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ESTIMATION OF A COMMON MEAN OF TWO

NORMAL DISTRIBUTIONS

By

Tatsuya Kubokawa

Consider the problem of estimating the common mean of two normal

distributions with independent estimators for variances. The paper gives suffi-

cient conditions for the combined estimator being better than the uncombined

estimator in the sense of making its variance smaller. They are extensions of

some parts of the conditions by Brown and Cohen [4], Khatri and Shah [9]

and Bhattacharya [1, 2]. Applications to the problem of recovery of interblock

information in the BIB designs and the problem of estimating common coefficients

of two regression models are shown.

1. Introduction.

The problem of estimating a common mean of two normal distributions

with unknown variances has been studied in several papers. Of these, Graybill

and Deal [7] showed that the necessary and sufficientcondition for the combined

estimator to have a smaller variance than each sample mean is the sample sizes

being greater than 10. Later this is corrected by Khatri and Shah [9] as

(ni―3)(nj―9)^16 for i^j, where nx and n2 are sample sizes of the populations.

This result has been generalized in various forms by Brown and Cohen [4],

Khatri and Shah [9] and Bhattacharya [1, 2]. In this paper, assuming the

underlying model by Bhattacharya [2], we extend the class of combined

estimators by adding one more arbitrary constant and give sufficientconditions

for the variance of the estimator being uniformly smaller than that of the

uncombined estimator.

In Section 2, we give a sufficientcondition based on Brown and Cohen [4]

and other sufficient conditions based on the inequality of Bhattacharya [3],

Further from the inequality, we get a new sufficientcondition under additional

constraints on sample sizes and constant multipliers. This sufficient condition

is an extended form of Bhattacharya [2] except for some special type of

estimators and is proved to be better under those constraints. In Section 3,

the proofs of the results in Section 2 are given.
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In Section 4, we specialize these results to the problem of estimating a

common mean from two normal populations and apply to the problem of the

recovery of interblock information in the balanced incomplete block designs.

Here we give a simple sufficientcondition for Yates [12]'s estimate being better

than the intrablock estimate. Bhattacharya [1] obtained another sufficient

condition and showed this condition was satisfied for all asymmetrical BIBD's

listed in Fisher-Yates' table [6] with two exceptions. For one of these two

designs, Bhattacharya [1] proved that Yates' estimate did not have the desired

property, but for the other design, he could come to no conclusion. Using our

sufficientcondition for this design, we can see that Yates' estimate is superior

to the intrablock estimate. We also apply our results to the problem of

estimating common regression coefficientsof two normal linear models according

to Swamy and Mehta [11], where the preference of estimators is judged by usual

partial ordering between covariance matrices.

2. Main results.

Let X, Y, Su S2 and Wj} j=l, ･･･, q be independent observed random

variables where X has normal distribution N(ft, aoa＼)and Y has N(pt, fi0o＼)for

known constants a0 and jS0;Si, S2 and Wj are estimators for unknown param-

eters a＼,a＼and ajOl+fijOl respectively with known aj and fijsuch that Si/a＼

has Xm^distribution (ra^X)), that is, chi square variate with mf degrees of

freedom for /=1, 2, and Wj/iajol+PjOl) has ^^-distributionfor all j=l, ■■■,q.

Let us write <?=0 when the statisticsW/s don't exist. The problem is to find

a better combined estimator than X for the unknown common mean ft within

the form

(2.1)

where

(2.2)

fl= X+t-(Y-X),

0=
aaoSx

aoSt+cPoSi+dpoior-xy/Po+EUWj/pj}

with nonnegative constants a, c and d (c+d>0) suitably chosen. It is easy to

see that ft is an unbiased estimator of p.. In Section 4, the estimator p. is

applied to the problem of recovery of interblock information in BIBD's with

prior knowledge that a＼^,a＼between unknown variances. It is also applied to

the problem of estimating a common mean of two normal populations and the

problem of estimating common coefficients of two regression models with no

information about a＼and a＼. To deal with these applications, we suppose that
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p>p0 where p=^Q<Jt/{aQa＼) and p0 is a nonnegative known constant. The

conditions for Var(p)^ Var(X) for any p>p0 and any a＼>0 have been giverj

in Brown and Cohen [4] for c=d when po=0 or (O0=l; in Khatri and Shah

[9] for c=d or d=0 when
/00―0;
in Bhattacharya [2] for c=d, d=0 or c=C

when £,,=0 and in Bhattacharya [1] for ao= ･･･―aq and /)0= ･･･―fiqwhen

po^>Q. We shall look for the sufficient conditions in terms of three constants

a, c and d given in (2.2) when po^O.

Let Wo be a (ao<7f+j8offi)Xi-variateindependent of S^ S2 and W^ (/―I, ･･･,q).

Then the following expression of the variance of ft according to Brown and

Cohen [4] and Khatri and Shah [9] is useful.

(2.3) Var{fi)= Var(X) + aoa＼El-2^+a + p)^ ,

where ^ is the same as 0 in (2.2) except that (X―Yf is replaced by Wo. Note

that the distribution of (X―Y)2 is (a0o2-＼-fiaoi)Xland is different from WQ.

From (2.3), a necessary and sufficient condition for the estimator fi being

uniformly better than X for any p^p0 is given by

(2.4) a^2- inf
{

P>PO *･

E[r(p)-] )

El{r{p)YV

where r(p)=(l+p)<p/a.

The following two theorems are obtained from the inequality (2.4). An

extension of Brown and Cohen P41 is given bv the following theorem.

Theorem 2.1. For m2+^>l and c, d>0, the variance of ft is uniformly

smaller than that of X for any p>p0 if a^aBc(c, d : p0) where

(2.5) aBc(c, d; Po)―
2(m2+?+3)/(m2+?+l)

r r 1+po 1 U/2

L ＼V+ pof(c, d)' f(c, d)i

]'

f{c,d)={mm(c, rf)}(m2+^+3)/m1 and V is a random variablehaving F-distn

bution with(m,, m2+a4-3) degreesof freedom.

The assumption mz+q>l implies that the denominator of the r.h. s. of

(2.5)is finitefor any c, d>0. Putting c=d=m1/(m2+3) and #=0 in Theorem

2.1, we get a^2(m2+3)/{(m2+l)£[max(7, V2)]} for pQ^=0 and a^2(m2+3)

/{(m2+l)£[max(2/(F+l), l)y2]} for pQ=l, because f(c,d)=l. These were

derived by Brown and Cohen [4].

Next we definetwo random variablesZ and T such that

(2 to
S3-iXKD+Xg(3)
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(2.7)
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=
£MiW(*o&)}XKD+^(3)

X2(m2)+S1=iZKD+^(3)

where X2(m2), Zg(3), Zf(l),■■･,Z|(l) are mutually independent Z2-variates with

degrees of freedom shown in the parentheses respectively. We note that Z

follows beta distribution with parameters ((q+3)/2, mJ2) and that Z and T

are not independent. An extension of Bhattacharya [1, 2] is given by the

following theorem.

Theorem 2.2. Suppose that one of the following three conditions holds: (i)

niz+q>l if c, d>0, (ii)ra2>4 if d―O or (iii)q>l if c=0. Put ao=(m2+g―l)

/(m!+2). Then the variance of ftis uniformly smaller than that of X for any

p>Po if a^2 max

(2.8)

min-fl, inf A(c, d ;l/p)ao＼, inf A(c, d ; l/p)aopo/(,l + po)＼

A{c, d;l/p)=
EUc(l-Z)+dZ+dT/p}-^
E[{c(l-Z)+dZ+dT/p}-*-J '

where

The three assumptions on m2 and q in Theorem 2.2 mean that

0<A(c, d;l/p)<co and go>O. The sufficientconditionin Theorem 2.2 is not

simple to be checked sinceit contains theinfimum and the expectations. We

shallgive weaker versionsof it,which are,however, more useful. Since

(2.9) Elf(X)VElg(X)^mf{f(x)/g(x)}

X

holds for any positive valued

follows that

(2.10)

functions /, g and any random variable X, it

A(c, d;l/o)^ inf {c(l―z) + dz+dt/p}
J>0,0<z<l

=min(c, d),

which yields

COROLLARY 2.1. For m2+q>l and c, d>0, the estimator p. is uniformly

better than X for any p>p0 if

a^2 max[min{l, min(c, d)a0}, min(c, d)aopo/O-+ po)l
■

The sufficientcondition shown in Corollary 2.1 was proved by Bhattacharya

[1] for a0― ･･■=aq and /30= ･･･= f3q when po~O.

Furthermore from Theorem 2.2, we can develop more precise sufficient

conditions, which are used in all the applications in Section 4. For this, we

assume the following conditions:
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c>d>0 or c=0 (c+d>0),

2min{^4^max{^4
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For c=d or d―Q, however, we need not assume the condition (C-2). We note

that the condition (C-l) includes three cases c=d, d=0 or c=0 which have

been studied by Brown and Cohen [4], Khatri and Shah [9] and Bhattacharya

[2], and that the condition (C-2) is always satisfiedfor q―0 or for ao= ･･■̂ctq,

^q― ･･･=pq. Under these conditions (C-l) and (C-2), we can show that

mfp>pA(c, d;l/p)=A(c, d;0) in Theorem 2.2, and get the next theorem.

Theorem 2.3. Suppose that the condition(C-l) holds, and that the condition

(C-2) holds except when c=d or d=0. Assume that one of the following three

conditionsis satisfied: (i) m2+q>l if c, d>Q, (ii)m2>4 if d=0 or (iii)q>l if

c=0. Put a0―{mo,-＼-q―l)/(mi+2)and

(2.11)
_£[{c(l-Z)+dZ}-1]

A(c, d;0) =
EUc(X-Z)+dZ}-*-]

where Z has beta distributionwith parameters ((<7+3)/2, m2/2). Then

(a) ftis uniformly better than X for any p>p0 if

a^2max[min{l, A(c, d;0)ao}, A{c, d; O)aopo/(l+ po)~]･

(b) Given A(c, d;O)aof^l, ft is uniformly better than X for any p>p0 if

and only if a^2A(c, d;O)ao.

(c) Given a<2, ft is uniformly better than X for any p>p0 if and only if

A(c, d;0)^a/(2a0).

(d) ftis uniformly better than X for any p>p0 if

(2.12) a^2max min-u, 1+^ :―p-^r―)da0K (1+7 ■_ ,qn
L IV (m2+q+3)c' J V (m2+q+3)c

]

for c^d>0,

or if

(2.13) ag2-Mclmi.il, "^c＼,
{mr2T

vl
L y mj+2 J (m1+2)(l + lo0) J

for c>0, m2>4.

The assumptions on m2 and q in Theorem 2.3 guarantee the existence of

the expectations in A(c, d;0) in (2.11) and ao>O, which are equal to those of

Theorem 2.2. Special cases of Theorem 2.3 when A(c, c;0) = c, A{c, 0;0) =

c(mz―4)/(m2+q―1) or A(0, d ; 0)―d(q―l)/(mz+g―1) with po=0 were proved by

Bhattacharya [2] without assuming the condition (C-2). However, we should

impose (C-2) for c=0 in our proof. In order to compute the upper bound of a
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in Theorem 2.3,we can rewrite A(c, d; 0) according to Khatri and Shah [91 as

(2.14) A(c, d: 0)

,/ #4-3 m2+q+3 c―<i＼

m2+<?+3 c ―d＼
2 ;"c )

c

where c^d^O and zFt is the hypergeometric function. When d=0, the as-

sumption m2>4 implies that the hypergeometric functions in (2.14) converge.

The simple sufficient condition (2.12) is derived from the result (a) and (2.14),

and is useful for the constant d away from zero. The other sufficientcondition

(2.13) is independent of d and the r. h. s. is equal to the upper bound of a in

Theorem 2.3 (a) when d=0 and is smaller when d―c.

If po=0 and the conditions (C-l), (C-2) hold, the sufficient condition (a)

given in Theorem 2.3 is better than that in Theorem 2.1 as is shown in

Theorem 2.4. Suppose that one of the following conditions holds: (i)

mz+q>l if c, d>0, (ii)m2>4 if d=0 or (iii)q>l if c=0. If /O0=0, then we

get the following inequality between two upper hounds of a given in Theorems 2.1

and 2.3 (a).

(2.15) aBC{c, d; 0)^2 min{l, A{c, d; 0)a0}

forjmy nonnegative constants c and d not all equal to zero. The inequality holds

without assuming the conditions(C-l) and (C-2).

3. Proofs of theorems.

To prove main theorems in Section 2, we shall express the random variable

r(p) in (2.4) by other random variables whose distributions are independent of

unknown parameters. Using the observations Su S2, Wj (/=1, ■■■,q) and the

random variable Wo defined in Section 2, put

(3.1)

(3.2)

(3.3)

F=

Z-

T=

SJot+

Y>UW ■/(a

/(≪ <7? +

</!)

jol)

SJ ffi+2?-oWy (≪;*?+ Bjal)

=o{ <>≪*/(≪ MWj/iajol+Bjal)
Sl/<ri+2$-oWV(a>*i+j8itfi)

It is easy to see that {nii/(m<i+Q+3)}F has F-distribution with (m2-f<7+3, ma)

degrees of freedom and Z has beta distributionwith parameters ((#-+-3)/2,m2/2).

It follows that the distribution of Z and T are given by (2.6) and (2.7). Since
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2f=i*2ai and (X2ai/2f=1%2ai,･･■,HJHt^H^ are independent for the independent

X2-variates with a* degrees of freedoms and a natural number m, we can see

that F and (Z, T) are independent.

Now we express r(p) in (2.4) by the random variables F, Z and T. We

firstsee that

(3.4) r(p)=a + p)$/a

(l + p)a0Si

Note that

-EUWj/(ajal+pjal)=ZF SJa＼,

(3.5) S,/o＼={l-Z)FSl/o＼,

^Vo^a^+^l)-^51^1-

Since io=^S0oil/(≪o<7D>the denominator in the last expression of (3.4) can be

rewritten as

(3.6)

aA+cDA+a^ld 2?=0(A| + ,)-^L

= a0SAl + pca-Z)F+d(TF+pZF)}

=a0S1ll+dTF+p{c(X-Z)+dZ}F].

Hence r(p) is represented in the form

(3.7) r(p)= a + p)/[_i+dTF+p{c(l-Z)+dZ}Fl.

Putting p ―pQ or jO= oo in (3.7) and using (2.4) with

(3.8) £[F-I]=w1/(ma+^+l),

£[F-2]=m1(m1+2)/{(m2+^-l)(m2+<?+l)},

we get the following necessary condition, which is used to prove Theorems 2.3

and 2.4.

Lemma 3.1. Suppose that one of the following conditions holds: (i) m2+<7>l

if c, d>0, (ii)m2>4 if d―0 or (iii)q>l if c=0. Then a necessary condition

for a, given by (2.1), being uniformly better than X for any p>p0 is

(3.9)

as2min{ifw]'^:oW

where A(c, d;Q) and a0 are given by Theorem 2.3.
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The three assumptions on m2 and q in Lemma 3.1 guarantee that all the

expectations in (2.4) and (3.9) exist. In fact,it is enough to show that

£[{c(l-Z)+dZ}-2]£[F-2]<oo. It is easilyseen that

(3.10)

^max(<r2, d~2) for c, d>0,

£[{c(l-Z)+dZ}-2]- =£[(l-Z)-2]/c2 for d=0,

=£rZ-2l/^2 for c=0.

and that E[F~^<oo for m2+q>l from (3.8). Noting that £[(l-Z)-2]<~ for

m2>4 and £[Z~2]<oo for q>l, we have the three assumptions on ra2 and q

in Lemma 3.1.

3.1. Proof of Theorem 2.1. We note that all the expectations in the proof

exist for c, d>0 if m2+#>l as shown by the similar discussion in Lemma 3.1.

Following Brown and Cohen [4], consider r(p) in (3.7). Then supp>Po{r(p)}

^max{r(p0), K°°)h which yields

(3.11)

Then we have

(3.12)

, s< f 1+/0Q 1 }
np)=maX＼l+p0{ca-Z)+dZ}F'

{c(l-Z)+dZ}Fl

< / 1
+
jOp

1 ＼

=maXtl + /)omin(c, d)F' min(c, d)F)

= h(F) (say).

El{r{Pm
>_iWL, inf

E[h(F)r(p)~＼ (≫$>$>≫

/ E[r{p) 1 T=t, Z=z-] i

＼E[h(F)r(p) | T=t, Z=z]＼

by (2.9). When c=d, Brown and Cohen [4] showed that the bracketed term

on the r. h. s. of (3.12) is nonincreasing in p and that the infimum is attained

when p―>oo. This fact can be similarly shown to be true without assuming

c―d. However, in this place, we directly prove based on Bhattacharya [3]

that

(3.13)
E[r{p) | T=t, Z=z＼

E＼h{F)r{p) | T=t, Z=z] E[h(F)F~^

for any p>p0, t>0 and 0O<l. The r.h. s. of (3.13) is obtained by letting

io->cx>in the 1.
h. s.. If the inequality (3.13) is valid, then putting F~1=

{m1/{mi+qJr?>))V in the denominator of the r.h. s. of (3.13) and noting (3.8),

(3.12) and (2.4) gives the sufficientcondition a<aBC(c, d; p0) in Theorem 2.1.

So we shall prove (3.13). The independence between F and (T, Z) firstimplies

that the inequality (3.13) can be rewritten in the form
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(3.14) EolFr(p) | T=t, Z=z] Eolh(F)^Eolh(F)Fr(p) ＼T=t, Z=z~]

where Eo stands for expectation with respect to the probability measure Po

given by P0{A)=E[_IAF~1^/E[_F~1'] and IA is the indicator function of a set A.

Regarding r(p) in (3.7) as a function of F, it is easy to see that Fr(p) is

nondecreasing in F given T, Z and that h(F) is decreasing in F. Hence we

get the inequality (3.14), which completes the proof.

3.2. Proof of Theorem 2.2. Note that the random variable r(p) in (3.7)

is represented as r(p)={{l―6)+9R)-x where 8=p/(l+p) and R={c(l-Z)+

dZ+dT/p}F. Then it follows from the inequality in Bhattacharya [3, theorem

2.2] that

On the other hand when pQ>0, we have

(3.16)
£[{r(p)}2]

^
Po EjR-1!

because 6>po/(l+po) and the followinginequalityholds:

(3.17)
EUl/P+R}-2']

In fact, this is equivalent to the inequality

(3.18)
R

1/P+R Hit]

E[R~^

E＼R-2~] '

R

{l/P+R}2

]

where £i[-] is the expectation according to the probability measure Pa

by Pi(A)=E[IaR~1^/E[R-1'] and IA is the indicator function of a set A

R/(l/p+R)<*l, it is enough to show that

(3.19) 4 R
I/P+R K ^£i

[

1

I/P+R

]

given

Since

which is proved because R/(l/p-＼-R)is increasing in R and 1/R is decreasing

in R. Hence we get the inequality (3.16). Here, since F is independent of

(T, Z), we can see that

(3.20)
ECi?-1]
=
EUcq-Z)+dZ + dT/p}-ll

£[i?~2] El{ca-Z)+dZ+dT/p}-^

= A(c, d;l/p)a0,
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from (3.8) where A{c, d;l/p) and a0 are defined in Theorem 2.2. Combining

two inequalities(3.15),(3.16) and noting (2.4), we get the sufficient condition

a^2max[min{l, inf p>PoA(c, d;l/p)a0], infp>PoA(c, d )l/ p)aQp0/(l + po)~]in Theo-

rem 2.2. We imposed the assumptions on mz and q in Theorem 2.2 by the

similar discussion in Lemma 3.1 in order that the expectations in thisproof are

3.3. Proof of Theorem 2.3. To prove (a), we show that

(3.21) lnfp>p A(c, d ; l/p)=A(c, d ; 0)

in Theorem 2.2 under the conditions (C-l) and (C-2). We see from Theorem

2.2 that A(c, d;l/p) in (2.8) and a0 are positive for any p>p0 if the assump-

tions on m2 and q in Theorem 2.3 are satisfied. From (2.8) and (2.11), the

equation (3.21) is eauivalent to

(3.22) eS c(l-Z)+dZ
c(l-Z)+dZ+dT/p

^E2[
c(l-Z)+dZ

{ca-z)+dz+dT/P}*

1
c(l-Z)+dZ

]

for any p>p0) where E2[-~＼stands for expectation with respect to the prob-

ability measure P2 given by Pi(A)=ElIA{cQ.-Z) + dZ}-iyE＼_{cQ.-Z)+dZ}-v]

and IA is the indicator function of a set A. The inequality (3.22) is evident

for c=d or d=0, so that from the condition (C-l), we prove (3.22) in the case

of c>d>0 or c=0. Put £=minoS,-S2{i8oai/(ao&)}and f=maxos^a{j8oaV(≪oi8/)}.

Then we get rZ£T£fZ in (3.2) and (3.3), so that it sufficesto show that

(3.23) eI c(X-Z)+dZ

c{l-Z)+dZ+dfZ/p

^£2[

]

Et[

ciX-Z)+dZ

{c{l-Z) + dZ+dyZ/p)2

c

]

1

(l-Z)+dZ

]

Note that the integrand in the r.h.s. of (3.23)is bounded from above by

{c(l―Z)+ dZJrdfZ/p}~1, because of 2y^f by the condition(C-2). Hence it is

enough to show that

(3.24) E
r c<x-z)+dz i r

＼c{l-Z) + dZ+dfZ/p＼ Xc

^E＼
1 ]

- zlc(l-Z)+dZ + dfZ/pl'

(l-Z)+dz＼

For c=0, the equality holds in (3.24). For c>d>0, l/{c(l-Z) + dZ} is in-

creasing in Z and {c(l―Z) + dZ}/{c(l ―Z) + dZ+dfZ/p} is decreasing in Z,
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so that theinequality(3.24)holds. This proves (a).

When A(c, d;O)ao^l or afS2, the sufficientcondition(a) in Theorem 2.3

becomes a^2A(c, d;0)a0, which is equivalent to the necessary conditionin

Lemma 3.1 because the followinginequalityholds:

(3.25) A(c, d:O)ao£
E[r(p0)-]

EUKpom for po>O

As a matter of fact, this follows since af^2A(c, d;0)ao is sufficient and

a^2£[r(io0)]/£[{r(lOo)}2]is necessary, which completes the proof of Theorem

2.3 (b) and (c).

We shall prove (d) from (a). At firstusing the expression (2.14), we shall

derive a sufficientcondition (2.12). Note that for any real values a, /3,j and

0<Tx<l.

(3.26) 2Fa(a, /3; r; x)=(l-;tra-Vifr-a, r-^;r;x),

(3.27) ^(a+1, i8;r;x)-2F1(≪, i3;r;x) + (/3/r)x-2F1(a+l, jS+1; r+l; x).

The firstequation is from Exton [5] and the second equation is obtained just

by rearrangement of the coefficientsin the infinite seriesin the 1.h. s.. Then

(2.14) is written bv

(3.28) A(c,d;Q) =

d

<

d m2/2-i /mt+q-l m2
＼1) *F＼―2―+1' T"

K7) 2F＼ 2 ' T"

mz{c-d)'%FA
1+ ^ £

m2+<?+3 c―d

_2

2

ra2+<7+3

+1,f+

(m2+^+3)c-2F^ ~

Evaluation of each term in the infiniteseries gives

(3.29) aF,p^+l

^.Fl

+1

mz+q―l
2

c―d

c

m2

mz

2

)

c

c

1
)

)

c

;
2
+1;"

c
J

m2+q+3 c―d＼

; 2 ;~T"J

ra2+<?+3
2 ' 2

c―d

c

)

which yields A{c, d; 0)3:d[l+ra2(c―d)/{(m2+#+3)c}]. Hence we get the suf-

ficient condition (2.12). Next using (2.11) and the inequality of Bhattacharya

f31. we have for c><i>0.
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(3.30)
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A(c, d:O) = c
EUd/c+(X-d/c){l-Z)}-ll

EUd/c+a-d/c)(l-Z)}-^

^Cmin{l, }

― c
Wo―4

mz+q―1 '

From (a), we obtain the sufficientcondition (2.13).

3.4. Proof of Theorem 2.4. Since pQ=0, it is enough to show that

(3.31) aBC(c, d;0)^2 min{l, A(c, d ; 0)a0} ,

for nonnegative constants c and d (c+d>0). We note from Theorem 2.2 that

A{c, <2;0) in (2.11) and a0 are positive if the assumptions on m2 and q in

Theorem 2.4 are satisfied. When c=0 or <i=0, then aBc{c, d;0)=0 and the

inequality (3.31) holds. When c, dX), we shall check the following two cases.

Case 1. A(c, d;0)ao^l. Given any a such that a^aBc{c, d;0), ft has a

smaller variance than X by Theorem 2.1. Then a should satisfy

at^2A(c, d ;0)a0 by Lemma 3.1. Hence we get the inequality aBC(c,d;0)

^2A(c, d; 0)a0, which is less than 2, establishing(3.31).

Case 2. A{c, d;0)ao>l. In this case, the r. h. s. of (3.31) is equal to 2.

We also see that aBC(c, d; 0)^2, because E[ma.x{V, max(l/c, l/d)miF2

/(m2+^+3)}]^JB[F] = (m2+^+3)/(m2+^+l). Therefore the inequality (3.31)

holds. Thus in all cases the proof is complete.

4. Applications.

4.1. Estimation of a common mean. Let (Xlt ■■■, Xm) and (Fa, ■･･,Yn)

be independent random samples from two normal populations having a common

unknown mean ft and unknown variances a% and o＼ respectively. Let

X=J^T=1Xi/m, S,=2f=1(Ii-I)2 and Y, Sy be defined similarly. Let us make

the following match ups (~) with the terms used in the first paragraph of

Section 2: X~X, Y~Y, S^SX, S^Sy, o＼~ol, o＼~o＼,ao~l/m, j80~l/n,

m!~m―1, m2~n―1, <?~0. The combined estimator induced from (2.1) and

(2.2) by these correspondences is

(4.1) a{a, c, d) = X+

This includes as

Bhattacharya [2]

aSx/m

Sx/m+cSy/n + d -YY
(Y-X)

particular cases the estimators Ta(a*, c*) and T2(a*, c*) of

In fact, T^a*, c*)= a(a*, c*(m-l)/(n-l), c*(m-l)/(n-l))



Estimation of a common mean of two normal distributions 169

and T2(a*, c*)=/z(a*, c*(m―l)/(n―1), 0). Note that the condition (C-2) in Theo-

rem 2.3 is always satisfiedand that p0 defined in Section 2 is equal to zero in

this model. Using Theorem 2.3, we get the following results for c^d^O

{c+d>0)i Suppose that n>2 for d>0 or n>5 for d=0. Put Ax{c, d; 0)=

J5[{c(l-Z1)+dZa}-1]/J5[{c(l-Z1)+dZ1}-5!] corresponding to (2.11), where Zx

has beta distribution with parameters (3/2, (n―1)/2). Then ft{a,c, d) in (4.1)

is better than X if

(4.2) a^2 min{l, A^c, d ; 0)(n-2)/(m+l)} .

When Ax{c, d; 0)(n―2)/(m+l)^l or a^2, /2(a,c, d) is better than X if and

only if

(4.3) a^A^c, d;0)(n-2)/(m+l).

We also obtain simple sufficient conditions a^2min{l, [l + (n―l)(c―d)

/{(n+2)c}]d(n-2)/(m+l)} for d>0 or a^2min{l, (n-5)c/(m+l)} for c>0,

n>5.

In particular for the estimators Ti(a*, c*) and T2(a*, c*) of Bhattacharya

[2], we get sufficientconditions from (4.2) as

(4.4)

(4.5)

a*£2 minjl

a*£2mmh

(ro-l)(n-2)

(n-l)(m+l)

(m―l)(n― 5)

(n-l)(m+l)

*1

A

for T^a*, c*)

for T2(a*, c*)

because A^c, c;O)=c and A^c, O;O)―c(n―5)/(n―2) for any c>0. These spe-

cialcases were obtainedby Bhattacharya [2]. He also obtained necessary and

sufficientconditionsderived from (4.3) for T^a*, c*) and Tz(a*,c*). From

Lemma 3.1 with d=0, we note that the sufficientcondition(4.5) is also

necessary,which is betterthan Bhattacharya [21.

4.2. Recovery of interblock information. Consider a balanced incomplete

block design (BIBD) with both blocks and errors random whose canonical form

is given by Graybill and Weeks [8] as follows: Let t―number of treatments,

6=number of blocks, renumber of replications per treatment, k―number of

cellsper block, X―number of times any pair of treatments appears in the same

block, ff2=error variance, c;|=block variance and put f=bk―b―t+l. The

(t―l)Xl vector x=(xi) is distributednormally with mean T=(Ti) and covariance

matrix {k/(At)}o2I (referred to as the intrablock estimate), where r* stands for

a treatment contrast. The (t―l)Xl vector y={yi) is distributed normally with

mean t={ti) and covariance matrix {k/(r―A)}(o2+ko%)I (referred to as the
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interblock estimate). The scalar Sz/a% has ^/-distribution and the scalar

S*2/(a2-{-kazp)has ^-^-distribution. The total sample mean z is normally dis-

tributed with total mean v and variance (az+kozp)/(bk). The statistics

Xi, ･･･',xt~i,yi, ･■･, yt~i,52, S*2 and z are mutually independent. We shall

assume b>t>2 (i.e. asymmetrical BIBD's) throughout this paper.

-Consider the problem of estimating the common mean rx, which is, without

loss of generality, any treatment contrast. Let us make the following match

ups (~) with the terms used in Section 2: X~xlt Y~ylt S^S*, S2~S*2,

ti~ru ol~o*, ol~o*+ko% mx~f, ms~b―t, q~t―2, Wj~(xJ+1-yj+iy (/=1,

― ,t―2), aj~k/(Xt) and Pj~k/(r―Jl)(;=0, ･■■,t―2). The combined estimate

induced from (2.1) and (2.2) by these correspondences is

(4.6) t(a, c, d)=xi-＼―-―

flirs

+ **+d{x-y)＼x-y)
(yi―xi)

This includes the estimators Ts(a*, c*) and T5(a*, c*) of Bhattacharya [2] in

the case of BIBD's. In fact, noting that the eigen value <j>tin Bhattacharya

[2] corresponds to r―X in this model for each i, we have T3(a*, c*)=

?(a*, c*(r-X)/(Xt), c*(r-X)/(Xt)) and Tb(g*, c*)=t(a*, c*(r-Jt)/(kt),0). Note that

the condition (C-2) in Theorem 2.3 is satisfiedfor BIBD's and that p0/(X+Po)

in Theorem 2.3 is equal to 2t/(rk) since po=Xt/(r―X) and the relation r(k―T)

―X(t―1)in BIBD's. Then we can apply Theorem 2.3 and get

Theorem 4.1. Suppose that c^d^O or c―0 with c+d>0 and that one of

the following three conditions holds: (i) b>3 for c^d>0, (ii) b>t+i for d=Q

or (iii) t>3 for c=0. Put A,(c, d; 0)=£[{c(l-Z2)+JZ2}-1]/JB[{c(l-Z2)+rfZ2}-2]

where Z2 has beta distribution with parameters ((t+l)/2, (b―t)/2).

(a) z{a,c,d) is better than x1 if a^2max[min{l, A2(c, d; 0)(6-3)/(/+2)},

At(c,d;0)(b-3)Xt/{(f+2)rk}l.

(b) Given Az(c, d;0)(b-3)/(f+2)£l, z{a, c, d) is better than xx if and only

if a^lA^c, d;0)(fc-3)/(/+2).

(c) Given a^2, t{a, c, d) is better than xy if and only if A2(c, d; 0)^

a(/+2)/{2(ft-3)}.

(d) t(a, c, d) is better than x, if

(,7, a,2maX[min{l,(1+i^^))^|)},

I1"! ,, ■1N ), r , on l' for c>d>0 ,＼ (6+l)c / (f+2)rk J
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(4.8) a^maxfrninjl
b-t-4 ＼ {b-t-A)Xt

f+2 Ci' (f+2)rk
≪ for c>0, b>t+A.
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For simple cases c―d, d―0 or c=0, we have A2{c, c;0)=c, Az(c, 0;0)=

c(b―t―4)/(b―3)and A2(0, d ;0)=d(t―3)/(b―2) respectively. Then, from Theo-

rem 4.1 (a), (b) and (c), we get the better results of Bhattacharya [2] for

T3(a*, c*) and T5(a*, c*) in the case of BIBD's. In particular, Theorem 4.1 (a)

vipirlsthftsuffirifinfrnndifinns ･

(4.9) fl*^2maxFminjl

(4.10) a*^2maxrminjl

(r-X)(b-3)

W+2)
r*＼
^r~~Wb ^

r*l for T (n* r*)
C f'

rk{f+2)
° J tOri3(fl)C)

(r-X)(b-t-A) j (r-X)(b-t-4)

Xl(f+2) C t' rk(f+2)
≪･]

for T&(a*, c*).

These sufficientconditions are obtained by the use of the information that

p^po=M/(r―X), so that they are better than those of Bhattacharya [2] which

are given without using the information on p. For the estimator T4(a*, c*) of

Bhattacharya [2], it is expressed as a special case of estimators similarly

induced from (2.1) and (2.2) by the above match ups without W/$ (i.e. #~0).

Thus from Theorem 2.3 (a),(b) and (c), we also get the better results of

Bhattacharya [2] for T4(fl*,c*) in the case of BIBD's. For instance, its suffi-

cient condition is given bv

,a m *^o f ･ fi (r-W-f-1)(4.11) a^2max[mm{l, -XKb-t-1)
rk(f+2)

c*＼

for T4(a*, c*).

While our scope is limited to BIBD's, it should be noted that these results for

Ts(a*, c*), T4(a*, c*) and T5(a*, c*) are extended to any incomplete block design

as is shown by Bhattacharya [2].

Now, using Theorem 4.1, we shall find a sufficient condition for Yates'

estimate, which is stillthe most widely used, being better than the intrablock

estimate. First we shall get a sufficientcondition for the nontruncated Yates'

estimate given bv Gravbill and Weeks F81 as

(4.12)

where

(4.13)

ty=X1 +

s＼9

(r-X)S*/f

At(S2/f+k$2p)+(r-2)S2/f
(Vi-*i)

Xt(r―X)

rk2
(x-ynx-y)+S**-^―^S*＼
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Note that the relations r(k―l)=X(t―l) and bk―rt hold for BIBD's. Rearranging

and calculating the coefficientsof S2, S*2 and (x-y)'(x-y) in (4.12) and (4.13),

we can see that the estimate (4.12) is represented as ?(a, c, d) in (4.6) with

a=(r―l)/(r―k), c=f/(b―t) and d=Xtf/{rk(b―t)}. Since c is not equal to d,

we can not employ sufficientconditions given by Brown and Cohen [4], Khatri

and Shah [9] and Bhattacharya [2]. But it is noted that the condition c>d

in Theorem 4.1 is satisfiedbecause rk―Xt=r―A>Q. Hence we can use Theo-

rem 4.1 (d) and get a simple sufficientcondition

,aias r~l ^o f ･ fi f-i, (b-t)(r-X)＼ Xtf(b-Z) 1
(4.14) 7=I^2max[min{l>(l+ )rk(b-t)(f+2)＼>

/ (*-≪)(r-Z)y

V (i>+l)r* A

2

/(ft-3)

(6-0C/+2)

]

Calculating values of both sides in (4.14) for all asymmetrical BIBD's listed in

Fisher-Yates table [6], we can see that this inequality holds, i.e. fY offers

uniform improvement over xu except for a design r=3, t=4, b=6, k=2, X=l.

This design is one of two exceptional designs in Bhattacharya [1], and he

proved that tY does not have the desired property. For the other exceptional

design: r=4, t=5, 6=10, k―2, X=l, we can conclude by our sufficientcon-

dition (4.14) that ?y is better than xx. Note that the well-known Yates'

estimate tY is the truncated form given as

(4.15) tY=tY if a|>0,

= x1+(r-X)(y1-x1)/{rk) if <t|^0,

and that it is superior to the untruncated estimate tY as is shown in Seshadri

[10]. It follows that Yates' estimate is better than the intrablock estimate for

all asymmetrical BIBD's listedin Fisher-Yates table [6] except for the design

r=3, t=A, 6=6, k=2, X=l.

4.3.

models.

(4.16)

Estimation of common regression coefficients of two regression

Let

yi=XiB+et, 2= 1,2,

be two regression models with common regression coefficients where yt is a

M<Xl vector of observations, Xt is a known riiXp matrix of rank p, fi is a

/>Xl vector of unknown parameters and et is a n*Xl vector of errors having

p-variate normal distribution NP(Q, allni),i=l, 2. The least square estimator

A=(JT{Xi)-1X{yi has Np(fi, aKX'iXi)'1), and the residual sum of squares

Si=(jfi―Xi^iy(yi―Xi^i) has <r$*
^-distribution

(nt>p), i=l, 2.
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To estimate common coefficients# we considercombined estimatorsof the

form

(4.17) j§=A+0-(A-&)

where

(4.18) <p=aS1{_SlX'2X^X[X1{cS,+ d^1-fi2yX'zXz{^-^)}-]-iX'2X2

with nonnegative constants a, c and d (c+d>0) suitably chosen. These esti-

mators are unbiased and are a special case of Swamy and Mehta [11], whose

estimators correspond to (4.17) by interchanging subscripts 1 and 2. The

problem is to find a better estimator within the class of (4.17) than the least

square estimator fix based on the first model only, where the preference of

estimators is judged by usual partial ordering between covariance matrices.

From the method used by Swamy and Mehta fill and Theorem 2.3, we get

Theorem 4.2. Let n^p+1 for i=l, 2. Suppose that one of the next three

conditions holds: (i) n2>2 if c, d>0, (ii)n2>p+i if d=0 or (iii)p>2 if c=0.

Put A3(c, d;0)=E[{c(l-Z3)+dZ3}-1l/EUc(i-Zs)+dZs}-^ where Z3 has a beta

distributionwith parameters {{p+2)/2, (n2―p)/2). Assume that

(C-l) c^d^O or c=0 (c+d>0),

(C-2) 2 min U^maxUi), for eigen values Xu ■■･, Xp of (XiX^X'zXz.
liiip ISiSp

However, we need not assume the condition(C-2) when c=d or d=0. Then

(a) $ is better than fr if a^2min{l, A3(c, d;0)(ng-2)/(n1-/>+2)}.

(b) Given A3{c, d;0)(n2―2)/(n!―p+2)^1, @ is better than fa if and only if

a£2A3(c, d;0)(n2-2)/(n1-/>+2).

(c) Given at^2, fi is better than fa if and only if As(c, d;0)^:a(n1 ―p+2)

/{2(n,-2)}.

(d) fi is better than fa if

(4.19)

or if

(4.20)

a<2 mm 1, TT^(]i-+

a^2 min jl
n2― p―4

nr-p+2

―-,―r^ )r f°r c^d>0 ,
(n2+2)c n

cX for c>0, n2>p+4.

Proof. First we write the covariance matrix of J3 as

(4.21) Cov(/i)=Covtf1)+Efy(J32-fo&-$1y0'+ttfs-M1-fiy

+G8i-jS)o§2-ie1y<2jn
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so that Cov(fii)―Cov0) Is psd if, and only if,

(4.22) £[^o§i-A)(A-A)/^/+^(A-A)(A-i9)/+(A-i9)(A-i§i)^/]^o.

To diagonalize the matrix (4.22), we consider a nonsingular matrix Q=

(<Jfi,･･･,Qv) such that -X'I-X"i=QQ' and X'iXi=QDxQf where Z)i=diagW1, ･■･,lp)

and ^/s are the eigen values of (X[X^-lXiXz. Then it can be seen that the

weighting matrix §5is diagonalizable because

(4.23) QW-^aS^Di+IJcSz+dZUU^A-q'AYn-'Dx

＼s1+{c/).i)Si+(d/ii)i:uUti'A-<i'A)'l)

=diag(0!, ･･･,$P) (say).

Note that Q'^ has ^-variate normal distribution NP(Q'@, o＼Iv) and that Q'j$z

has NP(Q'P, alDj1). Then we can multiply the matrix (4.22) on the left by Q'

and on the right by Q, so that we have

(4.24) Q/jB[#oS,-A)A-A)v/+^o9.-A)A-i9)/+(A-i9)o9,-A)v/]Q

=El&&gyt)EliQ'&-fa}{Q'tft-fay I(q'Ji-Qjfit)*, /^l]diag(^)

+diag(§5i)JE[{Q/(A-A)}{Q/(A-i5)}/ I(q'Ji-q'Jtf, ;^1]

+JB[{Q/(A-i@)}{Q/(A-A)}/! (gjA-flA)1, ;^l]diag(&)]

=diag(£[^(gJi8,-flr{iS1)I+2^i(g{A-flfA)(ff{A-<r{i9)]).

Using the same method of Brown and Cohen [4] and Khatri and Shah [9],

each diagonal element in the last expression of (4.24) is written as

(4.25) a＼E£a+Pi)$l-2$i], i=l, -, p

where Pi=al/(XiOl)>0 and <j>iis the same as 6t in (4.23) except that(q'i&z―q'iBiY

is replaced by a random variable having (tff+ffl/^Xl-distribution. Hence

Cov{B^)―Cov(B) is psd if, and only if,

(4.26) aS2inf{|Ml i=l,-,P

where ri=(X+pi)<j)i/a. Let us make the following match ups (~) with the

terms used in Section 2: for each i, X^q'ifiu Y~q'iJ32, p^pu <o0~0, r(p)~rif

j&―1. Then, we can employ Theorem 2.3 to obtain the conditions in Theorem

4.2, which complete the proof.

For special cases c―d, d=0 or c―0, we have A3(c, c;0)―c, A8(c, 0;0)=

c(n2―/>―4)/(n2―2) or ^43(0, d ; 0) = rf(6―2)/(n2―2) respectively. Then Theorem
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4.2(c) gives that the necessary and

175

sufficient conditions for B being better

than & are a^2c{ni―2)/(n1―p+2) for 0<a^2 and c=d; a^2c(nz-/>―4)

/(≪!―j&+2)for 0<a^2 and d=0. From these conditions,we can easily see

that fiis betterthan fr if l£2c(n2―2)/(n1-p+2) for 0<a^l and c=d, or if

1^2c(n2―j!>―4)/(nx―/>+2)for 0<a^l and d=0, which was given by Swamy

and Mehta [11]. They claimed wrongly these conditionsto be necessary and

sufficient.
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