M_0 -SPACES ARE μ -SPACES

By

Munehiko Itō

1. Introduction. The μ -spaces were introduced by K. Nagami [N]. A space X is said to be a μ -space if X is embedded in the countable product of F_{σ} -metrizable paracompact spaces. The class of M_{s} - μ -spaces is a harmonious class in dimension theory and is a subclass of hereditary M_{1} -spaces (see [M] and [T]). Especially every 0-dimensional M_{s} - μ -space has a σ -closure preserving clopen base. Heath and Junnila [HJ] called such a space an M_{0} -space. Then, what spaces are M_{s} -spaces to be μ -spaces? There was no result on this question yet. In this paper we shed some light on this question.

Throughout this paper all spaces are assumed to be regular T_1 and all maps are assumed to be continuous. The letter N denotes the positive integers.

2. Results.

THEOREM 2.1. Let X be an M_3 -space with a peripherally compact σ -closure preserving quasi-base. Then X is embedded in the countable product of F_{σ} -metrizable M_3 -spaces and is therefore a μ -space.

PROOF. Let $\mathcal{B} = \bigcup \{\mathcal{B}_n : n \in N\}$ be a peripherally compact σ -closure preserving closed quasi-base of X. Let $n \in N$. To construct a space M_n , let us fix n. Let $V(x) = X - \bigcup \{B \in \mathcal{B}_n : x \notin B\}$ and $\hat{x} = \{y \in X : V(x) = V(y)\}$. Then by [J, Theorem 4.8], there exists a σ -discrete closed refinement $H = \bigcup \{H_m : m \in N\}$ of $\{\hat{x} : x \in X\}$. By [O, Lemma 3.2], there exist a metrizable space Z and a one-to-one onto map $f : X \to Z$ such that every $f(H_m)$ is a discrete closed family and $f(\mathcal{B}_n)$ is a closure preserving closed family. For $B \in \mathcal{B}_n$, there exists a map $\Psi'_B : f(B) \to I$ such that $\Psi'_B : X \to I$ such that

$$\Psi_B(x) = \Psi'_B \circ f(x)$$
 if $x \in B$; and
 $\Psi_B(x) = 0$ if $x \notin B$.

Received June 11, 1983.

This result was announced in "General Topology Synposium, Japan", December 1983.

Then Ψ_B is continuous. We define

$$g_B : X \to Z \times I \text{ by } g_B(x) = (f(x), \ \Psi_B(x));$$

$$h_B : g_B(X) \to Z \text{ by } h_B(f(x), \ \Psi_B(x)) = f(x);$$

$$g_n : X \to \prod_{B \in \mathcal{B}_n} g_B(x) \text{ by } g_n(x) = (g_B(x));$$

$$M_n = g_n(x); \text{ and}$$

$$\pi_B : M_n \to g_B(X) \text{ by } \pi_B((x_B)) = x_B.$$

Note that $h_B|_{g_B(B)}$ and $h_B|_{g_B(X-B)}$ are homeomorphisms.

Now, we show that M_n is an F_{σ} -metrizable M_s -space. It is obvious that M_n is regular T_1 . To prove that M_n is F_{σ} -metrizable, let $H \in \mathcal{H}$. Since \mathcal{H} is a σ discrete closed cover of X, it is enough to show that $f \circ g_n^{-1}|_{g_n(H)} : g_n(H) \to f(H)$ is homeomorphic. Obviously $f \circ g_n^{-1}|_{g_n(H)}$ is a continuous one-to-one onto map. Let $B \in \mathcal{B}_n$, U an open set of $g_B(H)$ and $W = \pi_B^{-1}(U)$. Note that $f \circ g_n^{-1}|_{g_n(H)}(W) = h_B|_{g_B(H)}(U)$. If $H \cap B = \phi$, then $f \circ g_n^{-1}|_{g_n(H)}(W)$ is open in f(H). Because $h_B|_{g_B(X-B)}$ is a homeomorphism and $H \subset X - B$. Let $H \cap B \neq \phi$. There exists $x \in X$ such that $H \subset \hat{x}$. Then $\hat{x} \cap B \neq \phi$. From the definition of \hat{x} , $\hat{x} \subset B$. Hence $H \subset B$. Since $h_B|_{g_B(B)}$ is a homeomorphism, $f \circ g_n^{-1}|_{g_n(H)}(W)$ is open in f(H). Therefore $f \circ g_n^{-1}|_{g_n(H)}$ is an open map and is a homeomorphism. To show that M_n is an M_s -space, let \mathcal{W} be a σ -discrete closed quasi-base of Z. Then $g_n(\mathcal{B}_n) \cup g_n \circ f^{-1}(\mathcal{W})$ is a quasi-subbase of M_n , because $\{g_B(B)\} \cup g_B \circ f^{-1}(\mathcal{W})$ is a quasi-subbase of $g_B(X)$. Obviously $g_n(\mathcal{B}_n) \cup g_n \circ f^{-1}(\mathcal{W})$ is a σ -closure preserving closed family. Therefore M_n is an M_s -space.

Let $g: X \to \prod_{n \in N} M_n$ such that $g(x) = (g_n(x))$. Then g is clearly an embedding and the proof is completed.

COROLLARY 2.2. Let X be an M_0 -space. Then X is embedded in the countable product of F_o -metrizable M_0 -spaces and is therefore a μ -space.

PROOF. In the above proof, replace I with $\{0, 1\} \subset I$, and Z with a 0-dimensional one (see [P, Theorem 2]).

COROLLARY 2.3. Let X be a closed image of an F_{σ} -metrizable M_{3} -space with dim X=0. Then X is a μ -space.

PROOF. Let $X = \bigcup \{X_n : n \in N\}$, where each X_n is a closed Lašnev subspace. Then each X_n has an *M*-structure, so by [M, Theorem 3.15], X has an *M*-structure. By [M, Theorem 2.1], X is an M_0 -space. Therefore by the above corollary, X is a μ -space. We do not know whether every perfect image of a μ -space is a μ -space. This problem has already been posed by K. Nagami [N]. Perhaps the following two problems are some approach to this problem in the class of M_3 -spaces.

PROBLEM 2.4. Is every closed image of an F_{σ} -metrizable M_{θ} -space a μ -space?

PROBLEM 2.5. Is every M_3 - μ -space embedded in the countable product of F_a metrizable M_3 -spaces?

COROLLARY 2.6. Every M_3 - μ -space is a perfect image of a 0-dimensional M_3 - μ -space.

PROOF. T. Mizokami [M] proved that every M_{s} - μ -space is a perfect image of an M_{0} -space. But by Corollary 2.2, every M_{0} -space is a μ -space.

An inner characterization of M_{s} - μ -spaces is not obtained yet. So many proofs on M_{s} - μ -spaces have returned to the definition and have been therefore complicated. But for 0-dimensional spaces, we have the following characterizations.

THEOREM 2.7. For a 0-dimensional space X, the following statements are mutually equivalent.

- (1) X is an M_3 - μ -space.
- (2) X is an M_0 -space.
- (3) X is an M_3 -space with an M-structure (for the definition, see [M]).
- (4) X is a regularly stratifiable space (for the definition, see [T]).
- (5) X is a strongly regularly stratifiable space (for the definition, see [T]).

PROOF. (1) \Longrightarrow (3) follows from [M, Theorem 4.5]. (3) \Longrightarrow (2) follows from [M, Theorem 2.1]. (2) \Longrightarrow (1) follows from Corollary 2.2. (1) \Longrightarrow (5) follows from [T, Theorem 5.4]. (5) \Longrightarrow (4) is trivial. (4) \Longrightarrow (2) follows from [T, Corollary 6.3].

PROBLEM 2.8. Find an inner characterization of M_3 - μ -spaces. Are M_3 -spaces with an M-structure or regularly stratifiable spaces μ -spaces?

References

- [C] Ceder, J.G., Some generalizations of metric spaces, Pacific J. Math. 11 (1961) 105-125.
- [HJ] Heath, R. W. and Junnila, H. J. K., Stratifiable spaces as subspaces and continuous images of M₁-spaces, Proc. Amer. Math. Soc. 83 (1981) 146-148.
- [J] Junnila, H. J. K., Neighbornets, Pacific J. Math. 76 (1978) 83-108.
- [M] Mizokami, T., On M-structures, Topology Appl. 17 (1984) 63-89.

Munehiro Itō

- [N] Nagami, K., Normality of products, Actes Congrès intern. Math. 2 (1970) 33-37.
- [0] Oka, S., Dimension of stratifiable spaces, Trans. Amer. Math. Soc. 275 (1983) 231-243.
- [P] Pasynkov, B.A., Factorization theorems in dimension theory, Russian Math. Surveys 36 (1981) 175-209.
- [T] Tamano, K., Stratifiable spaces defined by pair collections, Topology Appl. 16 (1983) 287-301.

Institute of Mathematics University of Tsukuba Ibaraki, 305 Japan

80