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THE GROTHENDIECK RING OF VECTOR SPACES

WITH TWO IDEMPOTENT ENDOMORPHISMS

By

D. Tambara

k

Introduction.

In this paper we are concerned with a particular bialgebra A over a field

which is generated as an algebra by eu e2 with defining relations et―eu

e＼~Q%,and whose comultiplication A: A-*A§§A and counit s : A―>k are given

by the formulas

A(e1)=e10e1+(l-e,)(g)(l-e8)

A(e8)=(l―e≪)0(l―≪i)+e2<X)e2

e(ei)=e(e8)=l.

The purpose of this paper is to compute the representation ring of A, namely

the Grothendieck ring of finitedimensional ^-modules with respect to 0 and

R, when k is an algebraically closed field of characteristic zero. The classi-

ficationof indecomposable yl-modules is known and our main task is to decompose

tensor product of indecomposable yi-modules.

The results are summarized at the end of Section 1. Our computations

involve the decomposition of tensor product of Z2-graded /?[x]-modules. More

generally we do thisfor Ze( = Z/eZ)-graded /?[*]-modules for any integer e^2.

Here, for Ze-graded &[x]-modules A, B, we give A(g)B the standard grading

and let x act on it by

x(a(g>b)=xa<g)b-＼-<oia(g)xbdega=i,

where m is a fixed primitive eth root of 1.

The bialgebra A comes from a certain universal construction. In general,

for ^-algebras A, B such that dim^4<°o, there is a-fe-algebra a(A, B) equipped

with a 6-algebra map p : B―>ARa(A, B) having the following property: For

any 6-algebra C, the map Homft_alg(a(^, B), C)^>Homk-aig{B, A<g)C) induced by

p is a bijection. The algebra a(A, A) becomes naturally a bialgebra. The

bialgebra a(A, A)0 in the dual space a(A, A)* is the universal measuring bialgebra
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of A in the terminology of Sweedier [3]. Our bialgebra A is isomorphic to

a(A, A) with A=kXk. General theory of such bialgebras will appear elsewhere.

1. Main results.

Throughout this paper k is an algebraically closed field of characteristic

zero, (g) is over k and all modules are finitedimensional over k. Let A be a

^-algebra generated by eij}i, j=l, 2, with defining relations

l = IletJ, i=l, 2
j

eijeik=djkeij} i,j, k = l, 2.

We make A a bialgebra, defining comultiplication A: A―>A<g)A and counit

£: A-^k by the formulas

Metk)= ^etJ<S>eJk

e(etJ)=dti.

This bialgebra is identified with the one in Introduction by eu=ei. For right

yf-modules V, W, we always regard V0W as a right A-module through the

map A. Our object is to decompose yf-modules V<g)W for all indecomposable

yl-modules V,W.

We begin with a parametrization of indecomposable ^-modules. Since a

A-module structure on V is determined by the subspaces Vei} of V, the classi-

fication of J-modules is a special case of that of quadruples of subspaces in

vector spaces, which was done by Gelfand and Ponomarev, and by Nazarova.

For vector spaces Vi}-,i, j=l, 2, and an isomorphism a: l/iicl/12->F210F22,

define a ^/-module M(a) as the vector space FncV12 on which en, e12 act as

the projections to Vu, V12, and e2l,ei2 act as the projections to ≪"1(F21),a~＼V22)

respectively. We write the isomorphism a in a matrix form

<*i}' Vij-^Vu

Let Q be the category of k＼_x＼-moduleson which x acts nilpotently. Inde-

composable objects of 6 are Vn: ―k[x~}/(xn+i),n^O. By a Z2-graded k＼_x~＼-

module we mean a &[;c]-module A equipped with a Z2(=Z'/2Z)-grading ^4=

-^o0/li such that x(Ai)(zAi+l for ieZ2. A homomorphism of Z2-graded k＼_x~]-

modules is a &[;c]-linearmap preserving grading. Let 3) be the category of

Z2-graded /j[x]-modules on which x acts nilpotently. For each n^O and ;'=0, 1,
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let V{ be a Z2-graded &[x]-moduie which has a basis v, xv, ■･■,xnv such that

degy=y and xn+1v=0. The modules Vjn for n2;0, j―0, 1 form a complete list

of indecomposable objects in £).

For an object A of 3), define ^/-modules LX(A), L0(A) by

L£A)=

UA)=

fll

where f0: Aa-*AU fx: Ai-+A0 are multiplication by x. For an object A of <S

and X^k ―{0, 1}, define a .//-module LX{A) by

where /: A-*A is the map a^(l―X)a+xa. From the table of indecomposable

representations of the Digraph jn Diab and Rinffel [1], we see the following.

Proposition 1.1. The A-modules

uvi＼ uvi) n^o,y=oti

Lx(Vn) n^O, X<=k-{0, 1}

form a complete list of indecomposable A-modules.

Obviously Li(V°0)^k, the trivial yf-module. We define functors

0 :Sxe―>e

0 : &XW ―> 3)

0' : S)X3) ―> 3)

p* : S) ―> S

p* : Q ―> 3)

(~):3)―>3)

in the following way. If A, B are k[x]-modules, the &[;t]-modu!e A^)B is

defined to be the vector space A<S)B on which x acts as

x(a0b)=xa<S)b+a<S)xb.

If A, B are Z2-graded k＼_x~＼-modules,the Z2-graded yfe[x]-modules A(g)B and



228 D. Tambara

A(&'B have the underlying space A<g>B, and the grading and the action of x

are defined as

ARB:(ARB)k=
c AtRBj

k=i+j

x(aRb)=xaRb+(-iyaRxb, a^Aif b^B

AR'B'.{AR'B)k = ARBk

x(aRb)=xa<g)xb.

If we exhibit a Z2-graded &[>]-module A=A0Q)A1 and a ^[x]-module B by the

diagrams

/.

Aa ^ A, BQg

/i

where /<>,/i, ^ are multiplication by x, the functors j^*,p*, ( ) are defined as

/o

/1

p*
'･

)

BQg ,―> B

A*

7T

1

g

f

BOB

A , . A >■ A

g

t B

Theorem 1.2. Let X, fi<=k and let A, B be objects of 3) or S. Then we

have an isomorphism of A-modules

L,(A)RLJB)=LXJC)

where C is an o

(

(

(

(

bject of 3) or G defined, as follows.

i ) C=ARB

i

i ) C=p*ARB

i) C=ARp*B

IV
)

C=ARBcARB

( v ) C=p*(ARB)

(vi) C=BeiimA

(vii) C=B92dimA

if X=p = l

if X=l, ft^O, 1

if teO, 1, ft=l

if X, fi^Q, 1, Xft^l

if X, ft^O, 1, ^ = 1

if X^O, 1, //=0

(viii) c=ARA{mB≫@Amd{mBi if X=0, u-1
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(ix) c=,4RdimBc/l0dimS if ;=0, fi^O, 1

(x) C=AR'B if X=fi=O.

Proof will be given in Section 2.

We next describe the effect of the functors 0, 0', P*, P*, ( ) on indecom-

posable modules in S) and 6.

for

Proposition 1.3. (i) We have isomorphisms in <S

min(m,n)
VmRVn= c Fm+n_2I

all m, n^O.

(ii) The Grothendieck rinq S of (<5, 0, Cx)) is the polynomial vine on one

generator [_V{]

This is well-known and an

rule for tensor product of simple

immediate consequence of the Ciebsch-Gordan

§I2-modules. See also Littlewood [2, p. 195].

Proposition 1.4. (i) We have isomorphisms in 3)

v m

for

crain(m, n)*!/i+j+l
1 = 0 V m + n-Zl // mn is even

if mn is odd

all m, n^O, i,j^Z2.

(ii) The Grothendieck ring R of {3),c, (R>)is a commutative ring generated

by the classes [FJ], [V?], [F°] iwY/i defining relations

mY=i{=m-})

IV iY=tvua+mi).

We shall prove thisin Section 3. In fact we shall determine decomposition

of tensor product of Ze-graded &[%]-modules for any e^2.

Proposition 1.5. (i) We have isomorphisms in 3)

I @t=olvi(BRr='onviRm=olvi+n-1 if m>n

for all m, n^O, i, j^Zt.

(ii) The Grothendieck ring T (without 1) of (3), 0, <g)') has a Z-basis

{eJn: nT^O, j^Z2}, where
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with the conventionVLi=
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Fi2=O and we have

eii

e{ if m ― n

0 if m^n

Proposition 1.6. (i) We have isomorphisms

Vn/2cF≫/B-1

V(n-l)/2c' Cn-l)/2

if n is even

if n is odd

i T/ ~T/0 ffil/l

for all n2>0, /eZ2.

(ii) T/ie functor p*: 2)―><5induces a surjective ring homorphism p*: i?―>S

smc/z that

/>W] = 1, />*[^!]=2, />*[V8] = 1 + [71]

anc? ^/ze functor p*: 6-^3) induces an injective homomorphism p*: S―>R such that

≫*/>*(a)=(l + [7i])CV!]a

/or a// aGR.

Proofs of Propositions 1.5, 1.6 are easy and omitted.

Combining these results, we see that the representation ring of A is isomor-

phic to the ring K defined as follows. The additive group of K is the direct

sum

where

R if X=l

Kx=- S if X=tO, 1

T if ^=0

and

R = Z[_&, 6U 62] a commutative ring with defining relations

s

£2= 1, ^1(^1-l-e)=O

= Z＼_<J)~＼a polynomial ring

T= c Zejn is a ring without 1 such that eimei=dmne}n.
na0,^=0,1

lei? is the identity element of K. For a^Kx, b^Kn, the product a-b liesin
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Kxfi and

X―fi―1 =} a-b―ab

X=l, ^o, 1 =3a-b=p*(a)b

X*0,l,fi = l =^a-b=ap*(b)

1, ft^O, 1,ln=tl=5a-b=2ab

A, ft=£0,1, Xfi―l==$ a-b=p*(ab)

X―pi~0 =$ a-b―ab

X=0 =^e-a ―a, a-e=d

<fi1-a=2a, a-<fii:=aJrd

02"fl―3g, a-^2=2a + a

<pi-a=21+ta, a-f=2i(a+a)

where the multiplicationsin the right hand sides are those of the rings R, S

or T, and

p*: R-+S is a ring homomorphism such that £>―>1,0i|-*2,021-^l+0

/>*:5^-i? is an i?-linear map such that L->(l+ e)0i

( ): T―+T is an additive map interchanging e^ and e＼for all n^O.

2. Proof of Theorem 1.2.

Let X, fi^k ―{0} and let

f＼ Si

be Z2-graded ^[x]-modules with the notation in Section 1 and suppose that

l―X―fofu 1―A―fifo, 1―p―gogi, l-pi―gigo are nilpotent.

We restate Theorem 1.2 in terms of the functor M as follows:

(2.1) If ;=≪ = !, then

where

//, 1 ＼ (go 1 ＼ //. 1＼

M (8>M ^M
＼l /i/ ＼1 ≪r,/ U hi

A^Bo^A^B,
*7T

AoftB&A&B,
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(2.2) If Xpt^l, then
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_/l
R^o /i 01 ＼

° ＼/o01 -10£i/

_/l
R^i /i 01 ＼

＼/o01 -10go/

//. 1 ＼ (go 1 ＼

Ml )(g)M＼ -
＼l

/i/ U gJ
Ml )0M

IJ

f 1

U IJ

where

l-^-/o=(l-^-/1/o)01+10(l-iu-^o5i)eEnd(>lD0B1)

l-^-/1=(l-^-/o/1)01+10(l-^-g1go)eEnd(A105o)

(2.3) If X, fi±l,Xft= l, A0=A1> B0=B1> /0 = l, ^ = 1, then

where

(2.4) If ft

Ml )<g>Af( )u fj ＼igj

)
/

1

D

-/=(l-^-/1)(8)l+10(l-iu-51)eEnd(^1051).

= 1. then

＼1 fj Wo 1/ ＼

1(8)1 l<8)£i＼

10^0 1(8)1 /

where the left factor 1 in l(g)l,l<g)g0,l(g)giis the identity map on A0@Ai

(2.5) If X=l, then

A /A (go 1

Ml <g)M

＼/o 1 / ＼1 g

(2.6) If X p 1. then

Ml <g>

＼/o 1/

J

I1 *A

M
W

o 1 /

l Ri*0 /x<8>1b,＼ (I RiBl /.R1bA

/O01flo 1 (g)lJ ＼/i<g)U 1 01fll/

1 flRgl＼
cM

foRgo 1 /

Indeed, cases (2.1)-(2.6) correspond to cases (

following way

(2.1)4=>(i)

(2.2) <=^ (ii),(iii),(iv)

(2.3) £=} (v)

(2.4) <=} (vi), (vii)

c

)-(x)

1

foRgi

iRgo 1

)

in Theorem 1.2 in the
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A-modules

Wij-^Wii, fi'ij:Wzj->WH, we have an isomorphism of

T ･ ^ ll＼B^ 12 > -^2l(l7^22

where

M(a)<g)M(j8)sM(r)

: WtlRWsi ―> ^nc^,,

WnRW12 ―^ WslRWai
＼P21 P22/

Vn^Vi2 -―> V21RV22

/3

/ftl

＼j85i

Proof is straightforward. Now we shall prove (2.1)-(2.6).

(1) Let

U fJ U gj

Then

The columns of thismatrix correspond to VU<S)W1U V12^>W2i, VU(^)W12, ViZ(gjWz2,

and the rows correspond to V21(&Wn, V2Z<gjW2u V2i&)W,2, T/22(X>W/22in order.

a2

so M(a)(g)M(j8)=M(r) with

(gigo-iy'gi

-(gogi-ir

-tei£.-i)-l＼

(gogi-lY'gol

<g>j88i 0

y ―

tk=Qvt/S)WJh
z

0

≪110 1

^21(8)^22

≪i2Rj8n

≪12R#l

anR 1

≪2i(£)/3ii

0
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(2.5) <=Kviii), (ix)

(2.6)£=^ (x)

Note that in some cases the present A, B, X,p. are differentfrom A, B, X, ft in

Theorem 1.2.

Lemma 2.7. Given isomorphisms

-{
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/oRl 1<8>(5i^o-1)-^i

0

101

(gogl

0

0

101

"o<g>l

o
, ^ . i

＼ t O ＼ ( r t ~ G . ― 1 )

S o

/lRl

Multiplying an invertible matrix with y on the left, we have

where

/o<S>(i-^i^o) ―l(8)^i
r~

lRl 0

o iRi

101 0 ＼
0 101

10£i /i01
/o0(l-go£i) -10£o/

ho=
＼foRa-gigo) -iRgxi l ＼foRa-g<,gi)-iRgo)

(la) We shall prove (2.1). Let X=fi=h Then A, B^3). Let /,,h be as

in (2.1).

Lemma 2.8. The Z2-graded k＼_x~＼-modules

/o

A^BoRA1(^B1 7=1 AogiB&A&Bo
h

h0

Ao^BoRA10B1 7=1 Ao^BtQA^Bo

are isomorphic.

From thiswe have

which proves (2.1).

M(r)=M
(ho 1 ＼ //, 1＼

U hj ＼l ij

Proof of Lemma 2.8. The both Z2-graded &[>]-modules have the common

underlying graded space A<g)B, and x acts on the firstmodule as

x(a(g)b)=xa<g)b+(―l)ia(g)xba^At

and on the second module as

f xaR(l-x2)b+aRxb
x(aRb)=＼

{ xat&b―a&xb

if aeA

if aeA

We may assume that A, B are indecomposable. Let dim^l=m, dimB―n, and

let wElA, vG:B be homogeneous generators. Let G = k[_s,t~]be a graded ^-algebra
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with defining relations sm = tn―O, ts-――st and degs=deg £= 1. G acts on the

vector space A(Z)B in two different ways.

The first action:

s(a<g)b)=xa(z!)b

t(a(g)b)=(―l)taRxb, a^At.

The second action:

f xa(g)(l-x2)6

{ xa6§b

if ae/lo

if a^Ai

t(a<g>b)=(―i)*a<g)xb, a^At.

To prove the lemma, itis enough to show thatthesetwo Z2-graded G-modules

A(g)B are isomorphic. With respect to either action, sV(mRv) (0^z<ra,

0^j<n) form a basisof A(g)B. Hence the both G-modules are free on the

generatoru<g)v. This proves the lemma.

(lb) Suppose next that Xpti^l. We shallprove (2.2). Putting

k≫= fifoR(l-gogi)+lRgogi

£i=/o/i<8>(1―£igo)+lR£i£o,

we have
/*. 0＼

＼0 W

Since 1 ―k0) l ―kx have the unique eigenvalue Xft, hohi is an isomorphism. Simi-

larly hih0 is an isomorphism. Therefore

-e
1W1 V l)

hohj ＼l kj U kj

Lempva 2.9. Let seEndF, feEndPJ7 be nilpotent endomorphisms and X, /kg

k-{0}. Then (X+s)<g£ft+ t)-kf£,sRl+lRt<=End(VRW) are conjugate.

The proof of the lemma is similar to that of Lemma 2.8. Let l0,lx be as

in (2.2). Applying the lemma to s=l―X―fif(h t=l―fi―gogi, we see that k0

and h are conjugate. Similarly kx and lx are conjugate. Thus

＼1 hi U /i/

which proves (2.2).

(Ic) Suppose k, fii^l, kpt―l. Let A0―Au /0=l, Bn=-Bx, go=l. Then
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ho=P

c
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0 ＼

-k -,

)
p-1

where P, Q are some invertible matrices and &=/iR(l―gi)+l<8>gi- Let l0 be

as in (2.3). Using Lemma 2.9 with s―l ―/l―fu t= l―fi―gu we see that k and

/ are conjugate. Hence

U k ＼ 1

This proves (2.3).

(2) We shall prove (2.4). Let

//. 1＼

＼1 fJ

Then

So

Put

k 1 ＼ /I 1

-

J

"Vi /

M1 T)

Wo 1/

/ d-i^o)-1

＼-(l-gogi)'lgO

r

/o01

1(8)1
o

l<g>£o

101

o

fo<g)(gigo-l)

lR£o

0

H
1(8)1

-101

0

―(l-gigo)

(X―gogi)

0

/oRl
101

lRgi
0

1(8)1

/

1

0=1

0

1<8>(1-gogiT1

/i01

0

/i<8)i

lR£o foR(gogi~l) -1(8)1

(EEndiAo^Bo^A^Bo)
o(8>(gi£o-l) -

hM )^End(A0<S)B1RA1<S)B1).
＼foR(gogi-D -101/

These are isomorphisms, so

where A=AQ@A1. We claim that the following two objects of 3) are isomorphic.

aRgo)hoi

ARB0 z==! ARBX
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ARB0 7=1 ARBt.
10Si

Note that the isomorphism class of an object C ―C0cCi of 3) is determined by

the integers dimKer(x" : Cf->Ci+n) for n>0, i―0, 1. Since

(10^o)/lo= /li(10£ro), (10gi)/li = /lo(10£i),

we have

dimKerdfg)^,)^1 - (10gt+B)/i7i≫=dimKer(10gi) - (l^^+J^V1

=dimKer(10^i) ･･･(10gi+B),

where indices are taken modulo 2. Thus the above two objects are isomorphic.

It follows that

/ 1 (10^)^^/ 1 10SA

This proves (2.4).

(3) Let

/I /l＼

＼/o 1/

＼j8,i

/ftl

Then M(a)(g)M(i8) = M(r), where

r=

J

11

21

l(g)l foRBl2

lRl-/:/oR/3n/3

0

0

/o<g>j82i

h0

11 0

101

0

with

c
101 / ＼

j8≫＼

^22/

^22/

/l0j8{8

0

/i<g>&2

101

0

/O0j8l2

101-/l/o0j8i8j882

0

101 /o(g>j818 ＼

/io=lRl-/i/o<g)j8{,j811
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Since fxf0 is nilpotent, h0,

1

/o(g>i321
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/ii=lRl-/i/o<g)#,j8M.

hi are isomorphisms. Hence

/io1(/i0i8i2)＼/ 1

1 / XhTKf&B'n)

(3a) To prove (2.5) we let

Then

/ 1 ko1

＼/o(8)l

)

1

/o<8>

l

/o<8>1

1

)

･

where

ko= fxfoRgxgo - lRgigo +101

ki= fifo<8>gogi―lRgogi + 1(8)1･

Put

ko= fafiRgigo-l(8gigo + lRl

k[= fofi<g)gogi-lRgogi+ l<8)l･

These are isomorphisms and we have

f(/oRl)£o=fc$(/oRl) r(/o(8>l)^i= *I(/o<8)l)
I
(/1Rl)fe5=*o(/i01)

1
(/iRD*J=*.(/i01).

Then, by the same argument as in (2),we know that there are isomorphisms

in 3)

A0RB,
/o(8)i

) A&Bo A1<S>B1

/.<g>l

A0<g)B0 ^=^ A&Bo
/i(8>l

Thus

r-

( '

＼/o(8)l

/ 01

1

which proves (2.5).

(3b) Finally we prove (2.6). Let

1

ferViR!

H,

'/)

1

01

)

A1RB1

0=1

/o01

l＼＼

/igl

A01
A0<S)B1

/o<g>l＼
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where

Put

Then

v~
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(x
i

)e(
1

£o= /1/oRl + l(g>g1£o-l<g>l

k'o

k[

!

= /o/iRl + l<g>£o£i-l<g>l

= /o/i(8)l + 105ri5ro-lRl.

(fo<g)go)ko=k'o(foRgo)

(flRgl)k'o=kO(f1Rg1)

As in (2) there are isomorphisms in 2)

foRgi＼

I (/oR£i)fci=fci(/oRSi)

I (fiRgo)k'1=k1(f1(&go)

/oR£o kTKfiRgo)
A0RB0 ;==i A&Bt A&B* ^zr=z^

ktKf&gi) foRgi
i＼＼ m

A0RB0

Thus

This proves (2.6).

y=.

/oRgo
7== AiRB1

,

1

<8>£o

/

1

A&Bo

H
0

Ao^B,

/i<8>£o

i=± A0<S)B1.

)
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3. Tensor product of graded &[>]-modules.

Througout this section we fix a)<=k a primitive elh root of unity with e^2.

By a graded &[x]-module we mean a £[x]-module M=(^ieZMi such that

dimM<oo, xMiClMi+l for all fsZ. If M, N are graded &[x]-modules we make

the vector space M6bN a graded &[>]-module in the following way.

(M(g)AD*= c M&Nj
i+j=k

x(a<g)b)=zxa<g)b+Q)ia(g)xb a^Mt, be.N.

This operation £x)on graded &[;t]-modules is associative. For each w^O and

fGZ, let Vlm be a graded &[>]-module of dimension ra+1 generated by an element

of degree i. The modules VU for ?n;gO, j'gZ furnish a complete list of inde-

composable graded /?[x]-modules. The main result of this section is the
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following.
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Theorem 3.1. For any m, n^O we have an isomorphism of graded k[_x]

rnnrliiloq

v°m
min(ra, re)

1= 0

where />->/*is defined in the following way. Write m=re+i, n=se+j, l―qe+h

with r, s, q^N, O^i, j, h<e.

l*=m-＼-n―2l if *nax(z+/―e+2, 0)<Lh^,m'm(i, j)

or if max(z, j)+l^h^m'm(i+j+l, e ―l)

^=(r + s-2^+l)g-l if O£h£i+j-e+l

l^―(r + s―2q)e―l if min(/, j)-＼-l<,h^max(i, j)

^=^ + 5-2^-1)0-1 if i+j+2^h£e-l.

Here we understand VL^―O.

Proposition 1.4 (i) follows from this, by letting e=2 and reducing the

grading modulo 2. See also Lemma 3.5 and the end of this section.

The proof of Theorem 3.1 goes as follows. We first decompose V^^Vl,

Vi^VU, V°e(£)Voedirectly. In the Grothendieck ring we can express all [Vm]

as polynomials of [Vi~],[V?], [F°]. Then a straightforward computation gives

the desired formula.

We begin with preliminary observation. Let m, n^>0 and let G ―k＼_s,t]

be a graded ^-algebra with defining relations ts=<ost,sm+1z=tn+1―Q and degs =

det? = l. Let Gk be the degree k part of G for each k>Q. Put x = s+ t. Since

X'S itj=Si+1tJ+(OtSiti+

when G is viewed as a graded &[x]-module by left multiplication, G is isomor-

phic to V°m0V°n. Since tx―coxt+(1― a))t2and

for some cu ■･･, cTO+1e^, G has a basis xitj,O^i^m, Os^/^rc. Assume m^n

and put

z=xm+c1xm~1t-l ＼-cmtm.

Then the following hold.

( i ) The left multiplication x : Gk-*Gk+l is injective for k<n, bijectivefor

n^k<m, and surjective for m<k.



(ii)

(iii)

(iv)

Then

The Grothendieck ring of vector spaces

G/xG has a basis V modxG, O^/rgn.

Ker(x : G-+G) has a basis ztj,O^j^n.

For each O^j^n, put

/,~sup{/: ztj<BxlGm+j-i＼
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as graded &[x]-modules.

(i) is clear and (ii),(iii)follow from (i). Tosee(iv), decompose G=(&ik＼_x~]Ui

with Ui homogeneous elements such that xmiUi^0, xmi+1Ui=Q. Then the

elements xmiut form a basis of Ker(x : G->G). Since ztj,O£j^n, have mutu-

ally different degrees m+j, the bases {ztj} and {xmiut} of Ker(x : G->G) are

equal up to a permutation and scalar multiples. Hence {lj}is a permutation of

{mi}. This proves (iv).

Lemma 3.2. For any m>0 we have

v°

if

if

m+1^0 (mode)

m+l=0 (mode).

Proof. We may assume ra>0. In the above observation we specialize

(m, n) to (m, 1). Then t2=0, tx=(oxt and

so

0=(x-Om+1 = x
m + 1

Q)m + 1

*>m+1-l
^

2:::::: xm ―
-1

to-1

X m-lt

t,

<w-l

zt = xmt.

If m+lE£O, then (a>m+1-l)/(o>-l)^0, so

z^xm-xGx, z<£xmG0

Thus, by (iv) of the observation, Gsl/i,.,R^ as graded &[x]-modules.

If m + l=0, then 2r=;cm, xro+1^0. So 2^xm+1G0. Thus G^V^Vl.

Lemma 3.3. For any r>0 we have
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PROOF. We specialize(m, n) in the previous observation to {re, e) Then

jfe+1=:O,xe=se+te and se, te are central elements in G. We have

Q=(x~t)re+1=(xe-te)r(x-t)=xre+1-xret-rxcr-l>e+1te,

so

z―x
re

xre'xt-rx^-^ete

and

zP=xret}-xre-ltj+x, l£j£e-l

zte=xretc.

Let us determine the integers ls :=sup{/: ztj^xlGre+j-i＼ for O^/fie. Clearly

lo=(r―V)e. By induction on /, we see easily that

xre+j=.xretj + rxcr~l)e+.ite> y^]_

xreGj=(xreti, x(r-i)e+^e>, y^i.

It follows that xre-ltj+1(£xreGj for l^/<e―1, hence lj―re―1. We have

xre+e-%-(r+l)xre+e-H=-rzte-＼

and >:re+<!"x,̂r^"1 are linearly independent. So /g_!=re+e―2. Finally, since

X re+≪=(r+l)zf, we have le=re+e. Thus

G = F!r +≫≪cyl(r+1>≪-.cf rS-ic "' cF£ilc^r-l>≪

as graded &[x]-modules.

Lemma 3.4. F?(g)F°msF°<g)7? /or all m^O.

Proof. We can decompose V1ig)Vomin the same manner as V"m<^iV＼.

Lemma 3.5. V＼RVin^Vi+i=zVinRV＼ for all n^O and i, j^Z.

Proof. Let u, v, w be homogeneous generators of V＼,V{, Vi+i respectively.

The correspondences <t)kiu<S)xkv<-*xkw<^>xkv(S)u,O^k^n, give the isomorphisms.

Let Q be the Grothendieck ring of the category of graded &[.x]-modules

with respect to c, £R).The classes [_Vi~＼in Q form a basis of Q. We set

e = [KS]

n>0

Then 0O―1 and by Lemma 3.5 £is a central invertible element in Q and
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By Lemma 3.4 0! is also central and by Lemma 3.2

f 0m+i + £0m-i if m+1^0 (mode)

(3.6) <MH
I (l + s)0m if m + l=O (mode)

for w^O and by Lemma 3.3

(3.7) 0re0e = 0(r + ne + £0Cr+ Oe-2 + (s2+ "■+£

for r>0. It follows that Q is generated by e,£

is commutative.
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)0re-i + £e0(r-Oe

$1, <j)eand in particular Q

For each integer n2s― 1, define a polynomial Hn{s, t) with integral coeffici-

ents by

HJx + y, xy)=

y-n +l -yn + 1

x ― y

with x, y indeterminates. Then //_i=0, H^―l and we have a formula

for m, w^ ―1. Put

for n>-l. Then

(3.8)

(3.9)

min(m,n)
Hm(s, t)Hn(s, t)= S tlHm+n.2l(s, t)

1-0

<jn=Hn(6lf s)gQ

minCm

1=0

minCra

l=o

n)

S Um + n-2l

n)

£ Gm + n-ll ･

By an easy induction it follows from (3.6) and (3.9) that

(3.10) at=$i 0£i^e~l

(3.11) <re-1+i=(l+ ei)^e-i-si^-i-< O^i^e-1

Lemma 3.12. We have

min(i.j) i+j-e +l

/i=max(t+j-e+2,0) ft=O

for ―l^i, j<*e ―l.

Proof. We may assume z^/^0. When i+j^e―2, the formula results

from (3.9),(3.10). Let i+j=e-l+l with 0£l^e-l. Then by (3.9) and (3.11)
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we have

^i^j ―diOj

2j £ <Ji+j-Zh
ft=O

D. Tambara

S eh{(l + el- )<f>e_1-sl- <f>e_1_l+2h}+ 2 sft0e_1+I_2h
OS/iSJ/2 r l/2<h£J

― Zj ＼£ T^£ )<Pe-l Zj £ y>e-l-l + 2h

OShil/Z Oihil/2

= 2 £A0e-l+ S £7^i+;-2ft,

A=0 ft=J+l

which proves the lemma.

Lemma 3.13. 0re+i=0r0i+6i+10r-i0e-2-f for r^O, O^z^e-1.

Proof. Denoting by (f>'re+ithe right hand side, it is enough to show that

The second equality follows from the definition of #1 and the third follows

from (3.6) without difficulty.For the last, using (3.8) and Lemma 3.12, we have

+ (S2+ ･･･ +£e-1)0r-10e-l + £e(0r-l + £0r-20e-2)

as required.

Proof of Theorem 3.1. From Lemmas 3.12 and 3.13 we can deduce easily

that-

minCi,./) i+j-e + 1 j
<j)re+i<l>i= S e.h(j)re+i+j-2h+ S £7l^(r+ i)e-i+ S S^re-!

;i=max(i+;-c+2,0) ft=O ft=i+l
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for r^O, O^i^e ―1, ―1^/^e― 1. Replacing / by e―2―j and multiplying

ej+1, we have

m

(j)re +i^+1<f>e-i-i ―
h

£ <Pre + i+j+e-2h~T

for r^O, O^Li, /<^e―1. Using (3.8) and Lemma 3.13, we can also see

minCr, s)

3=0

if r^O, r^s^-1, Org&^e-l or if r, s^-1, £=0-1.

Now let m=re+i, n=seJrj with r, sJ^O,O^f, j^e ―1. The formula to

prove is symmetric in m, n, so we may assume r^zs. By the above three

formulas,we have

$re+i$8e+j= $re+i<f>j0s-＼-$re+i£1+3$e-2.-j<f>s-l

* Y'(r + s-2g)e + i+?--2ft~rZj£ yCr +s- l-2q~>e+ i+j+e-2h

(1) C2)

"i~Zj£ y'Cr + s-2g)c + e-l~rZje yCr -l + s-2g)e+e-l

+
2j£9C 0<'' + s-l-2g)e + e-l4-S£9 0(r-n-s-i-2g)e+e-i >

where the kth summation 2u) is over the elements (q, h) in the set Ik defined

below.

h ' 0<q^mm(r, s), max(z+/―e+2, 0)<^h^m'm(i, j)

h: 0^q^m'm(r, s―1), max(f, y)+l^/z^min(/+;+l, e―1)

Is:0^q^mm(r, s), O^h£i+j-e+l

I4:0£q£mm(r-l, s), i+l<h£j

h '･0^^^min(r, s ―1), j+l^h^i

h:0^q^m'm(r-l, s-l), i+j+2^h^e―l.

As observed earlier, (Vm(g)Von)/x(Vm<g)Vn) has a basis consisting of homogene-

ous elements of degrees 0, 1, ■･･, min(ra, n). Therefore the map Iill ■■･ Jlh-^

[0, min(m, n)] taking {q, h) to qe + h must be a bijection. Since the ranges of

h in Iu ■■■, Is give a partition of [0, e ―1], putting l―qe+h, we have

minCm,re)

1= 0

with /# as described in Theorem 3.1. This proves the theorem.

PRQPOSITQIN 3.14. The ring Q is a commutative ring generated by s, s"1,<j)u

6e with a defining relation
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He.^u e)(^-l-e)--=O.

Proof. This follows from (3.6)and the fact that {ek0i$re: k^Z, O£i£e-l,

r>0＼ is a basis of Q. Details are omitted.

Finally we pass from the Z-graded case to the Ze-graded case. We consider

only Ze(―Z/eZ)-graded &[x]-modules M=RigzeMf such that xMfcMi+1 for

all feZ( and x acts on M nilpotently. For such modules M, N, we make the

space M(g)N a ZB-graded &[x]-module in the same manner as in the beginning

of this section. For a graded £[x]-module M, let x*M be the Ze-graded k＼_x~＼-

module such that tz^M―M as &[;t]-modules and ijz*M)f― ^^i~)=jMi for j^Ze,

where tc: Z―>Ze is the natural projection. Then the assignment M>->7c*M

commutes with (x),and the objects K^Vi, n^O, Q^j^e ―1, form a complete list

of indecomposable ^-graded &[x]-modules. Therefore the Grothendieck ring

of the category of Ze-graded &[x]-modules is isomorphic to Q/(ee―1). When

e=2, we obtain Proposition 1.4 (ii)from Proposition 3.14.
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