hi{(p―l)p) reduced, be a Gopel decomposition, pi((P―l)p) a

lifter of Ht((p-l)p) to G(L(p-1)p) (f=l,2) and {d{TJp^v)[a-＼＼a£Hx{{p-l)p){k))the

basis of r(L^~1)P) defined by Pi{{p-l)p)'s. Then

2 O(Up-≫p)[a+ b](Q)^Q

for some beH^p-lXk), where H1(p)= (p-l)H1((p-i)p) and H1(p-l)=pH1{(p-l)p).

Proof. Let (p-l)(p-2)ps = q and K(Lq)= Hi@H2 be a Gopei decomposition

with II,reduced and (p-2)p2H1=Hi((p-l)p). Let n: X―>X/^LiHx{{p-2)p^-] = Y

be the canonicalsuriection.Then we have an exact sequence:

0―>k―>X-^ Y―>0,

where if is a subgroup of Y isomorphic to H2((p ―2)pz),and we have an invertible

sheaf Mon Y such that Z(F, M) = l and 7r*L~Mc2?-2)p2.Then there exists a Gopel

decomposition K{Mq) = H,'RH2' with /// reduced, ker n = K=H2((p-2)p2) and *[/#

(p-iy]=Ht(p-l). Here H/((p-2)p2) denote (p-l)pW and so on. Moreover, we

have {KY = H,'({p-l)p), 7r[fli'((i>-l)/>)]= fl1((/.-l)/≫)and n(W)^H2((p~l)p). Let

^ : if―^G(Ma) be the descent data on M9 for n associated with L(P"1)P and Gf*

the centralizerof d'{K). Then there exist liftersPi': Hi' ≫G(Mq) and Pi(.(p-l)p):

Ht((p-l)p)―>G(UP^P) such that
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rest, of pi'
WT)7c-1lHi((p-l)p-] G'*

I I

Hi<ip-l)p) > G(L(p-1)P)

pi((p-l)p)

101

commutes (£=1,2) and that p2''= d' on K. We may then assume that Pi((p―l)p) ―

Pi((P-1)P) and P2((p-l)p) = eL'p-1>p(a1, -) ■p,((p-l)p)
for some a^H^p-^p^k).

As usual if we denote by {G(Up-^p)[a]＼a£H1((p~l)p)(k)} the basis of T(Lcp-1)P)

defined by pi's, then the relations between pi{{p―V)p) and Pi((p ―l)p) give the theta

relations:

for all a£Hlap-l)p)(k). Let WiM^dWazH.'ik)} be the basis of r(M≪) defined by

p'i's.Then, by Theorem 2.3,we have

n*0(LCP~1)V)[na])＼= 0(M≪)[a]

for all a£(K)1(k)= H1f((p-l)p)(k). Hence we have

tt*( 2 0(Up-iyp)[a+nbJ)= 2 0(M≪)[<z+&]

for all b^Hi{p ―V){k). Thus we have our conclusion by Proposition 3.1

Now we shall prove our firstmain theorem:

Q.E.D

Theorem 3.3. Let X be an ordinary abelian varietyover an algebraicallyclosed

field k of characteristicp>2. Let L be an ample invertiblesheaf on X. Then the

canonical map

S r(LRpa+r)Rr(L^Rp^r) ―+ r(Lp(g)Pa+,)

reci)p(fc)

is surjectivefor all a, peX(k).

Proof. First of all,we may assume %(X, L) = l. Indeed let H be a maximal

isotropic subgroup of K(L) containing K(L)loa. Since X is ordinary, it follows that

HC＼(Xp)ieA= {0} and H is reduced. Let n : X―>X/H= Ybe the canonical projection.

Then there exists an ample invertible sheaf M on Y such that k*M~L and %{Y,

M) = l. We denote by H* the kernel of Jr. Since H* is isomorphic to H, iJ* is

reduced; hence we have, for any positive integer n and any a'Q{Y)(k),

r(L"(g)P£(a0)~ 2 I＼MnRP'a,+d)
d'H*(k)

where P' is the Poincare invertible sheaf on Yx Y. Moreover, we have the follow-

ing commutative diagram:
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X r(L(g)Pa≫T)Rr(L'>-iRplt-T) f＼Lp(g)Pa+,)

1

<

l!

where a', fif£Y(k)and 7t{ar)―a, Jt(ft')= fi. This diagram reduces the proof to the

case x(X, L) = l.

Since there exists aeX(k) such that L<S)Pa is symmetric, we may assume L to

be symmetric. For simplicity,we prove the theorem when a = $ = 0. If a or /5is

not zero, the same proof works. Now we shall prove the theorem when L is

symmetric and y{X, L) = l and a=f}=0. If we define an isogeny $: XxX―>XxX

by (x, y)＼ >(z―(p―l)y, x+y), then we have

for all a, fieX(k). The kernel of £is the image of Xp via the homomorphism X

>XXX define by a?≪ ((/>-l)ar,a:). Since X is ordinary, K(Lp)ved and ^(Lp)loc

are maximal isotropic subgroups of K(LP). If we denote K(Lp)reA and K(Lp)ioe by

//x(/>)and #a(/>),respectively, then we see that K{Lp)^Ht{p)@H2{p) is a Gopel

decomposition. Let K{Lp-l) = Hl(p ―l)Q)Hz(p―l) be an arbitrary Gopel decomposition.

Then we see that

K(M) = {H1(p)xH1((p-l)p)}e{H2(p)xH,((p~l)p}

is a Gopel decomposition, where M=p1*LpRpa*L(p-iiP and //<((/>-l)/O=fli(/O0#i(/>

-1) (2= 1,2). For r^(X)p{k), let rfr:kerf―>G(M) be the descent data on M for

$ associated with the descended sheaf Nr=pi*(L<S)Pr)lS)Pz*(Lp"1^)P-r). Among the

dJs. there exist the following relations.

Lemma 3.4. (i) If we put c~0L~＼r)> then dr = eM( ―, (c, 0)) ･ d where d―da.

(ii) The centralizer G* of d,(ker E) in G(M) does not depend on r.

Proof. The second assertion immediately follows from the first. Let us now

prove (i). If we abbreviate p1*LRp2*Lp~1=N, then we have

^einAp1*L(g)P,*L^)(s)(p1*LRp,*Lp-Tii

~Hom(£*iV, 17,..*$*N).
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The last sheaf is trivial, so there exists a nowhere vanishing section which is

unique up to scalars. This section naturally corresponds to the isomorphism <j>:

£*iV―>£*N covering the translation r(c,o> For a ^-algebra R, let x be an i?-valued

point of ker f. Then d{x): £*N―>f*N is the natural isomorphism covering Ta

and the natural action of x on the sheaf Hom(£*JV, T^Ci0)^*N) is defined by ft >

d(x)o<pod(x)-1. Since d{x)°(j}^d{x)-^<}r1= e^N{x, (c, 0)), the ratio of dr{x) to d{x) is

equal to e^*N(x, (c, 0)), and thus we have Lemma 3.4.

Now we put, for i, / = 1,2 and i^i,

^ = ker in {fli(/>)xHi((p-l)p)}

and

/ g
(iT,)^ker[AXM) ―. K(M)A ― TOA]n {//,(/>)X//,((^-!)/>)},

where / is the isomorphism induced by eM, and g is the restriction. Then we see

that ker ^ = K1@Ki and e[(iry)x]= {0} x fli(/>-1). Moreover, we have lifters ^ : Ht(p)

xHi((p-l)p)―>G(M) for i=l,2 such that /oi= dr on i^. If we put Pi,r= eM(-, (cT,

0)) ･
jOj

with c^^L^ij), then we have, by the above lemma and the definition of

dr, that pi,r=dr on Ki. Since ^z,~1[(X)j,,red]=Xp,re(1=//1(/>),it follows that pi.r―p＼

and pz,r(a, b)-ehV{a, cr) ■p2(a, b) for all i?-valued points (a, b) of H2(p)xH3((p-l)p).

Therefore we have lifters pt(n) of Ht(n) to G(Ln) for ≪=/> and (p-l)p (i=l,2)

which fitinto the commutative diagram:

Pi.r(P)Xpt((p-l)P)
Hi(p)X(Ht((p-l)p) G(V)xG(Uv-^

where pUr(p)= p1(p) and p≫.r(p)= eLP(-, cr)･ pz{p). For re(X)p(k), let /H.T(p-l) be

a lifterof H^p-l) to GiJJ-^P-r) (*= 1, 2) which fitsinto the following commuta-

tive diagram:

{IUP) x Ht((p- l)p)}n r'[{0}x Hip -1)] ― G*
1 I

{0}xHt(p-l) >GCL^P^xGCL'-^P-,) GW).
{0}xpitr(p―l) canonical

Let {d(Up-^)[a]＼a lU(p~l)p)(k)} (resp.{0r(Lp)[a]|a fli(/>)(&)},{W^M^e/Zi^-l)

(&)})be the basis of r(L(p-≫p) (resp. nL2'), rCL^-^P-,)) defined by (h((P-1)P)

(resp. pi,r(p),pi,r(P―l))and let /9r(L)be a non-zero element of r(L(x)Pr), which is

uniquely determined up to scalars. By the relations between pi(p) and p%,r{p),we

easily have the following theta relations:
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for all aeHiiPXk) and re(Z)p(&), where {d(Lp)[a]＼a£Hx{p){k)}is the basis of l＼Lp)

defined by pi{p)'s. Therefore we have, by Theorem 2.3 and the above relations,

f*(<?r(L)(8)^(Lp-1)[6])= S 0T(L?)ld＼Rd(U*- )[a+ b＼
aSHi(p)(fc)

= 2 O(Lp)[a-<f>L--＼rmd(Up-≫p)[a+b]

a ffi(p)(fc)

for all b£Hl(p-l)(k). Here note that (K2y(k) = {(a,a + fylaeftipXk), bGH2(p-l)(k)}.

If c: X―>XxX is the inclusion defined defined by x＼―>(x,0), then f°f= the dia-

gonal morphism j. Hence we have

A*(dr{L)ROr{L^)＼h-])^^{dr{L)^er{L^)[b-])

= E 6(Up-^)[a + h](0)･ e(U)[a-6L-＼r)^
a ffi(p)(fe)

Thus we have the following relation:

J* 0T{L)R0 r(L p- =[<?(Lf"-≫p)[-flr+^-1(r)+≪(O)

xLz/)[-J

By Lemma 1.6,we have

detf 6(Llp-liP)l-a+af+bJ0) J

where g is the dimension of X. This is not zero for some b Hi(p―l)(k) by Corol-

lary 3.2. Therefore we see that the canonical map in the theorem is surjective.

Q.E.D.

§4. Main theorem II.

Our task in this sectionis to prove the following theorem.

Theorem 4.1. Assume char k = 2. Let X be an ordinaryabelianvarietyk and

let L be an ample invertiblesheaf on X. Then for any a, ^eX(k) thereexistsa

non-empty open subset U of X such that the canonicalmap
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is surjective for all reU(k).
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Proof. As in the proof of Theorem 3.5, we may assume that L is symmetric

and %(X, L) ―l. Moreover, it is enough to prove the theorem in the case a=/3 = 0.

If we define the isogeny f: XxX-―>XxX by (x, y)＼ >{x ―y, x+y), then we have

$*(pl*L*Rpi*L*)^pi*LiRp2*Li

and the kernel of f is the image of X% via the diagonal morphism j : X―>Xx X.

If we denote K(L)ied (resp. A'(L4)1OC)by HX(A) (resp. H2(A)), then we see that K{U)

-Xi=H1{A)@H%{A) is a Gopel decomposition. Let Hi(2) be the image of Hi(A) by

2X. Then //1(2)=if(L2)re(1and H2(2)=K(L'2)loa. For simplicity, we put p1*LRp2*L =

N. Then one can easily see that K(Nn) = {H1(n)xHi(n)}@{H1(n)xHi(n)} (n = 2,4) is

a Gopel decomposition. If we put ker£n{Hi(4)xHi(4)} = Ki (i=l,2) and define (Ki)1

as in §1, then we have f[(^-)x]=i7i(2)x//i(2) (i,j=l,2 and i^j). By Lemma 2.2,

we get lifters piij＼n): Hi(ri)―>G(Ln) (i,j = l, 2 and w = 2, 4) satisfying the following-

properties :

(i ) ^(4)o{j0i(^(4)X^<2)(4)}=^ on Ki (≪= 1,2),

(ii) the following diagram is commutative :

res.

{Ht(i) X Hi(£)}n r TO2) X //,(2)]

I

Hi(2)xHi(2) >G(L2)xG(L*)

―>G*

I

G(N2)
Pi^(2)xPi (2) 0(2)

Herein): G(Ln)xG(Ln)―>G(Nn) (≪= 2,4) is the canonical homomorphism, d: ker

f―>G(N4) is the descent data on N* for f associated with A'"2,G* is the centralizer

of d(kei-f) in G(iV4) and res. is the restriction of 0(4)o{|Oicl)(4)X|Oi<2>(4)}.Since no

confusion occurs, we identify pia＼n) with pim(n) and denote them by pi{n). For

w=2,4, let {0≫[ff]|0#i(HX&)} be the basis of I＼Ln) defined by Pi(n). Then, by

Theorem 2.3, we have

£*(08l£|<g>02[2≪+&])=E Ola+q]0dla+b+ql
geffi(2)(fc)

for all (a, a+b)G(Ki)1(k) = {(a, a+fylazH^k), bGH1{2){k)}. Let xoeX(k). Then

we get the following commutative diagram:

c

XX X

XXX
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where 8(x)
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= (.r0―x, xo + x) and i is the inclusion. Hence we have

c*e(WR0l2a + b])= Z Ola+q](xQ) ･ d<[a+ b+q].

Since (l= ((-lx)xUHT.-XtXTx.)°j, we get

8*(02[b]RU2a + b])^j*[(T:x0/[b])(^(TlJ)l2a+b-])]

where "'" is the image of the automorphism e of T(L2) induced by ―lx. If we

put a=^>i(.r0),then we have the following commutative diagram:

[＼URP-a)m＼URPa) > F(L4)

T* Y T* I)

eXid＼)

r(L≪)(8)r(L≫)

For each aQHM)(k), we have

c*Z*
(

By Lemma 1.6,we get

+ r(U)Rr(U)
e*

04[a+b+qJx0) X 04[d+q]

Jc≫,
7)e[ffi(2)x7/,(a)](*)

L
:

Jge/Ji^Kio

detf
＼o4[a

+ b+qjxo) j

＼L J(&,≪o/

= [ S dla+qjxo)?0 ･

<?effi(2)<X>

Since J]gdi[a+q] is a non-zero section for all a£H1{A){k),there exists a non-empty

subset V of X such that for all aeHxiiYk) and all x£V(k).

2 Ua+qlx)^O.

Then we see that 4>l{V) is a required open subset of X. Q.E.D.

Remark 4.2. It is easily seen that Theorem 4.1 holds without the assumption

" ordinary " in the case of ellipticcurves.
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