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THE GROTHENDIECK RING OF VECTOR SPACES
WITH TWO IDEMPOTENT ENDOMORPHISMS

By

D. TAMBARA

Introduction.

In this paper we are concerned with a particular bialgebra 4 over a field
k, which is generated as an algebra by e,, e, with defining relations e?=e,,
el=e,, and whose comultiplication A: A—A®A and counit ¢: A—k are given
by the formulas

A(Ql):el®el+(1“el)®(1“‘@2)
Aey)=(1—e)RQ(L—e;)+eQe.
ele))=¢e(e,)=1.

The purpose of this paper is to compute the representation ring of A, namely
the Grothendieck ring of finite dimensional 4-modules with respect to € and
®, when & is an algebraically closed field of characteristic zero. The classi-
fication of indecomposable /-modules is known and our main task is to decompose
tensor product of indecomposable /-modules.

The results are summarized at the end of Section 1. Our computations
involve the decomposition of tensor product of Z,-graded k[x]-modules. More
generally we do this for Z(=Z/eZ)-graded k[x]-modules for any integer e=2.
Here, for Z,-graded k[x]-modules A, B, we give A®B the standard grading
and let x act on it by

2(a®b)=xaRb+w'aRxb dega=1,

where o is a fixed primitive e'" root of 1.

The bialgebra A comes from a certain universal construction. In general,
for k-algebras A, B such that dim A< co, there is a-k-algebra a(A, B) equipped
with a k-algebra map p: B—>A®a(A, B) having the following property: For
any k-algebra C, the map Hom,_ag(a(A, B), C)»Hom,_a (B, AQC) induced by
p is a bijection. The algebra a(A, A) becomes naturally a bialgebra. The
bialgebra a(A, A)° in the dual space a(A, A)* is the universal measuring bialgebra
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of A in the terminology of Sweedler [3]. Our bialgebra A is isomorphic to
a(A, A) with A=k Xk. General theory of such bialgebras will appear elsewhere.

1. Main results.

Throughout this paper % is an algebraically closed field of characteristic
zero, @ is over k and all modules are finite dimensional over k. Let 4 be a
k-algebra generated by e;;, ¢, 7=1, 2, with defining relations

1=e;, i=1,2
J
eijeilz:ajkeijy i, 1, k=1, 2.

We make A a bialgebra, defining comultiplication A: A—-A®A and counit
¢: A—k by the formulas

A(eilz):§eij®ejk
e(ei,)———Bi, .

This bialgebra is identified with the one in Introduction by e;;=e;. For right
A-modules V, W, we always regard V@W -as a right 4-module through the
map A. Our object is to decompose /-modules V®W for all indecomposable
A-modules V, W. v

We begin with a parametrization of indecomposable /-modules. Since a
A-module structure on V is determined by the subspaces Ve;; of V, the classi-
fication of /-modules is a special case of that of quadruples of subspaces in
vector spaces, which was done by Gelfand and Ponomarev, and by Nazarova.

For vector spaces V;, 7, =1, 2, and an isomorphism a: V,,BV,,— Vu,P Ve,
define a 4-module M(a) as the vector space V,, BV,, on which ey, e, act as
the projections to Vy,, Vi, and e,;, e, act as the projections to a™'(V,,), a Y(V,,)
respectively. We write the isomorphism a in a matrix form

Ay Qg
a= s a2 V=V,
A2y Ay

Let & be the category of £[x]-modules on which x acts nilpotently. Inde-
composable objects of & are V,:=k[x]/(x"*'), n=0. By a Z,-graded k[x]-
module we mean a k[x]-module A equipped with a Z,=Z/2Z)-grading A=
AP A, such that x(A;)C Ay, for iZ,. A homomorphism of Z,-graded k[x]-
modules is a k[x]-linear map preserving grading. Let 9 be the category of
Z,-graded k[x]-modules on which x acts nilpotently. For each =0 and ;=0, 1,
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let V4 be a Z,-graded k[x]-module which has a basis v, xv, -+, x*» such that
degv=; and x"*'v=0. The modules V} for n=0, j=0, 1 form a complete list
of indecomposable objects in 9.

For an object A of @, define A-modules L,(A), L,(A) by

foo la
L(A)ZM( )

lyg fa
)
Ly(A)=M
foo la

where f,: Ay—A,, f,: A;—A, are multiplication by x. For an object A of &
and A€k—{0, 1}, define a A-module L;(A) by

lA 1A
La=n( )
f

A
where f: A—A is the map a—(1—A)a+xa. From the table of indecomposable
representations of the Dj-graph in Dlab and Ringel [1], we see the following.
PROPOSITION 1.1. The A-modules
LV, L(Vi)  nz0,7=0,1
LV, n=0, Ack—{0, 1}

form a complete list of indecomposable A-modules.

Obviously L,(V3)=k, the trivial 4-module. We define functors
R EXE—>E
R 1 DXD—> D
R DXD—> D
pr D —&
Px 1€ —>9
():9—9

in the following way. If A, B are k[x]-modules, the 2[x]-module AQRB is
defined to be the vector space A®B on which x acts as

x(a®b)=xaRb-+aRxb .
If A, B are Z,-graded k[x]}-modules, the Z,-graded k[x]-modules A®B and
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AQ’B have the underlying space AR B, and the grading and the action of x
are defined as

AQB: (A®B)k:k§?+in®Bj
2(aRb)=xaRb+(—1)'aRxb, ac A;, b= B
AR'B: (AQ'B)y=AQB:
x(aQRb)=xaQxb .

If we exhibit a Z,-graded k[x]-module A=ABA, and a k[x]-module B by the
diagrams

fo
A A, BDg
1

where f,, f,, g are multiplication by x, the functors py, p*, () are defined as

fo
p*:A047—>A1 —> A f1fe @ ADS S

1

1 g
g 1
0 S
( V1A TZA — AT A.

1 [

THEOREM 1.2. Let A, p<k and let A, B be objects of @D or & Then we
have an isomorphism of A-modules

LX(A)®L;1(B); LZ,U(C)

where C is an object of D or &£ defined as follows.

(i) C=AR®B if A=p=1

(ii) C=p*ARB if =1, g0, 1
(iii) C=AQp*B if A#0,1, p=1
(iv) C=ARBOHARB if A, p#0,1, Ap+l
(v) C=p«(ARQB) if A p#0,1, Ap=1
(vi) C=pedim4 if i=1, p=0

(vil) C=pB%dim4 if A#0,1, p=0

(viii) C=A®dmBuDA®imB i a—0 p=1
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(ix) CzA@dimB@E@dimB z'f ]:0, #750’ 1
(x) C=A®'B if A=p=0.
Proof will be given in Section 2.

We next describe the effect of the functors &, &', p*, px, ( ) on indecom-
posable modules in @ and &.

PrOPOSITION 1.3. (i) We have isomorphisms in €

min(m, n)

‘/m(gt/nE @ Vm+n—2l

=0

for all m, n=0.
(ii) The Grothendieck ring S of (&, B, Q) is the polynomial ring on one
generator [V,].

This is well-known and an immediate consequence of the Clebsch-Gordan
rule for tensor product of simple 8l,-modules. See also Littlewood [2, p. 195].

PROPOSITION 1.4. (i) We have isomorphisms in 9
Dpigm YR, if mn is even

min(m, n)—1 P4 ) .
Di=o VL a®VREGE ) if mn is odd

lieven

VieQVi ;{

for all m, n=0, i, j&Z,.
(i) The Grothendieck ring R of (D, D, ®) is a commutative ring generated
by the classes [V§], [V], [V3] with defining relations

V' =1(=ViD)
(ViP=[Via+1viD.

We shall prove this in Section 3. In fact we shall determine decomposition
of tensor product of Z,-graded k[x]-modules for any ¢=2.

PROPOSITION 1.5. (i) We have isomorphisms in 9

DS VIODE VDD VIt if m=n
DI VDD ViDDr Vi if m>n
for all m, n=0, 1, j=Z,.

(ii) The Grothendieck ring T (without 1) of (D, B, ®’) has a Z-basis
{ed: n=0, j€Z,}, where

eh=[V2I—[Vi-J-DVis1+[Vi]

Va®'Vi ;{
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with the convention VI,=Vi,=0 and we have

. el if m=n
enel=

0 if m#n.

PROPOSITION 1.6. (i) We have isomorphisms

{ Va2V e if n is even
p*Vf ~

Vin-02BV aonrre if nis odd
D5V 2=V 3D Vinn

j o~ j-+1
Vi=Vi

for all n=0, j&Z,.
(i) The functor p*: D—E induces a surjective ring homorphism p*: R—S
such that

p*[Vil=1,  p*Vil=2, p*ViI=1+[V.]
and the functor py: E—D induces an injective homomorphism py: S—R such that

Pep*(a)=1+[ViDV1ile
for all acR.

Proofs of Propositions 1.5, 1.6 are easy and omitted.

Combining these results, we see that the representation ring of A is isomor-
phic to the ring K defined as follows. The additive group of K is the direct
sum

K=& K,
A€k
where
R if 1=1
K;={ S if 21#0, 1
T if A=0
and

R=Z[e, ¢, $»] a commutative ring with defining relations
ef=1, ¢.(p,—1—e)=0,
S=Z[¢] a polynomial ring,

T=n>o€,B=o IZ% is a ring without 1 such that e%e}=0nne}.

1€R is the identity element of K. For a=K;, b€K,, the product a-b lies in
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K;, and
i=p=1 = a-b=ab
Ai=1, p#0, 1 = a-b=p*(a)h
A#0, 1, p=1 = a-b=ap*(b)
A, p#0, 1, Ap#l=—>a-b=2ab
4, p#0, 1, Ap=1== a-b=ps(ab)

A=p=0 —=a-b=ab

A=0 =¢-a=a, a-s=a
9,-a=2a, a-o,=a+a
¢, a=3a, a-¢g.=2a+a

Jt-a=2"a, a-¢'=24a+a)
where the multiplications in the right hand sides are those of the rings R, S
or T, and
p*: R—S is a ring homomorphism such that e—1, ¢,—2, g—1+¢
px: S—R is an R-linear map such that l—(1+¢)¢,

( ): T-T is an additive map interchanging ef and e} for all n=0.

2. Proof of Theorem 1.2.
Let 4, p=k—{0} and let
fo 8o
A:(Aor’_—’A,>, B:(BOZB,)
fi &1

be Z,-graded A[xJ-modules with the notation in Section 1 and suppose that
1—2a—fof1, 1=2—f1fo, 1—pt—gog1, 1—pt—g.g, are nilpotent.

We restate Theorem 1.2 in terms of the functor M as follows:
(2.1) If A=p=1, then

(fol go l 101.
oy e )
1 fl 1 g1 111

lo
A BoDARB, 7<—') AR BDARB,

1

where
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ly=

1 @ fi ®1
(fo®l —1®g1)
1 @ fi ®1

(fo®l —1®go)'

11:

(2.2) If Ap+1, then
fo 1 g, 1 11 11
L R R
1 f 1 g 1 4 1
1-2p—le=(1=2—f1f )@1+1Q(1—p—g.g)EEnd(4,Q B:)

]-_Z/l_ll:(1*2“f0f1)®1+l®<1’“ﬂ7g1g0)EEnd(Al®Bo)-
(2.3) If A, p#1, ip=1, A;=A,, By=DB,, f,=1, go=1, then

1 1 11 11 {1
iy Jouly el et )

I 1 g 11 11

—l=(1-2—f)R1+1R(1—p—g)EEnd(4,QB,).
(2.4) If p=1, then

fo 1 I & I®¥ 1Rg:
M( )®M( ):M( )

1 fy g 1 1®g, 1IR1

where the left factor 1 in 1®1, 1Qg,, 1Qg; is the identity map on A, DA,.
(2.5) If A=1, then

(1 fx) (go 1 ) (1 ®1g, f1®130) (1 ®1g, f0®151>
M QM =M PM .
fo 1 I g fo®ls, 1 Rlg, F[1®1p, 1 Rlp,

where

where

(2.6) If A=p=1, then

(1 fl) (1 gl) ( 1 f1®g1> ( 1 fo®g1>
M QM =~ M DM .
fo 1 g0 1 @& 1 F1&8e 1

Indeed, cases (2.1)-(2.6) correspond to cases (i)-(x) in Theorem 1.2 in the
following way

2D e

(2.2) &= (i), (i), (iv)
23) =W

(2.4) & (vi), (vil)
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(2.5) &= (viii), (ix)
(2.6) = %)

Note that in some cases the present A, B, i, ¢ are different from A, B, 4, ¢ in

Theorem 1.2.

LEMMA 2.7. Given isomorphisms

2491
a=
2231

(247
) VPV —> VPV

221}

ﬁ:(ﬁn 4812) . W“@le > W21®I/VZZ

,321 ,Bn

5_1:(1811 ‘812) T Wau@PWoy —> Wi, DW,,
Bs Bie

with a;;: Viy— Vi, Bij: Wiy—Wa, Bij: WoymWi, we have an isomorphism of
A-modules
M(a)QM(B)=M(r)
where
11 ZuBZy —> Zo0PZ s

Zikze?vij(g)wjk

a® 1 a12®‘8£1 0 0.’12®‘B{2

y= 421®,Bu @ 1 (121®,812 0
0 a12®‘8;1 an@ 1 a12®.8§2
a21®/321 (%9 0-’21®,Bzz a1

The columns of this matrix corrvespond to 'V, @QWiy, Ve@Way, ViiQWis, V1:Q@Wo,
and the rows correspond to Vy@Wiy, Vee@Way, VaorQ@Wis, Vae@Was in order.

Proof is straightforward. Now we shall prove (2.1)-(2.6).

(1) Let
(fo 1 ) (go 1
= 1 f ’ ﬂ— 1 gl)'
_1*((g1go—‘l)—lg1
—(gog1— D™

Then

—(g:140— 17"
(gogrl)“go)
so M(a)@QM(B)=M(y) with
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fu®l  1&(g:ge—D7'gr 0 —1Q®(g:g—D!
| 1®a  re 101 0
0 —1®(gg1— 17 fi®1  1R(geg1—1)7"g,
11 0 1&g, f1®1
Multiplying an invertible matrix with 7 on the left, we have
1®go f1®1 1®1 0
ol @128 —1Re, 0 11 | _(h 1
- I®1 0 1Qg: fi®1 1 h ’
0 IX1  fo®(1—gog) —1Rg

where
\ ~( 1®4g, f@l) \ _( 1Q4g, f@l)
\fQ—gig) —1Qg.)] Fl®1—gog) —1Rg)

(la) We shall prove (2.1). Let A=p=1. Then A, B€®. Let I, I, be as
in (2.1).

LEMMA 2.8. The Z,-graded k[ x]-modules

lo
AQ@BDARB; T<—> AQRBDARB,

1
ho
AR BB AR B, T’ ARBDARKB,.
1
are isomorphic.

From this we have

hy 1 Iy 1
M=M =M )
1 hn 1 1

PrOOF OF LEMMA 2.8. The both Z,-graded k[x]-modules have the common
underlying graded space AQB, and x acts on the first module as

x(a@b)=xa@b+(—1ta®xb acA,;

and on the second module as

which proves (2.1).

xa@(1—x2)b+aRxb if a4,
x(a®b)=
xa@b—aQxb if acA,.

We may assume that A, B are indecomposable. Let dim A=m, dim B=n, and
let u A, ve B be homogeneous generators. Let G=£k[s, t] be a graded k-algebra
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with defining relations s®=t*=0, ts=—st and degs=degi=1. G acts on the
vector space AXB in two different ways.
The first action :

s(a@b)=xab

Ha®b)=(—1)'a@xb, asA;.
The second action :
xa@(1—x*)b if a€A,
s(aRb)=
xaXb if acA,
Ha@b)y=(—1YaRxb, acA;.

To prove the lemma, it is enough to show that these two Z,-graded G-modules
AR®B are isomorphic. With respect to either action, s*i(u®v) (0=i<m,
0<j<n) form a basis of AQB. Hence the both G-modules are free on the
generator u®@v. This proves the lemma.

(1b) Suppose next that Ap¢#1. We shall prove (2.2). Putting

k=111 Q@1 —gog)+1&Kgeg:
ki=fo /1 Q1 —g180)+1&®g180,

ke O
hohlz B
0 A

Since 1—k,, 1—k, have the unique eigenvalue Ay, hoh, is an isomorphism. Simi-

we have

larly hh, is an isomorphism. Therefore

1 1 1 1 11
= = P .
l hohl 1 ko 1 kl
LEMWA 2.9. Let ssEndV, t<EndW be nilpotent endomorphisms and i, p&

k—{0}. Then (A+s)Q(p+1)—Ap, s®1+1Qt<End(V QW) are conjugate.

The proof of the lemma is similar to that of Lemma 2.8. Let /o, /, be as
in (2.2). Applying the lemma to s=1—2—ffo, t=1-—p—g.g;, We see that k,
and [, are conjugate. Similarly %, and /, are conjugate. Thus

11 11
r= &
1 1 1 4
which proves (2.2).

(lc) Suppose A, p#1, Au=1. Let A=A, fo=1, By=B,, g,=1. Then
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1 0 k0
hy=P )Q, hle_l( )P_l,
0 —=% 0 -1

where P, Q are some invertible matrices and k=f,Q(1—g,)+1Rg:.. Let {, be
as in (2.3). Using Lemma 2.9 with s=1—2—f,, t=1—p—g,, we see that k and
! are conjugate. Hence

11 —k 1 11 [ 1
el el )
1 k 1 -1 1 1 11
This proves (2.3).

(2) We shall prove (2.4). Let

(fo 1 _<1 &1 1
“ 1 fl), p= o 1)’ =

Then
—1_( 1—g.g9)™" _(1—‘g1go)_lgx)
—(1—gog) g (—gog)™ |
So
foR1 1Q(1—g.1g0)7" 0 —1®(1—g.80)7'g:
1®1 f1®1 1®g: 0
0 —1Q(1—gog) g0 fo®1 1&®(1—g.g0)™!
1®g0 0 1®1 &1
1®1 51 &1 1®g: 0
~ foR(g:18,—1) —1R1 0 1®g:
o 1®g, 0 1R®1 f1®1
0 1R g0 fo@(gogi—1) —1R®1
Put

N _( 11 i1

\foRAgg—1) —1R1

1®1 Fi®1

h1=( )EEnd(/lMX)B,@AﬂX)B,).
Fol(gogi—1) —1®1

These are isomorphisms, so

~( 1A®1Bo (1A®g1)h1—1)
T\L@gohit 1415,

where A=A,@dA;. We claim that the following two objects of @ are isomorphic.

(1Rgohs!
P aa— B,

(ARghi'

)EEnd(A(,@Bo@Ax@BO)
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18480
ARB, ——— ARB,.
12,

Note that the isomorphism class of an object C=C,BC, of @ is determined by
the integers dimKer(x™: C;—C,;,) for n>0,7=0, 1. Since

(1Rg0he=h(1&Kg.), (1®goh=h1Qg.),

we have
dimKer(1®Qg:)hi' - 1Qgi+n)hiia=dimKer(1Qg:) -~ (1Qg:+n)hila"

=dimKer(1Xg;) - 1&g:1n),

where indices are taken modulo 2. Thus the above two objects are isomorphic.

It follows that
( 1 <1®g1>hrl>~( 1 1®g1)
1A®gohs" 1 ) i®e 1)

This proves (2.4).
(3) Let

_[Bu ,512)
‘@ (,821 ,822

(/9{1 ,Biz)
Bs B
Then M{(a)QM(B)=M(r), where

191 [L&B14 0 QB
fe®@Bu 1Q1 fo@B1e 0

0 &8 11 f1 &8s
fo@Ba 0 f o B 11

19-1

Il

7=

1RL—f1fo@Bi1Bu 0 0 1281
- 0 191 fo @Bz 0
- 0 FiQB:  1RL—f1feQBreBee 0

foRBa 0 0 1R1
2( ho f1®ﬁiz)®( 1®1 fo®19m)
T\ foRBa 1001 [®8n M

with
Ilo:1®1'f1fo®.8;1,811
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hy=1Q1— f1f QB2 Bes -
Since f.f, is nilpotent, h,, k, are isomorphisms. Hence
( 1 he ' (f1QB12) )@( 1 Jo@Bie )
fo&@Ba 1 hT'(f1&B%1) 1
(3a) To prove (2.5) we let

~

\ )
5—1 g/

Then
( 1 k?(fx®l)) ( 1 fo®1)
T ©®
fo®L 1 kT QD) 1

where

ko=11f1Qg:180—1Qg18,+1R1

ki=f1fe®g081—1Rgog:,+11.
Put

ko= fof1Q8:180—1Rg:8,+1R1
ki=fof1®gi81—1Rg0g:+1R1.

These are isomorphisms and we have
{ (fo@L)os=ky(fo@1) { (f o@Dy =ki(f&1)
(f1QD ko= f1 Q1) (f1@Dki=k(f,QL).

Then, by the same argument as in (2), we know that there are isomorphisms
in @

feR1 kT R1)
AR®B, —— A®B, ARB, — ARB,;
k3 (f1R1) fo®1
Ul Ul
Jo&1 fL1®1
ARB, — ARB, A®B, %1 ARB, .

Thus

1 f1R1 1 fo®1
e 0 Ple T
el 1 T\ ner

which proves (2.5).
(3b) Finally we prove (2.6). Let

; (1 gl) .
= , p=L.
g0 1
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Then
( 1 k(1&g ) ( 1 f0®g1)
T ©®
fo®go 1 kTN fF1R80) 1
where
ko=f1f@1+1Qg:g—1&K1
ki=f1f@1+1Qg.g:—1R1.
Put
ko= fof 1 Q1+1Rgog:—1R1
ki=fof1R1+1Xg:8,—1X1.
Then

{ (fo®Rgoke=Fki(f1&g0) { (fo®gki=ki(fe&®g1)
(f1Rg)ki=k(f1Rg) (f1Qgki=k.(f1&Qg0)-

As in (2) there are isomorphisms in 9

Jo&®go ki f1&g0)
A®B, ——— AQKB, A®B, —/—— AR B,
kit (f1®g1) [
Ul Ul
Fe®go B f1Rg0
A®B, ——= AXB, ARB, &= ARQB,.
1&g foe&g:
Thus
( 1 f1®g1) ( 1 f0®g1>
b= @ .
fo&®go 1 f1Qge 1

This proves (2.6).

3. Tensor product of graded ~[x]-modules.

Througout this section we fix @<k a primitive e'® root of unity with e=2.
By a graded k[x]-module we mean a k[x]-module M=@;c,M; such that
dim M< oo, xM;C M;,, for all i&Z. 1If M, N are graded k[ x]-modules we make
the vector space M®N a graded k[x]-module in the following way.

(MON)= & M®N,
i+j=
2(aRb)=xaRQb+w'a@®xb acsM;, beN.

This operation ® on graded 2[x]-modules is associative. For each m=0 and
ieZ, let Vi, be a graded k[ x]-module of dimension m--1 generated by an element
of degree i. The modules Vi, for m=0, /Z furnish a complete list of inde-
composable graded k[x])-modules. The main result of this section is the
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THEOREM 3.1. For any m, n=0 we have an isomorphism of graded k[x]-
modules
vaavie" @ VL,
where Iy is defined in the following way. Write m=re+i, n=se+j, [=ge+h
with v, s, g=N, 01, 7, h<e.

le=m+n—2( if wax(i+j—e+2, 0)<h<min(, j)

or if max(7, /)+1ZhA<minG4+7+1, e—1)
le=(r+s—2¢+1)e—1 if 0hEi+j—e+1
ly=(r+s—2g)e—1 if min(Z, j)+1<hA<max(i, )
le=(r+s—2¢—1)e—1 if i+ij+25h<e—1.

Here we understand Vi,=0.

Proposition 1.4 (i) follows from this, by letting e=2 and reducing the
grading modulo 2. See also Lemma 3.5 and the end of this section.

The proof of Theorem 3.1 goes as follows. We first decompose ViRV,
VIRVL, V3RV directly. In the Grothendieck ring we can express all [V]
as polynomials of [V}, [V?], [V]. Then a straightforward computation gives
the desired formula.

We begin with preliminary observation. Let m, n=0 and let G=kFk[s, ]
be a graded k-algebra with defining relations ts=wst, s™*'={"*'=0 and degs=
det?=1. Let G, be the degree & part of G for each £=0. Put x=s-+¢. Since

x.sitj:3i+ltj+a)isitj+l’
when G is viewed as a graded k[x]-module by left multiplication, G is isomor-
phic to V5, &V, Since tx=wxt+(1—w)t? and
Ossm+l:(x__t)m+I:xm+l+Clxmt+ +Cm+1tm+l

for some ¢, -+, ¢ns1 Sk, G has a basis x%t7, 0<i<m, 0<;7<n. Assume m=n
and put
z=x™tex™ U+ o Fent™.
Then the following hold.
(i) The left multiplication x: G,—G,,, is injective for k<n, bijective for

n=<k<m, and surjective for m=<k.
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(ii) G/xG has a basis { modxG, 0=<;7=<n.
(iii) Ker(x: G—G) has a basis zt/, 0<j<n.
(iv) For each 0=j<n, put

L=sup{l: 2t/ €x'Gmj} .
Then
G= B Vpiy
=
as graded k[x]J-modules.

(i) is clear and (ii), (iii) follow from (i). To see (iv), decompose G=D:k[x]u;
with u; homogeneous elements such that x™u,+#0, x™itly, =0, Then the
elements x™iu; form a basis of Ker(x: G—G). Since zt/, 0£j7=n, have mutu-
ally different degrees m+j, the bases {zt/} and {x™iu,} of Ker(x:G—G) are
equal up to a permutation and scalar multiples. Hence {/;} is a permutation of
{m;}. This proves (iv).

LEMMA 3.2. For any m=0 we have

Veu@DVi_,  if m+130 (mode)

V‘,’,L@)V?g{ .
Vodv, if m+1=0 (mode).

PrROOF. We may assume m>0. In the above observation we specialize
(m, n) to (m, 1). Then ##=0, tx=wx! and

@™t —1
OI(X‘Z‘)"”H:)CM“— prw| x’"t,
S0
m+1;1
zr:xm—%f_——l— —x™

zt=x"t.
If m+1=2£0, then (™" —1)/(w—1)#0, so
zeEx™ Gy, 2Ex™G,

w—1
_ m+l — ., m+1
Zt_mw"”‘ 1 x™Hex™tG,.

Thus, by (iv) of the observation, G=V%,_,BV%., as graded £[x]-modules.
If m+1=0, then z=x™, x™"'=0. So zt&£x™"'G, Thus G=V5,PVi.

LEMMA 3.3. For any >0 we have

V28®V'Jg V?T+I)G®VI(Y+I)C~Z@V72‘6—I® @V%—lx@ve(r—l)e .
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ProOF. We specialize (m, n) in the previous observation to (re, ¢) Then
1e¥1=0, x¢=s*+1¢¢ and s*, ¢{° are central elements in G. We have

0:<x‘_ t)re“=<xe_te)r(X*t):x”H—xrel‘—vrx(r“”e“te’

)
2= x Tl xTO (T -Iege
and
I =xTo —xTe I 1<j<e~1
th:xTCtC

Let us determine the integers /;:=sup{l:zt/€x'G es;-i} for 0<j=e. Clearly

ly=(r—1)e. By induction on j, we see easily that
xre+j:xretj+r.x(r—1)e+jte, ]Zl
xrch:<xretj, x(r—l)e+jte>, ]Zl
It follows that x"*"'t/*'¢&x"°G; for 1< j<e—1, hence /;=re—1. We have
xre+e—1_‘(r+1)xrz+e—2t‘_____rzte-l’

and x7¢**"! zt*! are linearly independent. So /,_,=re+e—2. Finally, since
x"ere=(r+1)zt°, we have [,=re-+e. Thus

G2V DV lri1e-oDV D - DVELBV G onse

as graded k[x]-modules.
LEMMA 3.4. VIQVS=VL.RV? for all m=0.
Proor. We can decompose VIRVY, in the same manner as V,QV.
LEmMA 3.5. VIQViz=Vii=VIiQVE for all n=0 and i, j=Z.

PROOF. Let u, v, w be homogeneous generators of Vi, V4, Vit/ respectively.
The correspondences w**u@x*vox*wox*vQu, 0<k<n, give the isomorphisms.

Let Q@ be the Grothendieck ring of the category of graded %[ xJ-modules
with respect to &, &. The classes [V4] in @ form a basis of Q. We set

e=[Vi]
¢.=[V3] nz0
¢-,=0.

Then ¢,=1 and by Lemma 3.5 ¢ is a central invertible element in @ and
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[Vil=elg, n20,j€Z.
By Lemma 3.4 ¢, is also central and by Lemma 3.2

Pnirtepn, if m+1z£0 (mode)
(3.6) ¢m¢1: .

(1-+e)Pn if m-+1=0 (mode)

for m=0 and by Lemma 3.3
3.7) ¢re¢e:¢(r+l)e+5¢(r+1)e—2+(52+ +58~l)¢re~1+56¢(r—1)e

for +>0. It follows that Q is generated by ¢, ¢, ¢, ¢, and in particular Q
is commutative.

For each integer n=—1, define a polynomial H,(s, {) with integral coeffici-
ents by

n+1 n+1
-y

Hy(x+y, xy)= a

x—y
with x, v indeterminates. Then H.,=0, H,=1 and we have a formula
n(m

mi . n)
Huls, DHA(s, =" 25 t'Huysn-uls, 1)

for m, n=—1. Put
07L:Hn(¢e*5¢e—27 e

0o=Hy(ps, £)EQ
for n=—1. Then

min(m, n)

(3.8) 0nl,= L=20 "0 mpn-n
min(m, n)
(3.9) OnOn=— Lgo 5lam+n—zl-

By an easy induction it follows from (3.6) and (3.9) that
(3.10) =0, 0<ie—1
(311) Uc—H—i:(l+5i>¢e—1f5i¢e-1—i 0=ige—1.

LEMMA 3.12. We have

mindi, 0 izt
.= & .
95 h=max(§j—e+2,0) Pivj-ont hz=o "o

for —1<4, j<e—1.

PROOF. We may assume :>7=0. When i+j7<e—2, the formula results
from (3.9), (3.10). Let i+j=e—1+4[ with 0</<e—1. Then by (3.9) and (3.11)
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we have

$ip;=0.0,

Jj

— n

= 2] e"0ipjomm
r=0

= e {(I+e" " MPei—e! o i rimnt + D MGeoriion

0sisl/2 1/2<hs ]
J— 1~ -
= (e"+e h)¢e—1v > ¢t h¢e~1—t+2h
0sh=l/2 0shZl/2
+ X 8"‘¢e—x+z—zh+ Py 5h¢e-x+z—2h
1/2<h=l 1<hsj

i J
- hgo 8h¢6~1+h=21+15h¢”j_2h’
which proves the lemma.
LEMMA 3.13. @,ess=0,¢;+e""0, 1p.»_, for r=0, 0<i<e—1.

PROOF. Denoting by ¢/..; the right hand side, it is enough to show that

pi-1
pe=9.
¢;e+t¢1:¢;e+i+1+5¢4e+i—1 0<i<e—2,r=20

¢r"e¢e:¢21'+1)e+5¢’(r+l)e—2+(52+ +8€_1)¢7{e-1+56¢,(r—1>e r>0.

The second equality follows from the definition of &, and the third follows
from (3.6) without difficulty. For the last, using (3.8) and Lemma 3.12, we have

Prepe=(0,+eb,_1$e2X0,+eP,_»)
=0,0,1e0,..0,¢. s +c0,.¢, +c*0. P2,
=0, 40, (0,460, ).,
+el,Peste’l, (P Got(Ltet o e ) y)
=0, €0, @oste(0: 0o n+610,. 1)

+(52+ "\‘Ee_l)er—1¢e—1+56(0r—1+50r—2¢e-2)y
as required.

PRrRoOOF OF THEOREM 3.1. From Lemmas 3.12 and 3.13 we can deduce easily
that

min(i, j) i+j-e+1

J
€h¢1‘e+i+j~2h+ )1_2;0 5h¢(r+l)e—l+ P 5h¢re—1

h=t+1

¢re+i¢j:)

r=max(i+j-e+2,0)
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for r=0,0<ige—1, —1<j<e—1. Replacing j by e—2—j; and multiplying
¢/, we have
min(i+j+1,e-1)

. i e-1
¢re+i‘51+l¢e~2—j: > 5h¢re+i+j+e—2h+h2+15h¢(r+1)e—1+h P 5h¢re—1
=J

h=max(t, H+1 =i+j+2
for =0, 0<4, j<e—1. Using (3.8) and Lemma 3.13, we can also see

T,8)

min(
¢re+kas: 20 5qe¢(r+s—2q)e+k

=)

if =0, r=s=—1,0<k<e—1 orif r, s=—1, k=e—1.

Now let m=re+i, n=se+; with », s=0, 057, j<e—1. The formula to
prove is symmetric in m, n, so we may assume »>=s. By the above three
formulas, we have

¢rc+i¢sc+j:¢re+i¢j03'i‘¢re+i€1+j¢e-2~j¢s-1

— et+h qe+h
*-02)5(1 ¢(r+s—2q)e+i+j—2h+(22)5 ¢(r+s—1—2q)e+i+j+e—2h

+(SZ)EqHh¢(r+s—2q)e+e—1+§5qe+h¢(r-1+s-2q)e+e—l

+§qu+n¢<r+s-1~2q)e+e41+§5qe+h¢(r—1+s-1—2q)e+e—1 ’

where the £ summation 3¢, is over the elements (¢, &) in the set I, defined

below.
I, : 0=¢<min(r, s), max(i+j—e+2, 0)<h<min(z, j)
I,: 0<g<min(r, s—1), max(Z, N+1<h<min(f+74+1, e—1)
I,: 0<¢<min(r, s), 0<h<i+j—e+1
I,: 0<¢<min(r—1, s), +1Zh<Ey
I;: 0£¢<min(r, s—1), JH+Ighsd
[;: 0<g<min(r—1, s—1), i+7+25h<e—1.

As observed earlier, (V5,XV3)/x(V5,&V?5) has a basis consisting of homogene-
ous elements of degrees 0, 1, ---, min(m, n). Therefore the map I,I1 - I1/:—
[0, min(m, n)] taking (g, h) to ge+h must be a bijection. Since the ranges of
hin I,, ---, Iy give a partition of [0, e—1], putting [=ge+h, we have
min(m, n)
budr= 3 c'du

with /4 as described in Theorem 3.1. This proves the theorem.

PROPOSITOIN 3.14. The ring Q is a commutative ring generated by e, ¢, ¢,
¢, with a defining relation
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He—1(¢1: 5)(?51_1"5):0 .

Proor. This follows from (3.6) and the fact that {e*¢i¢r: ke Z, 0<i<e—1,
r=0} is a basis of Q. Details are omitted.

Finally we pass from the Z-graded case to the Z,-graded case. We consider
only Z(=Z/eZ)-graded k[x]-modules M=@;cz,M; such that xM;CM,,, for
all ;7ieZ, and x acts on M nilpotently. For such modules M, N, we make the
space MQN a Z,-graded k[x]-module in the same manner as in the beginning
of this section. For a graded k[x]-module M, let #4M be the Z,-graded k[x]-
module such that 7. M=M as k[x]-modules and (w+M);=P.r-;M; for j=7Z,
where n:Z—Z, is the natural projection. Then the assignment M—rm M
commutes with (), and the objects 74V, n=0, 0<j7<e—1, form a complete list
of indecomposable Z,-graded k[x]-modules. Therefore the Grothendieck ring
of the category of Z,graded k[ x]-modules is isomorphic to Q/(¢*—1). When
¢=2, we obtain Proposition 1.4 (ii) from Proposition 3.14.
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