THE GROTHENDIECK RING OF VECTOR SPACES WITH TWO IDEMPOTENT ENDOMORPHISMS

By

D. TAMBARA

Introduction.

In this paper we are concerned with a particular bialgebra Λ over a field k, which is generated as an algebra by e_1 , e_2 with defining relations $e_1^2 = e_1$, $e_2^2 = e_2$, and whose comultiplication $\Delta: \Lambda \to \Lambda \otimes \Lambda$ and counit $\varepsilon: \Lambda \to k$ are given by the formulas

$$\begin{split} &\Delta(e_1) \!=\! e_1 \!\otimes\! e_1 \!+\! (1\!-\!e_1) \!\otimes\! (1\!-\!e_2) \\ &\Delta(e_2) \!=\! (1\!-\!e_2) \!\otimes\! (1\!-\!e_1) \!+\! e_2 \!\otimes\! e_2 \\ &\varepsilon(e_1) \!=\! \varepsilon(e_2) \!=\! 1 \,. \end{split}$$

The purpose of this paper is to compute the representation ring of Λ , namely the Grothendieck ring of finite dimensional Λ -modules with respect to \oplus and \otimes , when k is an algebraically closed field of characteristic zero. The classification of indecomposable Λ -modules is known and our main task is to decompose tensor product of indecomposable Λ -modules.

The results are summarized at the end of Section 1. Our computations involve the decomposition of tensor product of Z_2 -graded k[x]-modules. More generally we do this for $Z_e(=\mathbf{Z}/e\mathbf{Z})$ -graded k[x]-modules for any integer $e \ge 2$. Here, for Z_e -graded k[x]-modules A, B, we give $A \otimes B$ the standard grading and let x act on it by

$$x(a \otimes b) = xa \otimes b + \omega^i a \otimes xb$$
 deg $a = i$,

where ω is a fixed primitive e^{th} root of 1.

The bialgebra A comes from a certain universal construction. In general, for k-algebras A, B such that $\dim A < \infty$, there is a k-algebra a(A, B) equipped with a k-algebra map $\rho: B \to A \otimes a(A, B)$ having the following property: For any k-algebra C, the map $\operatorname{Hom}_{k-\operatorname{alg}}(a(A, B), C) \to \operatorname{Hom}_{k-\operatorname{alg}}(B, A \otimes C)$ induced by ρ is a bijection. The algebra a(A, A) becomes naturally a bialgebra. The bialgebra $a(A, A)^{\circ}$ in the dual space $a(A, A)^{\circ}$ is the universal measuring bialgebra

Received April 18, 1989. Revised July 21, 1989.

of A in the terminology of Sweedler [3]. Our bialgebra A is isomorphic to a(A, A) with $A=k\times k$. General theory of such bialgebras will appear elsewhere.

1. Main results.

Throughout this paper k is an algebraically closed field of characteristic zero, \otimes is over k and all modules are finite dimensional over k. Let Λ be a k-algebra generated by e_{ij} , i, j=1, 2, with defining relations

$$1 = \sum_{j} e_{ij},$$
 $i = 1, 2$ $e_{ij}e_{ik} = \delta_{jk}e_{ij},$ $i, j, k = 1, 2.$

We make Λ a bialgebra, defining comultiplication $\Delta: \Lambda \to \Lambda \otimes \Lambda$ and counit $\varepsilon: \Lambda \to k$ by the formulas

$$\Delta(e_{ik}) = \sum_{j} e_{ij} \otimes e_{jk}$$
$$\varepsilon(e_{ij}) = \delta_{ij}.$$

This bialgebra is identified with the one in Introduction by $e_{ii}=e_i$. For right Λ -modules V,W, we always regard $V\otimes W$ as a right Λ -module through the map Δ . Our object is to decompose Λ -modules $V\otimes W$ for all indecomposable Λ -modules V,W.

We begin with a parametrization of indecomposable Λ -modules. Since a Λ -module structure on V is determined by the subspaces Ve_{ij} of V, the classification of Λ -modules is a special case of that of quadruples of subspaces in vector spaces, which was done by Gelfand and Ponomarev, and by Nazarova.

For vector spaces V_{ij} , i, j=1, 2, and an isomorphism $\alpha: V_{11} \oplus V_{12} \to V_{21} \oplus V_{22}$, define a Λ -module $M(\alpha)$ as the vector space $V_{11} \oplus V_{12}$ on which e_{11} , e_{12} act as the projections to V_{11} , V_{12} , and e_{21} , e_{22} act as the projections to $\alpha^{-1}(V_{21})$, $\alpha^{-1}(V_{22})$ respectively. We write the isomorphism α in a matrix form

$$\alpha = \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix}, \quad \alpha_{ij} \colon V_{1j} \to V_{2i}.$$

Let $\mathcal E$ be the category of k[x]-modules on which x acts nilpotently. Indecomposable objects of $\mathcal E$ are $V_n:=k[x]/(x^{n+1}),\ n\ge 0$. By a $\mathbb Z_2$ -graded k[x]-module we mean a k[x]-module A equipped with a $\mathbb Z_2(=\mathbb Z/2\mathbb Z)$ -grading $A=A_0\oplus A_1$ such that $x(A_i) \subset A_{i+1}$ for $i\in \mathbb Z_2$. A homomorphism of $\mathbb Z_2$ -graded k[x]-modules is a k[x]-linear map preserving grading. Let $\mathcal D$ be the category of $\mathbb Z_2$ -graded k[x]-modules on which x acts nilpotently. For each $n\ge 0$ and j=0,1,1

let V_n^j be a \mathbb{Z}_2 -graded k[x]-module which has a basis v, xv, \dots, x^nv such that $\deg v = j$ and $x^{n+1}v = 0$. The modules V_n^j for $n \ge 0$, j = 0, 1 form a complete list of indecomposable objects in \mathcal{D} .

For an object A of \mathcal{D} , define Λ -modules $L_1(A)$, $L_0(A)$ by

$$L_1(A) = M \begin{pmatrix} f_0 & 1_{A_1} \\ 1_{A_0} & f_1 \end{pmatrix}$$

$$L_0(A) = M \begin{pmatrix} 1_{A_0} & f_1 \\ f_0 & 1_{A_1} \end{pmatrix}$$

where $f_0: A_0 \to A_1$, $f_1: A_1 \to A_0$ are multiplication by x. For an object A of \mathcal{E} and $\lambda \in k - \{0, 1\}$, define a Λ -module $L_{\lambda}(A)$ by

$$L_{\lambda}(A) = M \begin{pmatrix} 1_{A} & 1_{A} \\ 1_{A} & f \end{pmatrix}$$

where $f: A \rightarrow A$ is the map $a \rightarrow (1-\lambda)a + xa$. From the table of indecomposable representations of the D_4^{\sim} -graph in Dlab and Ringel [1], we see the following.

Proposition 1.1. The Λ -modules

$$L_1(V_n^j), L_0(V_n^j)$$
 $n \ge 0, j = 0, 1$
 $L_2(V_n)$ $n \ge 0, \lambda \in k - \{0, 1\}$

form a complete list of indecomposable Λ -modules.

Obviously $L_1(V_0^0) \cong k$, the trivial Λ -module. We define functors

$$\otimes : \mathcal{E} \times \mathcal{E} \longrightarrow \mathcal{E}$$

$$\otimes : \mathcal{D} \times \mathcal{D} \longrightarrow \mathcal{D}$$

$$\otimes': \mathscr{D} \times \mathscr{D} \longrightarrow \mathscr{D}$$

$$p^*: \mathcal{D} \longrightarrow \mathcal{E}$$

$$p_*:\mathcal{E}\longrightarrow\mathcal{D}$$

$$\overline{(\)}: \mathcal{D} \longrightarrow \mathcal{D}$$

in the following way. If A, B are k[x]-modules, the k[x]-module $A \otimes B$ is defined to be the vector space $A \otimes B$ on which x acts as

$$x(a \otimes b) = xa \otimes b + a \otimes xb$$
.

If A, B are \mathbb{Z}_2 -graded k[x]-modules, the \mathbb{Z}_2 -graded k[x]-modules $A \otimes B$ and

 $A \otimes' B$ have the underlying space $A \otimes B$, and the grading and the action of x are defined as

$$A \otimes B : (A \otimes B)_k = \bigoplus_{k=i+j} A_i \otimes B_j$$

$$x(a \otimes b) = xa \otimes b + (-1)^i a \otimes xb, \ a \in A_i, \ b \in B$$

$$A \otimes' B : (A \otimes' B)_k = A \otimes B_k$$

$$x(a \otimes b) = xa \otimes xb.$$

If we exhibit a \mathbb{Z}_2 -graded k[x]-module $A=A_0\oplus A_1$ and a k[x]-module B by the diagrams

$$A_0 \stackrel{f_0}{\longleftrightarrow} A_1 \qquad B \bigcirc g$$

where f_0 , f_1 , g are multiplication by x, the functors p_* , p^* , (

$$p^*: A_0 \xrightarrow{f_0} A_1 \longmapsto A_0 \supset f_1 f_0 \oplus A_1 \supset f_0 f_1$$

$$p_*: B \supset g \longmapsto B \xrightarrow{g} B \oplus B \xrightarrow{g} B$$

$$\overline{()}: A_0 \xrightarrow{f_0} A_1 \longmapsto A_1 \xrightarrow{f_1} A_0.$$

Theorem 1.2. Let λ , $\mu \in k$ and let A, B be objects of $\mathcal D$ or $\mathcal E$. Then we have an isomorphism of Λ -modules

$$L_{\lambda}(A) \otimes L_{\mu}(B) \cong L_{\lambda \mu}(C)$$

where C is an object of \mathcal{D} or \mathcal{E} defined as follows.

(i)
$$C=A\otimes B$$
 if $\lambda=\mu=1$
(ii) $C=p^*A\otimes B$ if $\lambda=1, \ \mu\neq 0, \ 1$
(iii) $C=A\otimes p^*B$ if $\lambda\neq 0, \ 1, \ \mu=1$
(iv) $C=A\otimes B\oplus A\otimes B$ if $\lambda, \ \mu\neq 0, \ 1, \ \lambda\mu\neq 1$
(v) $C=p_*(A\otimes B)$ if $\lambda, \ \mu\neq 0, \ 1, \ \lambda\mu=1$
(vi) $C=B^{\oplus \dim A}$ if $\lambda=1, \ \mu=0$
(vii) $C=B^{\oplus \dim A}$ if $\lambda\neq 0, \ 1, \ \mu=0$
(viii) $C=A^{\oplus \dim B_0}\oplus \overline{A}^{\oplus \dim B_1}$ if $\lambda=0, \ \mu=1$

(ix)
$$C = A^{\oplus \dim B} \oplus \overline{A}^{\oplus \dim B}$$
 if $\lambda = 0, \mu \neq 0, 1$
(x) $C = A \otimes' B$ if $\lambda = \mu = 0$.

Proof will be given in Section 2.

We next describe the effect of the functors \otimes , \otimes' , p^* , p_* , $\overline{}$ on indecomposable modules in $\mathcal D$ and $\mathcal E$.

PROPOSITION 1.3. (i) We have isomorphisms in $\mathcal E$

$$V_m \otimes V_n \cong \bigoplus_{l=0}^{\min(m,n)} V_{m+n-2l}$$

for all $m, n \ge 0$.

(ii) The Grothendieck ring S of $(\mathcal{E}, \oplus, \otimes)$ is the polynomial ring on one generator $\lceil V_1 \rceil$.

This is well-known and an immediate consequence of the Clebsch-Gordan rule for tensor product of simple \$I₂-modules. See also Littlewood [2, p. 195].

Proposition 1.4. (i) We have isomorphisms in \mathcal{D}

$$V_{m}^{i} \otimes V_{n}^{j} \cong \left\{ \begin{array}{ll} \bigoplus_{l=0}^{\min{(m,n)}} V_{m+n-2l}^{i+j+l} & \text{if mn is even} \\ \bigoplus_{l=0}^{\min{(m,n)}-1} (V_{m+n-1-2l}^{i+j+l} \oplus V_{m+n-1-2l}^{i+j+l+1}) & \text{if mn is odd} \end{array} \right.$$

for all $m, n \ge 0, i, j \in \mathbb{Z}_2$.

(ii) The Grothendieck ring R of $(\mathcal{D}, \oplus, \otimes)$ is a commutative ring generated by the classes $[V_0^1]$, $[V_0^0]$, $[V_0^0]$ with defining relations

We shall prove this in Section 3. In fact we shall determine decomposition of tensor product of \mathbb{Z}_e -graded k[x]-modules for any $e \ge 2$.

Proposition 1.5. (i) We have isomorphisms in \mathcal{D}

$$V_m^i \otimes' V_n^j \cong \left\{ \begin{array}{ll} \bigoplus_{l=0}^{m-1} V_l^j \bigoplus \bigoplus_{l=0}^{n-m} V_m^{j+l} \bigoplus \bigoplus_{l=0}^{m-1} V_l^{j+n-l} & if \quad m \leq n \\ \bigoplus_{l=0}^{n-1} V_l^j \bigoplus \bigoplus_{l=0}^{m-n} V_n^j \bigoplus \bigoplus_{l=0}^{n-1} V_l^{j+n-l} & if \quad m > n \end{array} \right.$$

for all $m, n \geq 0, i, j \in \mathbb{Z}_2$.

(ii) The Grothendieck ring T (without 1) of $(\mathfrak{D}, \oplus, \otimes')$ has a \mathbf{Z} -basis $\{e_n^j: n \geq 0, j \in \mathbf{Z}_2\}$, where

$$e_n^j = [V_n^j] - [V_{n-1}^j] - [V_{n-1}^{j+1}] + [V_{n-2}^{j+1}]$$

with the convention $V_{-1}^{j}=V_{-2}^{j}=0$ and we have

$$e_m^i e_n^j = \begin{cases} e_n^j & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}.$$

PROPOSITION 1.6. (i) We have isomorphisms

$$p^*V_n^j \cong \begin{cases} V_{n/2} \bigoplus V_{n/2-1} & \text{if } n \text{ is even} \\ V_{(n-1)/2} \bigoplus V_{(n-1)/2} & \text{if } n \text{ is odd} \end{cases}$$

$$p_*V_n \cong V_{2n+1}^0 \bigoplus V_{2n+1}^1$$

$$\bar{V}_n^j \cong V_{n+1}^{j+1}$$

for all $n \ge 0$, $j \in \mathbb{Z}_2$.

(ii) The functor $p^*: \mathcal{D} \rightarrow \mathcal{E}$ induces a surjective ring homorphism $p^*: R \rightarrow S$ such that

$$p^*[V_0^1]=1$$
, $p^*[V_0^0]=2$, $p^*[V_0^0]=1+[V_1]$

and the functor $p_*: \mathcal{E} \rightarrow \mathcal{D}$ induces an injective homomorphism $p_*: S \rightarrow R$ such that

$$p_*p^*(a) = (1 + [V_0^1])[V_0^0]a$$

for all $a \in R$.

Proofs of Propositions 1.5, 1.6 are easy and omitted.

Combining these results, we see that the representation ring of Λ is isomorphic to the ring K defined as follows. The additive group of K is the direct sum

$$K = \bigoplus_{\lambda \in k} K_{\lambda}$$

where

$$K_{\lambda} = \begin{cases} R & \text{if } \lambda = 1 \\ S & \text{if } \lambda \neq 0, 1 \\ T & \text{if } \lambda = 0 \end{cases}$$

and

 $R = \mathbf{Z}[\varepsilon, \phi_1, \phi_2]$ a commutative ring with defining relations

$$\varepsilon^2 = 1$$
, $\phi_1(\phi_1 - 1 - \varepsilon) = 0$.

 $S = \mathbf{Z}[\phi]$ a polynomial ring,

 $T = \bigoplus_{n \geq 0, j = 0, 1} \mathbf{Z} e_n^j$ is a ring without 1 such that $e_n^i e_n^j = \delta_{mn} e_n^j$.

 $1 \in \mathbb{R}$ is the identity element of K. For $a \in K_{\lambda}$, $b \in K_{\mu}$, the product $a \cdot b$ lies in

 $K_{\lambda\mu}$ and

$$\lambda = \mu = 1 \qquad \Longrightarrow a \cdot b = ab$$

$$\lambda = 1, \ \mu \neq 0, \ 1 \qquad \Longrightarrow a \cdot b = p^*(a)b$$

$$\lambda \neq 0, \ 1, \ \mu = 1 \qquad \Longrightarrow a \cdot b = ap^*(b)$$

$$\lambda, \ \mu \neq 0, \ 1, \ \lambda \mu \neq 1 \Longrightarrow a \cdot b = 2ab$$

$$\lambda, \ \mu \neq 0, \ 1, \ \lambda \mu = 1 \Longrightarrow a \cdot b = p_*(ab)$$

$$\lambda = \mu = 0 \qquad \Longrightarrow a \cdot b = ab$$

$$\lambda = 0 \qquad \Longrightarrow \epsilon \cdot a = a, \qquad a \cdot \epsilon = \bar{a}$$

$$\phi_1 \cdot a = 2a, \qquad a \cdot \phi_1 = a + \bar{a}$$

$$\phi_2 \cdot a = 3a, \qquad a \cdot \phi_2 = 2a + \bar{a}$$

$$\phi^i \cdot a = 2^{1+i}a, \qquad a \cdot \phi^i = 2^i(a + \bar{a})$$

where the multiplications in the right hand sides are those of the rings R, S or T, and

 $p^*: R \rightarrow S$ is a ring homomorphism such that $\epsilon \mapsto 1$, $\phi_1 \mapsto 2$, $\phi_2 \mapsto 1 + \phi$ $p_*: S \rightarrow R$ is an R-linear map such that $1 \mapsto (1+\epsilon)\phi_1$

 $\overline{(\)}$: $T \rightarrow T$ is an additive map interchanging e_n^0 and e_n^1 for all $n \ge 0$.

2. Proof of Theorem 1.2.

Let λ , $\mu \in k - \{0\}$ and let

$$A = \left(A_0 \stackrel{f_0}{\longleftrightarrow} A_1\right), \quad B = \left(B_0 \stackrel{g_0}{\longleftrightarrow} B_1\right)$$

be Z_2 -graded k[x]-modules with the notation in Section 1 and suppose that $1-\lambda-f_0f_1$, $1-\lambda-f_1f_0$, $1-\mu-g_0g_1$, $1-\mu-g_1g_0$ are nilpotent.

We restate Theorem 1.2 in terms of the functor M as follows:

(2.1) If $\lambda = \mu = 1$, then

$$M\begin{pmatrix} f_0 & 1 \\ 1 & f_1 \end{pmatrix} \otimes M\begin{pmatrix} g_0 & 1 \\ 1 & g_1 \end{pmatrix} \cong M\begin{pmatrix} l_0 & 1 \\ 1 & l_1 \end{pmatrix}$$

where

$$A_0 \otimes B_0 \oplus A_1 \otimes B_1 \xrightarrow[l_1]{l_0} A_0 \otimes B_1 \oplus A_1 \otimes B_0$$

$$l_0 = \begin{pmatrix} 1 & \otimes g_0 & f_1 & \otimes 1 \\ f_0 \otimes 1 & -1 \otimes g_1 \end{pmatrix}$$
$$l_1 = \begin{pmatrix} 1 & \otimes g_1 & f_1 & \otimes 1 \\ f_0 \otimes 1 & -1 \otimes g_0 \end{pmatrix}.$$

(2.2) If $\lambda \mu \neq 1$, then

$$M\begin{pmatrix} f_0 & 1 \\ 1 & f_1 \end{pmatrix} \otimes M\begin{pmatrix} g_0 & 1 \\ 1 & g_1 \end{pmatrix} \cong M\begin{pmatrix} 1 & 1 \\ 1 & l_0 \end{pmatrix} \oplus M\begin{pmatrix} 1 & 1 \\ 1 & l_1 \end{pmatrix}$$

where

$$\begin{split} &1-\lambda\mu-l_0 = (1-\lambda-f_1f_0) \otimes 1 + 1 \otimes (1-\mu-g_0g_1) \in \operatorname{End}(A_0 \otimes B_1) \\ &1-\lambda\mu-l_1 = (1-\lambda-f_0f_1) \otimes 1 + 1 \otimes (1-\mu-g_1g_0) \in \operatorname{End}(A_1 \otimes B_0) \,. \end{split}$$

(2.3) If λ , $\mu \neq 1$, $\lambda \mu = 1$, $A_0 = A_1$, $B_0 = B_1$, $f_0 = 1$, $g_0 = 1$, then

$$M {\begin{pmatrix} 1 & 1 \\ 1 & f_1 \end{pmatrix}} \! \! \otimes \! M {\begin{pmatrix} 1 & 1 \\ 1 & g_1 \end{pmatrix}} \! \! \cong \! M {\begin{pmatrix} 1 & 1 \\ 1 & l \end{pmatrix}} \! \! \oplus \! M {\begin{pmatrix} l & 1 \\ 1 & 1 \end{pmatrix}} \! \!$$

where

$$-l = (1 - \lambda - f_1) \otimes 1 + 1 \otimes (1 - \mu - g_1) \in \operatorname{End}(A_1 \otimes B_1)$$
.

(2.4) If $\mu=1$, then

$$M\begin{pmatrix} f_0 & 1 \\ 1 & f_1 \end{pmatrix} \otimes M\begin{pmatrix} 1 & g_1 \\ g_0 & 1 \end{pmatrix} \cong M\begin{pmatrix} 1 \otimes 1 & 1 \otimes g_1 \\ 1 \otimes g_0 & 1 \otimes 1 \end{pmatrix}$$

where the left factor 1 in $1\otimes 1$, $1\otimes g_0$, $1\otimes g_1$ is the identity map on $A_0\oplus A_1$.

(2.5) If $\lambda = 1$, then

$$M\begin{pmatrix} 1 & f_1 \\ f_0 & 1 \end{pmatrix} \otimes M\begin{pmatrix} g_0 & 1 \\ 1 & g_1 \end{pmatrix} \cong M\begin{pmatrix} 1 & \otimes 1_{B_0} & f_1 \otimes 1_{B_0} \\ f_0 \otimes 1_{B_0} & 1 & \otimes 1_{B_0} \end{pmatrix} \oplus M\begin{pmatrix} 1 & \otimes 1_{B_1} & f_0 \otimes 1_{B_1} \\ f_1 \otimes 1_{B_1} & 1 & \otimes 1_{B_1} \end{pmatrix}.$$

(2.6) If $\lambda = \mu = 1$, then

$$M\begin{pmatrix} 1 & f_1 \\ f_0 & 1 \end{pmatrix} \otimes M\begin{pmatrix} 1 & g_1 \\ g_0 & 1 \end{pmatrix} \cong M\begin{pmatrix} 1 & f_1 \otimes g_1 \\ f_0 \otimes g_0 & 1 \end{pmatrix} \oplus M\begin{pmatrix} 1 & f_0 \otimes g_1 \\ f_1 \otimes g_0 & 1 \end{pmatrix}.$$

Indeed, cases (2.1)–(2.6) correspond to cases (i)–(x) in Theorem 1.2 in the following way

$$(2.1) \iff (i)$$

$$(2.2) \Longleftrightarrow (ii), (iii), (iv)$$

$$(2.3) \Longleftrightarrow (v)$$

$$(2.4) \iff (vi), (vii)$$

$$(2.5) \Longleftrightarrow (viii), (ix)$$

 $(2.6) \Longleftrightarrow (x)$

Note that in some cases the present A, B, λ , μ are different from A, B, λ , μ in Theorem 1.2.

LEMMA 2.7. Given isomorphisms

$$\alpha = \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} : V_{11} \oplus V_{12} \longrightarrow V_{21} \oplus V_{22}$$

$$\beta = \begin{pmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{pmatrix} : W_{11} \oplus W_{12} \longrightarrow W_{21} \oplus W_{22}$$

$$\beta^{-1} = \begin{pmatrix} \beta'_{11} & \beta'_{12} \\ \beta'_{21} & \beta'_{22} \end{pmatrix} : W_{21} \oplus W_{22} \longrightarrow W_{11} \oplus W_{12}$$

with $\alpha_{ij}: V_{1j} \rightarrow V_{2i}$, $\beta_{ij}: W_{1j} \rightarrow W_{2i}$, $\beta'_{ij}: W_{2j} \rightarrow W_{1i}$, we have an isomorphism of Λ -modules

$$M(\alpha) \otimes M(\beta) \cong M(\gamma)$$

where

$$Z_{ik} = \bigoplus_{j} V_{ij} \otimes W_{jk}$$

$$\gamma = \begin{pmatrix} \alpha_{11} \otimes 1 & \alpha_{12} \otimes \beta'_{11} & 0 & \alpha_{12} \otimes \beta'_{12} \\ \alpha_{21} \otimes \beta_{11} & \alpha_{22} \otimes 1 & \alpha_{21} \otimes \beta_{12} & 0 \\ 0 & \alpha_{12} \otimes \beta'_{21} & \alpha_{11} \otimes 1 & \alpha_{12} \otimes \beta'_{22} \\ \alpha_{21} \otimes \beta_{21} & \otimes & \alpha_{21} \otimes \beta_{22} & \alpha_{22} \otimes 1 \end{pmatrix}$$

The columns of this matrix correspond to $V_{11} \otimes W_{11}$, $V_{12} \otimes W_{21}$, $V_{11} \otimes W_{12}$, $V_{12} \otimes W_{22}$, and the rows correspond to $V_{21} \otimes W_{11}$, $V_{22} \otimes W_{21}$, $V_{21} \otimes W_{12}$, $V_{22} \otimes W_{22}$ in order.

Proof is straightforward. Now we shall prove (2.1)-(2.6).

 $\gamma: Z_{11} \oplus Z_{12} \longrightarrow Z_{21} \oplus Z_{22}$

(1) Let

$$\alpha = \begin{pmatrix} f_0 & 1 \\ 1 & f_1 \end{pmatrix}, \qquad \beta = \begin{pmatrix} g_0 & 1 \\ 1 & g_1 \end{pmatrix}.$$

Then

$$\beta^{-1} = \begin{pmatrix} (g_1 g_0 - 1)^{-1} g_1 & -(g_1 g_0 - 1)^{-1} \\ -(g_0 g_1 - 1)^{-1} & (g_0 g_1 - 1)^{-1} g_0 \end{pmatrix}$$

so $M(\alpha) \otimes M(\beta) \cong M(\gamma)$ with

$$\gamma = \begin{pmatrix}
f_0 \otimes 1 & 1 \otimes (g_1 g_0 - 1)^{-1} g_1 & 0 & -1 \otimes (g_1 g_0 - 1)^{-1} \\
1 \otimes g_0 & f_1 \otimes 1 & 1 \otimes 1 & 0 \\
0 & -1 \otimes (g_0 g_1 - 1)^{-1} & f_0 \otimes 1 & 1 \otimes (g_0 g_1 - 1)^{-1} g_0 \\
1 \otimes 1 & 0 & 1 \otimes g_1 & f_1 \otimes 1
\end{pmatrix}$$

Multiplying an invertible matrix with γ on the left, we have

$$\gamma \cong \begin{pmatrix}
1 \otimes g_0 & f_1 \otimes 1 & 1 \otimes 1 & 0 \\
f_0 \otimes (1 - g_1 g_0) & -1 \otimes g_1 & 0 & 1 \otimes 1 \\
1 \otimes 1 & 0 & 1 \otimes g_1 & f_1 \otimes 1 \\
0 & 1 \otimes 1 & f_0 \otimes (1 - g_0 g_1) & -1 \otimes g_0
\end{pmatrix} = \begin{pmatrix} h_0 & 1 \\ 1 & h_1 \end{pmatrix},$$

where

$$h_0 \cong \begin{pmatrix} 1 \otimes g_0 & f_1 \otimes 1 \\ f_0 \otimes (1 - g_1 g_0) & -1 \otimes g_1 \end{pmatrix}, \qquad h_1 = \begin{pmatrix} 1 \otimes g_1 & f_1 \otimes 1 \\ f_0 \otimes (1 - g_0 g_1) & -1 \otimes g_0 \end{pmatrix}.$$

(1a) We shall prove (2.1). Let $\lambda = \mu = 1$. Then $A, B \in \mathcal{D}$. Let l_0, l_1 be as in (2.1).

LEMMA 2.8. The Z_2 -graded k[x]-modules

$$A_0 \otimes B_0 \oplus A_1 \otimes B_1 \xrightarrow[l_1]{l_0} A_0 \otimes B_1 \oplus A_1 \otimes B_0$$

$$A_0 \otimes B_0 \oplus A_1 \otimes B_1 \xrightarrow{h_0} A_0 \otimes B_1 \oplus A_1 \otimes B_0$$
.

are isomorphic.

From this we have

$$M(\gamma) \cong M \begin{pmatrix} h_0 & 1 \\ 1 & h_1 \end{pmatrix} \cong M \begin{pmatrix} l_0 & 1 \\ 1 & l_1 \end{pmatrix}$$

which proves (2.1).

PROOF OF LEMMA 2.8. The both \mathbb{Z}_2 -graded k[x]-modules have the common underlying graded space $A \otimes B$, and x acts on the first module as

$$x(a \otimes b) = xa \otimes b + (-1)^i a \otimes xb \quad a \in A_i$$

and on the second module as

$$x(a \otimes b) = \begin{cases} xa \otimes (1-x^2)b + a \otimes xb & \text{if} \quad a \in A_0 \\ xa \otimes b - a \otimes xb & \text{if} \quad a \in A_1. \end{cases}$$

We may assume that A, B are indecomposable. Let $\dim A = m$, $\dim B = n$, and let $u \in A$, $v \in B$ be homogeneous generators. Let G = k[s, t] be a graded k-algebra

with defining relations $s^m = t^n = 0$, ts = -st and $\deg s = \deg t = 1$. G acts on the vector space $A \otimes B$ in two different ways.

The first action:

$$s(a \otimes b) = xa \otimes b$$

 $t(a \otimes b) = (-1)^i a \otimes xb$, $a \in A_i$.

The second action:

$$s(a \otimes b) = \begin{cases} xa \otimes (1-x^2)b & \text{if } a \in A_0 \\ xa \otimes b & \text{if } a \in A_1 \end{cases}$$
$$t(a \otimes b) = (-1)^i a \otimes xb, \quad a \in A_i.$$

To prove the lemma, it is enough to show that these two \mathbb{Z}_2 -graded G-modules $A \otimes B$ are isomorphic. With respect to either action, $s^i t^j (u \otimes v)$ $(0 \leq i < m, 0 \leq j < n)$ form a basis of $A \otimes B$. Hence the both G-modules are free on the generator $u \otimes v$. This proves the lemma.

(1b) Suppose next that $\lambda \mu \neq 1$. We shall prove (2.2). Putting

$$k_0 = f_1 f_0 \otimes (1 - g_0 g_1) + 1 \otimes g_0 g_1$$

$$k_1 = f_0 f_1 \otimes (1 - g_1 g_0) + 1 \otimes g_1 g_0,$$

we have

$$h_0h_1=\begin{pmatrix}k_0&0\\0&k_1\end{pmatrix}.$$

Since $1-k_0$, $1-k_1$ have the unique eigenvalue $\lambda \mu$, $h_0 h_1$ is an isomorphism. Similarly $h_1 h_0$ is an isomorphism. Therefore

$$\gamma \cong \begin{pmatrix} 1 & 1 \\ 1 & h_0 h_1 \end{pmatrix} \cong \begin{pmatrix} 1 & 1 \\ 1 & k_0 \end{pmatrix} \oplus \begin{pmatrix} 1 & 1 \\ 1 & k_1 \end{pmatrix}.$$

LEMMA 2.9. Let $s \in \text{End } V$, $t \in \text{End } W$ be nilpotent endomorphisms and λ , $\mu \in k-\{0\}$. Then $(\lambda+s) \otimes (\mu+t) - \lambda \mu$, $s \otimes 1+1 \otimes t \in \text{End}(V \otimes W)$ are conjugate.

The proof of the lemma is similar to that of Lemma 2.8. Let l_0 , l_1 be as in (2.2). Applying the lemma to $s=1-\lambda-f_1f_0$, $t=1-\mu-g_0g_1$, we see that k_0 and l_0 are conjugate. Similarly k_1 and l_1 are conjugate. Thus

$$\gamma \cong \begin{pmatrix} 1 & 1 \\ 1 & l_0 \end{pmatrix} \oplus \begin{pmatrix} 1 & 1 \\ 1 & l_1 \end{pmatrix}$$

which proves (2.2).

(1c) Suppose λ , $\mu \neq 1$, $\lambda \mu = 1$. Let $A_0 = A_1$, $f_0 = 1$, $B_0 = B_1$, $g_0 = 1$. Then

$$h_0 = P \begin{pmatrix} 1 & 0 \\ 0 & -k \end{pmatrix} Q$$
, $h_1 = Q^{-1} \begin{pmatrix} k & 0 \\ 0 & -1 \end{pmatrix} P^{-1}$,

where P, Q are some invertible matrices and $k=f_1\otimes(1-g_1)+1\otimes g_1$. Let l_0 be as in (2.3). Using Lemma 2.9 with $s=1-\lambda-f_1$, $t=1-\mu-g_1$, we see that k and l are conjugate. Hence

$$\gamma \cong \begin{pmatrix} 1 & 1 \\ 1 & k \end{pmatrix} \oplus \begin{pmatrix} -k & 1 \\ 1 & -1 \end{pmatrix} \cong \begin{pmatrix} 1 & 1 \\ 1 & l \end{pmatrix} \oplus \begin{pmatrix} l & 1 \\ 1 & 1 \end{pmatrix}.$$

This proves (2.3).

(2) We shall prove (2.4). Let

$$\alpha = \begin{pmatrix} f_0 & 1 \\ 1 & f_1 \end{pmatrix}, \quad \beta = \begin{pmatrix} 1 & g_1 \\ g_0 & 1 \end{pmatrix}, \quad \mu = 1.$$

Then

$$\beta^{-1} \! = \! \begin{pmatrix} (1 \! - \! g_1 g_0)^{-1} & -(1 \! - \! g_1 g_0)^{-1} g_1 \\ -(1 \! - \! g_0 g_1)^{-1} g_0 & (1 \! - \! g_0 g_1)^{-1} \end{pmatrix} \! .$$

So

$$\gamma = \begin{pmatrix}
f_0 \otimes 1 & 1 \otimes (1 - g_1 g_0)^{-1} & 0 & -1 \otimes (1 - g_1 g_0)^{-1} g_1 \\
1 \otimes 1 & f_1 \otimes 1 & 1 \otimes g_1 & 0 \\
0 & -1 \otimes (1 - g_0 g_1)^{-1} g_0 & f_0 \otimes 1 & 1 \otimes (1 - g_0 g_1)^{-1} \\
1 \otimes g_0 & 0 & 1 \otimes 1 & f_1 \otimes 1
\end{pmatrix}$$

$$\cong \begin{pmatrix}
1 \otimes 1 & f_1 \otimes 1 & 1 \otimes g_1 & 0 \\
f_0 \otimes (g_1 g_0 - 1) & -1 \otimes 1 & 0 & 1 \otimes g_1 \\
1 \otimes g_0 & 0 & 1 \otimes 1 & f_1 \otimes 1 \\
0 & 1 \otimes g_0 & f_0 \otimes (g_0 g_1 - 1) & -1 \otimes 1
\end{pmatrix}$$

Put

$$\begin{split} h_0 = & \begin{pmatrix} 1 \otimes 1 & f_1 \otimes 1 \\ f_0 \otimes (g_1 g_0 - 1) & -1 \otimes 1 \end{pmatrix} \in \operatorname{End}(A_0 \otimes B_0 \oplus A_1 \otimes B_0) \\ h_1 = & \begin{pmatrix} 1 \otimes 1 & f_1 \otimes 1 \\ f_0 \otimes (g_0 g_1 - 1) & -1 \otimes 1 \end{pmatrix} \in \operatorname{End}(A_0 \otimes B_1 \oplus A_1 \otimes B_1). \end{split}$$

These are isomorphisms, so

where $A = A_0 \oplus A_1$. We claim that the following two objects of \mathcal{D} are isomorphic.

$$A \otimes B_0 \xrightarrow{(1 \otimes g_0)h_0^{-1}} A \otimes B_1$$

$$A \otimes B_0 \xrightarrow{1 \otimes g_0} A \otimes B_1$$
.

Note that the isomorphism class of an object $C = C_0 \oplus C_1$ of \mathcal{D} is determined by the integers dim $\operatorname{Ker}(x^n : C_i \to C_{i+n})$ for n > 0, i = 0, 1. Since

$$(1 \otimes g_0) h_0 = h_1(1 \otimes g_0), \qquad (1 \otimes g_1) h_1 = h_0(1 \otimes g_1),$$

we have

$$\begin{aligned} \dim \mathrm{Ker}(1 \otimes g_i) h_i^{-1} & \cdots (1 \otimes g_{i+n}) h_{i+n}^{-1} = \dim \mathrm{Ker}(1 \otimes g_i) \cdots (1 \otimes g_{i+n}) h_{i+n}^{-n-1} \\ & = \dim \mathrm{Ker}(1 \otimes g_i) \cdots (1 \otimes g_{i+n}), \end{aligned}$$

where indices are taken modulo 2. Thus the above two objects are isomorphic. It follows that

$$\begin{pmatrix} 1 & (1 \otimes g_1)h_1^{-1} \\ (1 \otimes g_0)h_0^{-1} & 1 \end{pmatrix} \cong \begin{pmatrix} 1 & 1 \otimes g_1 \\ 1 \otimes g_0 & 1 \end{pmatrix}.$$

This proves (2.4).

(3) Let

$$\alpha = \begin{pmatrix} 1 & f_1 \\ f_0 & 1 \end{pmatrix}, \quad \lambda = 1$$

$$\beta = \begin{pmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{pmatrix}$$

$$\beta^{-1} = \begin{pmatrix} \beta'_{11} & \beta'_{12} \\ \beta'_{21} & \beta'_{22} \end{pmatrix}.$$

Then $M(\alpha) \otimes M(\beta) \cong M(\gamma)$, where

with

$$h_0 = 1 \otimes 1 - f_1 f_0 \otimes \beta'_{11} \beta_{11}$$

$$h_1 = 1 \otimes 1 - f_1 f_0 \otimes \beta'_{22} \beta_{22}$$
.

Since f_1f_0 is nilpotent, h_0 , h_1 are isomorphisms. Hence

(3a) To prove (2.5) we let

$$\beta = \begin{pmatrix} g_0 & 1 \\ 1 & g_1 \end{pmatrix}.$$

Then

where

$$k_0 = f_1 f_0 \otimes g_1 g_0 - 1 \otimes g_1 g_0 + 1 \otimes 1$$

$$k_1 = f_1 f_0 \otimes g_0 g_1 - 1 \otimes g_0 g_1 + 1 \otimes 1$$

Put

$$k_0' = f_0 f_1 \otimes g_1 g_0 - 1 \otimes g_1 g_0 + 1 \otimes 1$$

$$k_1' = f_0 f_1 \otimes g_0 g_1 - 1 \otimes g_0 g_1 + 1 \otimes 1.$$

These are isomorphisms and we have

$$\begin{cases} (f_0 \otimes 1)k_0 = k'_0(f_0 \otimes 1) \\ (f_1 \otimes 1)k'_0 = k_0(f_1 \otimes 1) \end{cases} \begin{cases} (f_0 \otimes 1)k_1 = k'_1(f_0 \otimes 1) \\ (f_1 \otimes 1)k'_1 = k_1(f_1 \otimes 1) \end{cases}$$

Then, by the same argument as in (2), we know that there are isomorphisms in \mathcal{D}

Thus

$$\gamma \cong \begin{pmatrix} 1 & f_1 \otimes 1 \\ f_0 \otimes 1 & 1 \end{pmatrix} \oplus \begin{pmatrix} 1 & f_0 \otimes 1 \\ f_1 \otimes 1 & 1 \end{pmatrix}$$

which proves (2.5).

(3b) Finally we prove (2.6). Let

$$\beta = \begin{pmatrix} 1 & g_1 \\ g_0 & 1 \end{pmatrix}, \quad \mu = 1.$$

Then

where

$$k_0 = f_1 f_0 \otimes 1 + 1 \otimes g_1 g_0 - 1 \otimes 1$$

$$k_1 = f_1 f_0 \otimes 1 + 1 \otimes g_0 g_1 - 1 \otimes 1$$
.

Put

$$k_0' = f_0 f_1 \otimes 1 + 1 \otimes g_0 g_1 - 1 \otimes 1$$

$$k_1' = f_0 f_1 \otimes 1 + 1 \otimes g_1 g_0 - 1 \otimes 1$$
.

Then

$$\begin{cases} (f_0 \otimes g_0) k_0 = k_0' (f_0 \otimes g_0) \\ (f_1 \otimes g_1) k_0' = k_0 (f_1 \otimes g_1) \end{cases} \begin{cases} (f_0 \otimes g_1) k_1 = k_1' (f_0 \otimes g_1) \\ (f_1 \otimes g_0) k_1' = k_1 (f_1 \otimes g_0). \end{cases}$$

As in (2) there are isomorphisms in \mathcal{D}

$$A_{0} \otimes B_{0} \xrightarrow{f_{0} \otimes g_{0}} A_{1} \otimes B_{1} \quad A_{1} \otimes B_{0} \xrightarrow{f_{1} \otimes g_{0}} A_{0} \otimes B_{1}$$

$$\downarrow | \downarrow | \downarrow | \downarrow | \downarrow |$$

$$A_{0} \otimes B_{0} \xrightarrow{f_{0} \otimes g_{0}} A_{1} \otimes B_{1} \qquad A_{1} \otimes B_{0} \xrightarrow{f_{1} \otimes g_{0}} A_{0} \otimes B_{1}.$$

Thus

$$\gamma \cong \begin{pmatrix} 1 & f_1 \otimes g_1 \\ f_0 \otimes g_0 & 1 \end{pmatrix} \oplus \begin{pmatrix} 1 & f_0 \otimes g_1 \\ f_1 \otimes g_0 & 1 \end{pmatrix}.$$

This proves (2.6).

3. Tensor product of graded k[x]-modules.

Througout this section we fix $\omega \in k$ a primitive e^{ih} root of unity with $e \ge 2$. By a graded k[x]-module we mean a k[x]-module $M = \bigoplus_{i \in \mathbb{Z}} M_i$ such that $\dim M < \infty$, $xM_i \subset M_{i+1}$ for all $i \in \mathbb{Z}$. If M, N are graded k[x]-modules we make the vector space $M \otimes N$ a graded k[x]-module in the following way.

$$(M \otimes N)_k = \bigoplus_{i+j=k} M_i \otimes N_j$$

$$x(a \otimes b) = xa \otimes b + \mathbf{\omega}^i a \otimes xb \quad a \in M_i, \ b \in N.$$

This operation \otimes on graded k[x]-modules is associative. For each $m \ge 0$ and $i \in \mathbb{Z}$, let V_m^i be a graded k[x]-module of dimension m+1 generated by an element of degree i. The modules V_m^i for $m \ge 0$, $i \in \mathbb{Z}$ furnish a complete list of indecomposable graded k[x]-modules. The main result of this section is the

following.

Theorem 3.1. For any $m, n \ge 0$ we have an isomorphism of graded k[x]-modules

$$V_m^0 \otimes V_n^0 \cong \bigoplus_{l=0}^{\min(m,n)} V_{l*}^l$$

where $l \mapsto l_*$ is defined in the following way. Write m=re+i, n=se+j, l=qe+h with r, s, $q \in \mathbb{N}$, $0 \le i$, j, h < e.

Here we understand $V_{-1}^{l}=0$.

Proposition 1.4 (i) follows from this, by letting e=2 and reducing the grading modulo 2. See also Lemma 3.5 and the end of this section.

The proof of Theorem 3.1 goes as follows. We first decompose $V_m^i \otimes V_1^0$, $V_1^0 \otimes V_m^i$, $V_{re}^0 \otimes V_e^0$ directly. In the Grothendieck ring we can express all $[V_m^i]$ as polynomials of $[V_0^i]$, $[V_1^0]$, $[V_e^0]$. Then a straightforward computation gives the desired formula.

We begin with preliminary observation. Let $m, n \ge 0$ and let G = k[s, t] be a graded k-algebra with defining relations $ts = \omega st$, $s^{m+1} = t^{n+1} = 0$ and $\deg s = \det t = 1$. Let G_k be the degree k part of G for each $k \ge 0$. Put k = s + t. Since

$$x \cdot s^i t^j = s^{i+1} t^j + \boldsymbol{\omega}^i s^i t^{j+1}$$

when G is viewed as a graded k[x]-module by left multiplication, G is isomorphic to $V_m^0 \otimes V_n^0$. Since $tx = \omega x t + (1 - \omega)t^2$ and

$$0 = s^{m+1} = (x-t)^{m+1} = x^{m+1} + c_1 x^m t + \cdots + c_{m+1} t^{m+1}$$

for some $c_1, \dots, c_{m+1} \in k$, G has a basis $x^i t^j$, $0 \le i \le m$, $0 \le j \le n$. Assume $m \ge n$ and put

$$z = x^m + c_1 x^{m-1} t + \cdots + c_m t^m$$
.

Then the following hold.

(i) The left multiplication $x: G_k \to G_{k+1}$ is injective for k < n, bijective for $n \le k < m$, and surjective for $m \le k$.

- (ii) G/xG has a basis $t^j \mod xG$, $0 \le j \le n$.
- (iii) $\operatorname{Ker}(x:G\to G)$ has a basis zt^j , $0 \le j \le n$.
- (iv) For each $0 \le j \le n$, put

$$l_i = \sup\{l: zt^j \in x^l G_{m+j-l}\}$$
.

Then

$$G \cong \bigoplus_{j=0}^{n} V_{lj}^{m+j-l_j}$$

as graded k[x]-modules.

(i) is clear and (ii), (iii) follow from (i). To see (iv), decompose $G = \bigoplus_i k \lfloor x \rfloor u_i$ with u_i homogeneous elements such that $x^{m_i}u_i \neq 0$, $x^{m_i+1}u_i = 0$. Then the elements $x^{m_i}u_i$ form a basis of $\operatorname{Ker}(x:G \to G)$. Since zt^j , $0 \leq j \leq n$, have mutually different degrees m+j, the bases $\{zt^j\}$ and $\{x^{m_i}u_i\}$ of $\operatorname{Ker}(x:G \to G)$ are equal up to a permutation and scalar multiples. Hence $\{l_j\}$ is a permutation of $\{m_i\}$. This proves (iv).

LEMMA 3.2. For any $m \ge 0$ we have

$$V_m^0 \otimes V_1^0 \cong \left\{ \begin{array}{lll} V_{m+1}^0 \oplus V_{m-1}^1 & if & m+1 \not\equiv 0 \pmod{e} \\ V_m^0 \oplus V_m^1 & if & m+1 \equiv 0 \pmod{e}. \end{array} \right.$$

PROOF. We may assume m>0. In the above observation we specialize (m, n) to (m, 1). Then $t^2=0$, $tx=\omega xt$ and

$$0 = (x-t)^{m+1} = x^{m+1} - \frac{\omega^{m+1} - 1}{\omega - 1} x^m t,$$

so

$$z = x^m - \frac{\omega^{m+1} - 1}{\omega - 1} x^{m-1} t$$

$$zt = x^m t.$$

If $m+1 \not\equiv 0$, then $(\boldsymbol{\omega}^{m+1}-1)/(\boldsymbol{\omega}-1) \neq 0$, so

$$z \in x^{m-1}G_1$$
, $z \notin x^mG_0$
 $zt = \frac{\omega - 1}{\omega^{m+1} - 1} x^{m+1} \in x^{m+1}G_0$.

Thus, by (iv) of the observation, $G \cong V_{m-1}^1 \oplus V_{m+1}^0$ as graded k[x]-modules. If $m+1\equiv 0$, then $z=x^m$, $x^{m+1}=0$. So $zt\notin x^{m+1}G_0$. Thus $G\cong V_m^0 \oplus V_m^1$.

LEMMA 3.3. For any r>0 we have

$$V_{re}^0 \otimes V_{e}^0 \cong V_{(r+1)e}^0 \oplus V_{(r+1)e-2}^1 \oplus V_{re-1}^2 \oplus \cdots \oplus V_{re-1}^{e-1} \oplus V_{(r-1)e}^e$$

PROOF. We specialize (m, n) in the previous observation to (re, e) Then $t^{e+1}=0$, $x^e=s^e+t^e$ and s^e , t^e are central elements in G. We have

$$0 = (x-t)^{re+1} = (x^e - t^e)^r (x-t) = x^{re+1} - x^{re}t - rx^{(r-1)e+1}t^e,$$

SO

$$z = x^{re} - x^{re-1}t - rx^{(r-1)e}t^{e}$$

and

$$zt^{j} = x^{re}t^{j} - x^{re-1}t^{j+1}, \qquad 1 \le j \le e-1$$
$$zt^{e} = x^{re}t^{e}.$$

Let us determine the integers $l_j := \sup\{l : zt^j \in x^l G_{re+j-l}\}$ for $0 \le j \le e$. Clearly $l_0 = (r-1)e$. By induction on j, we see easily that

$$x^{re+j} = x^{re}t^j + rx^{(r-1)e+j}t^e, \qquad j \ge 1$$

$$x^{re}G_j = \langle x^{re}t^j, x^{(r-1)e+j}t^e \rangle, \quad j \ge 1.$$

It follows that $x^{re-1}t^{j+1} \notin x^{re}G_i$ for $1 \le j < e-1$, hence $l_i = re-1$. We have

$$x^{re+e-1}-(r+1)x^{re+e-2}t=-rzt^{e-1}$$
,

and x^{re+e-1} , zt^{e-1} are linearly independent. So $l_{e-1}=re+e-2$. Finally, since $x^{re+e}=(r+1)zt^e$, we have $l_e=re+e$. Thus

$$G \cong V^0_{(r+1)e} \oplus V^1_{(r+1)e-2} \oplus V^2_{re-1} \oplus \cdots \oplus V^{e-1}_{re-1} \oplus V^e_{(r-1)e}$$

as graded k[x]-modules.

LEMMA 3.4. $V_1^0 \otimes V_m^0 \cong V_m^0 \otimes V_1^0$ for all $m \ge 0$.

PROOF. We can decompose $V_1^0 \otimes V_m^0$ in the same manner as $V_m^0 \otimes V_1^0$.

LEMMA 3.5. $V_0^i \otimes V_n^j \cong V_n^{i+j} \cong V_n^j \otimes V_0^i$ for all $n \ge 0$ and $i, j \in \mathbb{Z}$.

PROOF. Let u, v, w be homogeneous generators of V_0^i , V_n^i , V_n^{i+j} respectively. The correspondences $\boldsymbol{\omega}^{ki}u \otimes x^k v \leftrightarrow x^k w \leftrightarrow x^k v \otimes u$, $0 \leq k \leq n$, give the isomorphisms.

Let Q be the Grothendieck ring of the category of graded k[x]-modules with respect to \oplus , \otimes . The classes $[V_n^i]$ in Q form a basis of Q. We set

$$\varepsilon = [V_b^1]$$

$$\phi_n = [V_n^0] \qquad n \ge 0$$

$$\phi_{-1} = 0.$$

Then $\phi_0=1$ and by Lemma 3.5 ε is a central invertible element in Q and

$$[V_n^j] = \varepsilon^j \phi_n$$
 $n \ge 0, j \in \mathbb{Z}$.

By Lemma 3.4 ϕ_1 is also central and by Lemma 3.2

$$\phi_{m}\phi_{1} = \begin{cases} \phi_{m+1} + \varepsilon \phi_{m-1} & \text{if } m+1 \not\equiv 0 \pmod{e} \\ (1+\varepsilon)\phi_{m} & \text{if } m+1 \equiv 0 \pmod{e} \end{cases}$$

for $m \ge 0$ and by Lemma 3.3

$$(3.7) \phi_{re}\phi_{e} = \phi_{(r+1)e} + \varepsilon\phi_{(r+1)e-2} + (\varepsilon^{2} + \cdots + \varepsilon^{e-1})\phi_{re-1} + \varepsilon^{e}\phi_{(r-1)e}$$

for r>0. It follows that Q is generated by ε , ε^{-1} , ϕ_1 , ϕ_e and in particular Q is commutative.

For each integer $n \ge -1$, define a polynomial $H_n(s, t)$ with integral coefficients by

$$H_n(x+y, xy) = \frac{x^{n+1}-y^{n+1}}{x-y}$$

with x, y indeterminates. Then $H_{-1}=0$, $H_0=1$ and we have a formula

$$H_m(s, t)H_n(s, t) = \sum_{l=0}^{\min(m, n)} t^l H_{m+n-2l}(s, t)$$

for $m, n \ge -1$. Put

$$\theta_n = H_n(\phi_e - \varepsilon \phi_{e-2}, \varepsilon^e) \in Q$$

$$\sigma_n = H_n(\phi_1, \ \varepsilon) \in Q$$

for $n \ge -1$. Then

(3.8)
$$\theta_m \theta_n = \sum_{l=0}^{\min(m, n)} \varepsilon^{l\epsilon} \theta_{m+n-2l}$$

(3.9)
$$\sigma_m \sigma_n = \sum_{l=0}^{\min(m, n)} \varepsilon^l \sigma_{m+n-2l}.$$

By an easy induction it follows from (3.6) and (3.9) that

$$\sigma_i = \phi_i \qquad 0 \leq i \leq e - 1$$

(3.11)
$$\sigma_{e-1+i} = (1+\varepsilon^i)\phi_{e-1} - \varepsilon^i\phi_{e-1-i} \qquad 0 \leq i \leq e-1.$$

LEMMA 3.12. We have

$$\phi_i \phi_j = \sum_{h=\max(i+j-e+2,0)}^{\min(i,j)} \varepsilon^h \phi_{i+j-2h} + \sum_{h=0}^{i+j-e+1} \varepsilon^h \phi_{e-1}$$

for $-1 \le i$, $j \le e-1$.

PROOF. We may assume $i \ge j \ge 0$. When $i+j \le e-2$, the formula results from (3.9), (3.10). Let i+j=e-1+l with $0 \le l \le e-1$. Then by (3.9) and (3.11)

we have

$$\begin{split} \phi_{i}\phi_{j} &= \sigma_{i}\sigma_{j} \\ &= \sum_{h=0}^{j} \varepsilon^{h}\sigma_{i+j-2h} \\ &= \sum_{0 \leq h \leq l/2} \varepsilon^{h} \{ (1+\varepsilon^{l-2h})\phi_{e-1} - \varepsilon^{l-2h}\phi_{e-1-l+2h} \} + \sum_{l/2 < h \leq j} \varepsilon^{h}\phi_{e-1+l-2h} \\ &= \sum_{0 \leq h \leq l/2} (\varepsilon^{h} + \varepsilon^{l-h})\phi_{e-1} - \sum_{0 \leq h \leq l/2} \varepsilon^{l-h}\phi_{e-1-l+2h} \\ &+ \sum_{l/2 < h \leq l} \varepsilon^{h}\phi_{e-1+l-2h} + \sum_{l < h \leq j} \varepsilon^{h}\phi_{e-1+l-2h} \\ &= \sum_{h=0}^{l} \varepsilon^{h}\phi_{e-1} + \sum_{h=l+1}^{j} \varepsilon^{h}\phi_{i+j-2h} \,, \end{split}$$

which proves the lemma.

LEMMA 3.13.
$$\phi_{re+i} = \theta_r \phi_i + \varepsilon^{i+1} \theta_{r-1} \phi_{e-2-i}$$
 for $r \ge 0$, $0 \le i \le e-1$.

PROOF. Denoting by ϕ'_{re+i} the right hand side, it is enough to show that

$$\phi_0'=1$$

$$\phi'_e = \phi_e$$

$$\phi'_{re+i}\phi_1 = \phi'_{re+i+1} + \varepsilon \phi'_{re+i-1} \qquad 0 \le i \le e-2, \ r \ge 0$$

$$\phi'_{re}\phi_e = \phi'_{(r+1)e} + \varepsilon \phi'_{(r+1)e-2} + (\varepsilon^2 + \dots + \varepsilon^{e-1})\phi'_{re-1} + \varepsilon^e \phi'_{(r-1)e} \qquad r > 0.$$

The second equality follows from the definition of θ_1 and the third follows from (3.6) without difficulty. For the last, using (3.8) and Lemma 3.12, we have

$$\begin{split} \phi_{re}'\phi_e &= (\theta_r + \varepsilon\theta_{r-1}\phi_{e-2})(\theta_1 + \varepsilon\phi_{e-2}) \\ &= \theta_r\theta_1 + \varepsilon\theta_{r-1}\theta_1\phi_{e-2} + \varepsilon\theta_r\phi_{e-2} + \varepsilon^2\theta_{r-1}\phi_{e-2}^2 \\ &= \theta_{r+1} + \varepsilon^e\theta_{r-1} + \varepsilon(\theta_r + \varepsilon^e\theta_{r-2})\phi_{e-2} \\ &+ \varepsilon\theta_r\phi_{e-2} + \varepsilon^2\theta_{r-1}(\varepsilon^{e-2}\phi_0 + (1+\varepsilon+\cdots+\varepsilon^{e-3})\phi_{e-1}) \\ &= \theta_{r+1} + \varepsilon\theta_r\phi_{e-2} + \varepsilon(\theta_r\phi_{e-2} + \varepsilon^{e-1}\theta_{r-1}\phi_0) \\ &+ (\varepsilon^2 + \cdots + \varepsilon^{e-1})\theta_{r-1}\phi_{e-1} + \varepsilon^e(\theta_{r-1} + \varepsilon\theta_{r-2}\phi_{e-2}). \end{split}$$

as required.

PROOF OF THEOREM 3.1. From Lemmas 3.12 and 3.13 we can deduce easily that

$$\phi_{re+i}\phi_{j} = \sum_{h=\max(i,j)}^{\min(i,j)} \varepsilon^{h}\phi_{re+i+j-2h} + \sum_{h=0}^{i+j-e+1} \varepsilon^{h}\phi_{(r+1)e-1} + \sum_{h=i+1}^{j} \varepsilon^{h}\phi_{re-1}$$

for $r \ge 0$, $0 \le i \le e-1$, $-1 \le j \le e-1$. Replacing j by e-2-j and multiplying ε^{j+1} , we have

$$\phi_{re+i}\varepsilon^{j+1}\phi_{e-2-j} = \sum_{h=\max(i,j)+1}^{\min(i+j+1,e-1)} \varepsilon^h \phi_{re+i+j+e-2h} + \sum_{h=j+1}^{i} \varepsilon^h \phi_{(r+1)e-1} + \sum_{h=i+j+2}^{e-1} \varepsilon^h \phi_{re-1}$$

for $r \ge 0$, $0 \le i$, $j \le e - 1$. Using (3.8) and Lemma 3.13, we can also see

$$\phi_{re+k}\theta_s = \sum_{q=0}^{\min(r,s)} \varepsilon^{qe} \phi_{(r+s-2q)e+k}$$

if $r \ge 0$, $r \ge s \ge -1$, $0 \le k \le e - 1$ or if $r, s \ge -1$, k = e - 1.

Now let m=re+i, n=se+j with r, $s\geq 0$, $0\leq i$, $j\leq e-1$. The formula to prove is symmetric in m, n, so we may assume $r\geq s$. By the above three formulas, we have

$$\begin{split} \phi_{re+i}\phi_{se+j} &= \phi_{re+i}\phi_{j}\theta_{s} + \phi_{re+i}\varepsilon^{1+j}\phi_{e-2-j}\phi_{s-1} \\ &= \sum_{(1)}\varepsilon^{qe+h}\phi_{(r+s-2q)e+i+j-2h} + \sum_{(2)}\varepsilon^{qe+h}\phi_{(r+s-1-2q)e+i+j+e-2h} \\ &+ \sum_{(3)}\varepsilon^{qe+h}\phi_{(r+s-2q)e+e-1} + \sum_{(4)}\varepsilon^{qe+h}\phi_{(r-1+s-2q)e+e-1} \\ &+ \sum_{(5)}\varepsilon^{qe+h}\phi_{(r+s-1-2q)e+e-1} + \sum_{(6)}\varepsilon^{qe+h}\phi_{(r-1+s-1-2q)e+e-1}, \end{split}$$

where the k^{th} summation $\sum_{(k)}$ is over the elements (q, h) in the set I_k defined below.

$$\begin{split} I_1 \colon 0 &\leq q \leq \min(r, \, s), & \max(i+j-e+2, \, 0) \leq h \leq \min(i, \, j) \\ I_2 \colon 0 &\leq q \leq \min(r, \, s-1), & \max(i, \, j)+1 \leq h \leq \min(i+j+1, \, e-1) \\ I_3 \colon 0 &\leq q \leq \min(r, \, s), & 0 \leq h \leq i+j-e+1 \\ I_4 \colon 0 &\leq q \leq \min(r-1, \, s), & i+1 \leq h \leq j \\ I_5 \colon 0 &\leq q \leq \min(r, \, s-1), & j+1 \leq h \leq i \\ I_6 \colon 0 &\leq q \leq \min(r-1, \, s-1), & i+j+2 \leq h \leq e-1. \end{split}$$

As observed earlier, $(V_n^0 \otimes V_n^0)/x(V_m^0 \otimes V_n^0)$ has a basis consisting of homogeneous elements of degrees $0, 1, \dots, \min(m, n)$. Therefore the map $I_1 \coprod \dots \coprod I_6 \to [0, \min(m, n)]$ taking (q, h) to qe+h must be a bijection. Since the ranges of h in I_1, \dots, I_6 give a partition of [0, e-1], putting l=qe+h, we have

$$\phi_m \phi_n = \sum_{l=0}^{\min(m,n)} \varepsilon^l \phi_{l*}$$

with l_* as described in Theorem 3.1. This proves the theorem.

PROPOSITOIN 3.14. The ring Q is a commutative ring generated by ε , ε^{-1} , ϕ_1 , ϕ_e with a defining relation

$$H_{e-1}(\phi_1, \epsilon)(\phi_1-1-\epsilon)=0$$
.

PROOF. This follows from (3.6) and the fact that $\{\varepsilon^k\phi_i^t\phi_e^r:k\in \mathbb{Z},\ 0\leq i\leq e-1,\ r\geq 0\}$ is a basis of Q. Details are omitted.

Finally we pass from the \mathbb{Z} -graded case to the \mathbb{Z}_e -graded case. We consider only $\mathbb{Z}_e(=\mathbb{Z}/e\mathbb{Z})$ -graded k[x]-modules $M=\bigoplus_{i\in\mathbb{Z}_e}M_i$ such that $xM_i\subset M_{i+1}$ for all $i\in\mathbb{Z}_e$ and x acts on M nilpotently. For such modules M, N, we make the space $M\otimes N$ a \mathbb{Z}_e -graded k[x]-module in the same manner as in the beginning of this section. For a graded k[x]-module M, let π_*M be the \mathbb{Z}_e -graded k[x]-module such that $\pi_*M=M$ as k[x]-modules and $(\pi_*M)_j=\bigoplus_{\pi(i)=j}M_i$ for $j\in\mathbb{Z}_e$, where $\pi:\mathbb{Z}\to\mathbb{Z}_e$ is the natural projection. Then the assignment $M\mapsto \pi_*M$ commutes with \otimes , and the objects $\pi_*V_n^j$, $n\geq 0$, $0\leq j\leq e-1$, form a complete list of indecomposable \mathbb{Z}_e -graded k[x]-modules. Therefore the Grothendieck ring of the category of \mathbb{Z}_e -graded k[x]-modules is isomorphic to $\mathbb{Q}/(\varepsilon^e-1)$. When e=2, we obtain Proposition 1.4 (ii) from Proposition 3.14.

References

- [1] Dlab, V. and Ringel, C.M., Indecomposable representations of graphs and algebras, Memoirs of A.M.S. 173 (1976).
- [2] Littlewood, D.E., "The theory of group characters and matrix representations of groups", Oxford, 1950.
- [3] Sweedler, M.E., "Hopf algebras," W.A. Bejamin, New York, 1969.

Department of Mathematics Hokkaido University Sapporo Japan