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0. Introduction

0.1. In relativelyrecent times it has been proved that some classicaldualities

between additive categories are unique. For example, Roeder [13] proved that

any duality on the category of locally compact abelian groups coincides, up to

natural equivalences, with the Pontryagin duality.

Inspired by this fact, I. Prodanov [11] held at Sofia University, at the end

of the 70's, a seminar on dualitiesand spectralspaces, suggesting some similar

results: we recall those by Dimov [2], Stoyanov [14] and the firstauthor [4].

Dimov proved that Stone dualityis the unique duality between the category

of Hausdorff compact totally disconnected spaces and the category of Boolean

rings.

Let {A, a) be a compact ring and denote by X-Aa (Aa-X) the category

of locally compact right (left) topological modules over (A, a). L. Stoyanov

proved that, if A is commutative, then the unique duality between X-Aa and

Aa-X is the Pontryagin duality, by using the Theorem of Kaplansky and

Zelinsky on the decomposition of a commutative compact ring as a product of

local rings.

Stoyanov's theorem has been extended by the firstauthor [4] to the non

commutative case, by using his resultson equivalences between closed categories

of modules [5].

Unfortunately the activity of Ivan Prodanov, who inspired this line of

research, was interrupted by his untimely death in April 1985.

0.2. If we use the result of Stoyanov and Gregorio, it is easy to show that

if (A, a) and (R, r) are compact rings, then, if a duality H―(HU H2)
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X-Ao < RT-X

Hi

between X-Aa and RT-X exists,it is unique.

0.3. The present paper is subdivided into two parts. In the firstpart

(Sections 1 to 4) we give a completely new proof of the uniqueness stated

above by showing, in the meantime, how the duality H acts on modules.

Namely, if we set

KA=H2(R, t) and RK=H1(A, a),

the discretebimodule RKA is faithfully balanced, in the sense that R^End(KA)

and A=End(RK) canonically (see [9]). Moreover KA is an injective cogenerate

of the category Mod-Aa of all discrete right yl-modules which are topological

modules over {A, a) and, similarly, RK is an injective cogenerator of the cate-

gory i?r-Mod.

The crucial result is the fact that the structure of the bimodule RKA de-

pends only on the rings (A, a) and (R, r) and not on the duality H=(HU H2).

Moreover we can prove that, for all M^X-Aa, //X(M) is naturally (and topo-

pologically)isomorphic to the left i?-module Chom^M, KA) of continuous mor-

phisms of M into KA, endowed with the compact-open topology. A similar

result holds, of course, for all modules N<bRt-X.

If a duality H exists, then the modules KA and RK have finite grade, that

is, the isotypic components of their socles are finitelygenerated.

In the second part of the paper (Section 5), given a compact ring (A, a),

we determine all compact rings (R, r) such that there exists a duality between

X-Aa and RT-X in the followingw ay. Let KA be an injective cogenerator

of Mod―Aa with finitegrade and set R=End(KA), with its /C-topology r. Then

(R, t) is compact, RK is an injective cogenerator, with finitegrade, of Rz-Mod

and the bimodule RKA is faithfully balanced. Let MeX-4 and let H^M) be

the left i?-module Chom^(M, KA), with the compact-open topology: then H^M)

^RT-X. If we define analogously a functor H2: Rz-X~*X-Aa, we get a

duality H=(HU H2) between X-Aa and RT-X. Finally, we give necessary

and sufficientconditions under which (R, t)is topologicallv isomorphic to (A, a).

0.4. All rings considered in this paper have identity 1^0 and all modules

are unital. The categories and functors we consider are always additive and

subcategories are full; since we deal only with categories of (topological)

modules, we use the convention of writing all morphisms on the side opposite
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to the scalars, unless the contrary is explicitly stated. Ail ring and module

topologies are assumed to be Hausdorff. The symbol (M, s) generally means

that the module M is endowed with the topology s.

1. Preliminary results

1.1. Let (R, r) be a compact ring. It is known that (R, t) is a linearly

topologized ring having as a base of neighborhoods of zero a family of two-

sided ideals which, of course, have finiteindex.

Let Rx-X be the category of locally compact left modules over the topo-

logical ring {R, r), where the morphisms are the i?-linear continuous morphisms.

It is known that every object M in Rz-X is linearly topologized; more pre-

cisely, M has a base of neighborhoods of zero consisting of compact and open

iv'-submodules (for an account of this see, e.g. [12]).

1.2. Let EFr be the family of all open two-sided ideals of (R, t). Observe

that {R, r) is topologically artinian and noetherian on both sides, since R/I is

a finite module for any /G2rr, hence artinian and noetherian. Denote by

i?r-Mod the full subcategory of i?-Mod defined as follows.

i?r-Mod={Mei?-Mod: VxeM, Annfl(x)^/, for some /e9＼.}.

Thus Z?r-Mod is the category of all left i?-modules which, with the discrete

topology, are topological modules over the topological ring (R, r). Note that,

for any Me/v?r-Mod, every finitelygenerated submodule of M is finite. For any

Mei?-Mod we set

tr(M)={i6M: Annfl(#):>/, for some /G?r).

The class i?r-Mod, together with the usual morphisms in /?-Mod, is a Gro-

thendieck category, so that i?r-Mod has enough injectives. If M<=RT-Mod, then

its injective envelope Er(M) in RT-Mod is

Er(M)=tr(E(M)),

where E(M) is the injective envelope of M in 7?-Mod. Finally, it is obvious

that Z?T-Modg Rz-X.

We denote by RT-CM the fullsubcategory of Rx-X consisting of all compact

modules. Then (R, r)ei?r-CM. The meaning of the symbols X-RT, Mod-i?r

and CM-RT should be clear.

1.3. Let (A, a) and {R, t) be two compact rings and assume we are given

a duality H=(HU H2) between X-Aa and RT-X :
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#1
£-A,^==lR.-£ .

Arguing as in [1], Proposition 1.7, we can show that H induces a duality be-

tween CM-Aa and /?r-Mod and one between Mod-Aa and i?r-CM.

By some results of [9], there exists a faithfully balanced discrete bimodule

RKA such that HX{A^―RK and H2(R?)=KA. Moreover, for any M^X-Aa and

any N^RZ-X there are algebraic canonical isomorphisms

//1(M)sChom^(M, KA); H2(N)^ChomR(N, RK).

1.4. For the rest of this section we shallstudy the situation settled in 1.3.

1.5 Proposition. Let RK=Hx{Aa). Then RK is an injective cogenerator of

i?T-Mod. Similarly KA=H2(Rr) is an injective cogenerator of Mod-Aa.

Proof. We prove this fact by showing that (A, a) is a projective generator

of CM-Aa; the proof relies on the following facts:

(1) for any MeCM-A, ChomA(Aa, M)=EomA(A, M);

(2) epimorphisms in CM-Aa are surjective.

Since AA is a projective generator of Mod-A, it follows from (1) that {A, a) is

a generator of CM-Aa, while it follows from (2) that (A, a) is projective in

CM-^4ff. Now, by applying the duality between CM-Aa and i?r-Mod, we get

that RK is an injective cogenerator of i?T-Mod. □

Denote by i?r-LT (resp. W-Aa) the category of left (resp. right) linearly

topologized modules over the topological ring (R, t) (resp. {A, a)).

Evidently (see 1.1):

X-Aag=LT-Aa and R.-XQR.-LT.

1.6 Proposition. rK is an injectivecogeneratorof Rr-LT.

Proof. Let Mei?T-LT, X be a submodule of M with the relativetopology

and /: X―*K be a continuousmorphism. We want to show that / can be ex-

tended to a continuous morphism from M into K. Since K is discrete,Ker/^

Xr＼V, where V is an open submodule of M; settingf'(x+v)=f{x), for x<=X

and ugF, gives a continuous morphism from X+V into K, so that thereis no

lossin generalityif we assume that X is open in M. Consider the diagram
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where it and it' are the canonical projections and f°n=f. Then / extends to

a morphism g : M/Ker /―≫/f,since .Y/Ker / and M/Ker / belong to i?T-Mod and

RK is injective in i?r-Mod; thus g°it'is an extension of /.

Let now x e M, x ^ 0; there exists an open submodule V of M such that

x^V. Let 7r:M->M/V be the canonical projection and endow M/V with the

discrete topology, so that it is continuous and M/Fei?r-Mod. There exists

%: M/V-^K such that |(7r(x))^0, since RK is a cogenerator of i?T-Mod; hence

RK is a cogenerator of i?t-LT. D

1.7 Corollary. The topology of Mei?T-CM coincideswith the weak topology

of ChonWM. K).

Proof. By Proposition 1.6, the weak topology of Chom#(M, K) is Haus-

dorff so that it coincides with the topology of M, which is compact. □

1.8 Corollary. The topology t on R coincides with the K-topology, that is

the topology having as a base of neighborhoods of zero the annihilatorsin R of

the finitesubsets of K.

1.9 Remark. The preceding corollarieshold also in CM-A,.

2. The structure of KA and RK

2.1. In this Section we work under the hypotheses settled in 1.3. Denote

by (Du Dt) the duality between CM-^, and i?r-Mod induced by (Hi, H2):

Di
CM-Aa 7=^ i?T-Mod.

D2

Note that (A, a) and (R, t), as inverse limits of finite―in particular artinian―

rings, are strictlylinearly compact (s.1.c.) in the sense of Leptin [6].

Let (Wx)x^a be a system of representatives of all simple non isomorphic

modules in Mod-A,. It is apparent that, for any X^A, Wt<=CM-Aa, since it is
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finite. Moreover, any finitely generated submodule of KA is finite,so that KA

has essential socle. We have

Soc(KA)=RieAWjr≫ and KA=<SXeAEo(Wi)mv

where the m/s are cardinal numbers uniquely determined by KA. The second

equality holds since {A, a) is topologically artinian, so that every module in

Mod-Aa has essential socle, and topologically noetherian, so that a direct sum

of injectives in Mod-A, is injective. Let Dx=En<lA(Wx); since Wx is finite,Dx

is a finitefield.

For all X^A, we set VX = D1(WX). Since {Du D2) is a duality,(V＼)x^a is a

system of representatives of all non isomorphic simple modules in i?T-Mod. It

is clear that Soc (RK) is essentialin RK and that End^F^sZ^ canonically.

Let ]{A) be the Jacobson radical of A. Since {A, a) is linearly compact,

we have

by a well-known result of Leptin ([6]).

Let nx be the dimension of W x as a left vector space over Dx ; since W x

is finite,then also nx is finiteand therefore we can write

where /,;is a minimal right ideal of EndZ);i(W/';).Recall that Ix = Wx in Mod-yl

and hence in CM-/L, since Wx is finite.

2.2 Lemma. Let ]{A) be the Jacobson radical of A. Then

a) AnnASocU^)=J(A);

b) AniuAnn*JG4)=JG4).

Proof, a) Apply to the exact sequence

0 ―> Soc(RK) ―>RK ―> RK/Soc(RK) ―> 0

the functor Hom^―, RK), to get the exact sequence

0 ―> Ann4 Soc(RK) ―> A ―> End* (Soc (*#)) ―> 0 .

Since
RK is quasi-injective

and A=End(RK), we have that J(A) coincides with

the ideal of A consisting of the endomorphisms of RK with essential kernel (see

[3]). But SocU/f) is the intersection of all essential submodules of RK and so

JK^gAmuSocU/O.

On the other hand, Soc(RK) is essentialin RK, hence
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AnnASoc(RK)Qj(A).

b) Put J=](A) and assume there exists a^A such that aeAnn^ AnnK(J)＼J.

Since (A, a) is linearly compact, / is closed in A, so that there exists a con-

tinuous morphism /: A-^KA such that /(/)=0 and /(a)^0. Thus we can find

xe/f such that xJ=0, but xa^O. This is a contradiction, since xGAnnK(/)

and aeAnn4 AnnA-(/). D

2.3 Theorem. Lef (W^),^/* o^d (V x)xeA be systems of representatives of all

non isomorphic simple modules in Mod-A, and Rz-Mod respectively. Let nx and

mi be the dimensions of Wx and Vx respectively as vector spaces over Dx =

EndA(Wx)=EndR(Vx). Then

a) for all X^A, nx is finiteand RK=RieA EZ{VxTx;

b) for all l^A, mx is finiteand KA=RX(=A Ea(WxT1-

Hence the structures of KA and rK depend only on the pair of compact rings

(A, a) and (R, r) and not on the duality (Hu H2) under consideration.

Proof. We shall prove only a), for b) follows by symmetry.

As we have seen before, nx is finite, for every l^A. Set ]=]{A) and

consider the exact sequence

(1) 0 ―> / ―> A ―.> A/J -^ 0

and set

(A/J)*=ChomA(A/J, KA)=ChomA(nAEndD;i(W,), KA)

Observe that, since Ix=W* in CM-Aa and Vx=Hl(Wx), there are canonical

algebraic isomorphisms

(A/J)*~@XeAHmx) = @x<BA VP .

By Proposition 1.6, applying Chouu(―, KA) to the sequence (1) gives the exact

sequence

0 ―> (A/J)*=@ieA VP -^RK―^ Chom^C/, KA).

We want to show that (A/J)*, which we can identify with AnnK(J), is the

socle of RK, for from this fact the conclusion will follow, since RK is injective

with essential socle. Obviously (A/J)*=AnnK(J) is semisimple, so that Ar＼nK(J)

QSoc(RK).

Assume, by contradiction, that Ann/<-(/)^Soc(fi/C): then there exists an

endomorphism a^A―End(RK) such that

AnnA-(/)a=0 and Soc(RK)a^0.
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From Lemma 2.2(b),it follows aeAnn^ AnnK(J)=J> while,from Lemma 2.2(a)

it follows a£AnnASoc(RK)=J, a contradiction. D

3. Uniqueness of the duality induced between CM-A0 and i?t-Mod

3.1. Assume there exists a duality (Hu Hz) between X-Aa and Rr-X

Then (Hi, H2) induces a duality (Dlf D2) between CM-Aa and i?r-Mod

CM-A0 ^=1 Rz-Mod.

D2

3.2 Proposition. There is a functorial isomorphism

AsChonuC- KA).

Proof. As we know, the functor Dx is, from algebraic point of view,

naturally equivalent to the functor Chom^(―, KA). Hence, it is sufficientto

show that, for any MeCM-A;, Choiru(M, KA)(=Rr-Mod. Let /eChom^M, KA);

then

Ann*(/)= {re R: r/=0} = {re R: r/(M)=0} = Ann≪(/(M)).

As M is compact, f{M)^RK is finite,so that Annfl(/) is an open left ideal in

(R, r). □

3.3 Lemma. Let F be a finitemodule belonging toi?T-Mod. Then HomR(F, RK)

is finiteand, when endowed with the discrete topology, it is an object of CM-^4,,.

Proof. Since F is finite,it has a composition series, say of length p.

Assume firstthat p=l, so that F is simple; then F is isomorphic to V* for

some XeA. By Theorem 2.3, Hom^F, RK) = HomR(V2> Vin≫)is finite.

Assume now that the thesis holds for modules of length p ―1. Then, if S

is a simple submodule of F, the module F/S has length p ―1. Applying the

functor Homfl(―, RK) to the exact sequence 0-≫S^F->F/S-^0 ends the proof. □

Note that, in this proof, we use only the structure of RK.

3.4. For every iVei?r-Mod we will denote by Homg(AT, RK) the module

HomR(N, RK) endowed with the topology of pointwise convergence.

3.5 Lemma. For every N<=Rt-Mod, Hom£(iV, RK) belongs to CM-Aa.

Proof. The discrete module N is the direct limit of a family {F{)x&a of

finitesubmodules and we have:
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Hom&N, RK)=Uom^lim Fx, RK) s hjn HomftF;, RK)

where Hom^Fx, RK)^CM-Aa by Lemma 3.3. The isomorphism a is topological,

provided we endow the inverse limit with the inverse limit topology (i.e. the

topology it has as a submodule of the direct product). Q

Let A/ei?T-LT and let F be a subset of N. We set

W(F)= {%<=ChomR(N, RK): (F)£=0}

and we use a similar notation for subsets of M^VT-Aa. If F={y}, we write

<W(F)=<W(v＼.

3.6 Proposition. Let MeCM-Aa and N^R.-Mod. There existsan abelian

group isomorphism

<p:Chom4(M, Hom&M, RK)) ―> HomR(N, Chom4(M, KA))

Tiihirhiq VMitiiy-nlin tho iinrinhloc A/fnnrl ＼f

Proof. In this proof, to keep the notation not too heavy, we shall skip

the convention of writing the morphisms on the opposite side to the scalars

and we shall write morphisms on the left; since we are not considering endo-

morphism rings, there is no harm in doing this. Let /: M-*Hom^(N,
RK) be

an /1-linearcontinuous morphism. Define the morphism /: Af―>Chomu(M, KA)

by setting, for xgM and jyeiV,

f(y)W=f(x)(y) .

Then / is i?-linear,since

U{ry)~]{x)=U(x)-](ry) = rU(x)~＼(y)=irf{y)-]{x).

Let us verify that / is continuous. Indeed, for y^N, we have:

Ker (/(?))= |ieM:/(y)(i)=/WW=0} =f~1my))

which is open in M. Thus we can set <p(f)=f.

The morphism <p can be inverted by the abelian groups morphism

<p＼HomR(N, Chonu(M, KA)) ―> Chom^M, Homg(iV,
RK))

defined, for any morphism g: 7V-*Chom^(M, KA), by <f>(g)=g, where g: Af-≫

HomftiN, RK) is defined by

g{x)(y)=g{y)(x),

for xgM and -yeAT. We prove that g is continuous, leaving the verification
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of the ^4-linearityto the reader. If y^N, we have

g-1(c^(y))={x^M:g(x)(y)=g(y)(x)=O}=KQT(g(y))

which is open in M. □

3.7. A consequence of the preceding proposition is that the functor

Hom£(―, RK): RT-Mod^CM-Aa is a right adjoint to the functor Dx: CM-Aa―>

i?T-Mod. Thus, by Proposition 3.2, Homg(―, RK) is naturally equivalent to D2.

Therefore we have the following

3.8 Theorem. Let H^: £-Aa->Rt-£, H2: Rx-£-^£-Aa be a duality and let

(Du D2) be the induced duality

CU-Aa ^H i?T-Mod.

D2

Then, if RKA is the bimodule such that H(Aa)=AK and H2(R7)=KA, there are the

functorial isomorphisms

Z^Chom/-, KA), /)2= Homg(-( RK) .

3.9 Remark. An analogous statement holds for the induced duality be

tween Mod-Aa and RT-CM.

4. The general case

4.1. We assume throughout this Section that we are given a duality

(Hu Ht) between X-Aa and Rt-X :

Let
RKA

be the canonical bimodule of the duality (Hu H2).

4.2. Let M(Ei£-Aa and let C{M) denote the set of all compact topological

submodules of M. If C, C'^C(M) and C^C, we denote by /g. : C-*C the

inclusion of C into C. For all CgC(M), ic:C->M is the inclusion of C

into M.

4.3 Lemma. Let M^X-An. Then

(1) M= Urn (C;/gO

in the category X-Aa. A similar result holds in the category Rx-X



Uniqueness and existenceof dualities 49

Proof. To begin with, we observe that,for allxgM, the submodule xA

is compact, since the map A-^xA which sends 1 into x is continuous. It is

obvious that C{M) containsa compact open submodule Co.

To prove (1),let LgX-4 and assume there existsa family of continuous

morphisms (fr: C―>Z,Wrf;m such that the diagrams

c
: > C

(2)

L

are commutative, for all C, C'eC(M) with C<C i.e., fc,＼C=fc. Let us

prove that there existsa unique continuous morphism <p:M->L such that, for

anv C(= C(M). the diaoram

(3)

c r lc , M

I
'

L

is commutative.

The morphism <pis given by

tp(,x)―fxA(x) (*eM);

we show that <pis well-definedand that the diagrams (3) are commutative by

recallingthat the diagrams (2) are commutative, so that,if xeC, we have

xA^C and

fc(x)= (fc IxAXx)=fxA(x)=<p(x)=<p(tc(x)).

To end the proof, we show that <pis continuous. Let V be an open submodule

of L. Then ^(V^/cJCV) and thisis open in Co. But, since Co is open in

M, fn＼(V)is also open in M. D

4.4 Lemma. In the preceding situation,let M^X-Aa. Then:

(1) #i(M)= Urn (H^C); //,(/gO)

m ^/iecategory RT-X and the eoualitv(1) holds in the category RT-LT as well
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A similar result holds also for the modules in Rt-X.

Proof. By the preceding Lemma we have, in Rz-X

H1(M)=H1( Hm (C;/g.))= lim (#i(C); ^(/g.))

Since HX{M) is complete and linearly topologized we have, in the category

flr-LT,
#,(M)= Ijm //!(M)/V,

where we denote by ^(H^M)) the filter of all open submodules of HX(M).

However, for every C^C(M), there exists one and only one open submodule V

of //i(M) such that H1(M)/V is canonically isomorphic to the discrete module

HX{C). Hence the two inverse limits coincide. □

4.5 Remark. In the preceding inverse limit, the canonical morphisms from

H1(M) to H^C) (for C^C(M)) are the morphisms H&c).

4.6 Theorem. Under the hypotheses of 4.1, if M^X-Aa then the module

Hi(M) is canonicallyisomorphic to Chom^M, KA) endowed with the topology of

the uniform convergence on the compact subsetsof M; this topology coincides with

the topology of uniform convergence on the compact submodules of M, which has

as a basis of neighborhoods of zero the submodules <W{C)= {$<=ChomA(M, KA):

£(C)=O}, for C<=C(M).

A completely analogous result holds for Rt-X. Consequently any duality be-

tween X-An and RT-X is unique.

Proof. Let M<=X-Ag. As we know, H^M) and Choiru(M, KA) are can-

onicallyisomorphic as abstractmodules. Moreover:

H1(M)= Um (//t(C); Hl{f%.))= ljm (Chom^C, KA); (/g,)*)

CeC(M) Ce.Cf.M-)

where the * denotes the transposed morphism. If we identify HX(M) with

Chom^(M, KA), a basis of neighborhoods of zero in H^M) is given by the kernels

of the projections i%: Chom^(M, KA)^>ChomA{C, KA) and

Ker <j%)={|eChomA(M, KA): #(£)=0}

= {^ChomA(M, KA): e(C)=0} =W(C).

Denote by w this topology and by w' the topology of uniform convergence on

the compact subsets of M. Of course wQw'. To prove the converse inclusion

it is sufficient to prove that every compact subset F of M is contained in a
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compact submodule. So, let C be an open compact submodule of M; there exist

xu ■■･xn<=F such that

Fg U (Xi+C)g U (xtA+C)Q S (xtA+C)=C+ S x^
i=l i=l i=l i=l

which is a compact submodule of M □

4.7. We want to show now, as an example, that Pontryagin duality over

a compact ring (R, r) can be represented as stated in Theorem 4.6.

Let T―R/Z be the circle group and recall that, if M^X-RZ, the Pontry-

agin dual Fi(M) of MR is the left i?-module Chomz(M, T), endowed with the

topology of uniform convergence on the compact subsets of M; in an analogous

way we define the Pontryagin dual F2(N) of a left locally compact module iVe

Rx-X. It is not difficultto show that these functors―the action on morphisms

being the obvious one―yield a duality between the categories X-Rx and Rx-X.

As in the proof of Theorem 4.6, we can see that the topology on the Pon-

tryagin dual of M conincides with the topology of uniform convergence on the

compact submodules of M; thus a basis of neighborhoods of zero in Fi(M) is

given by the submodules of the form

WT(C)= {Z =Chomz(M, T): Z(C)=0},

where C runs over all compact submodules of M. Indeed, a basis should be

the family of subsets of the form

WT(C ; U)= {X<=Chomz(M, T):X(C)^U},

where C is a compact submodule of M and U is a neightborhood of zero in T,

but, without loss of generality, we can assume U is a small neighborhood, i.e.,

one containing no subgroups of T. In this case CWT(C; U)~CWT{C).

Let now K be the Pontryagin dual of RT: it is obvious that it does not

matter whether we consider Rr as a left or a right module over itself,so that

K carries a natural structure of i?-Z?-bimodule. Consider MeJ7-i?T; then the

map

<pM: Chomz(M, T) ―> Chom*(M, KR)

Xi―>X

where, for xeM and r^R,

X{x){r)=X{xr)

is an isomorphism.

Endow Chomij(M, KR) with the topology of uniform convergence on the

compact submodules of M, so that a fundamental neighborhood of zero is of
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the form

W) = {£<EChom≪(M, KR): £(C)=0},

where C is a compact submodule of M. Now it is only a matter of calculations

to verify that <pM is a topologicalisomorphism :

＼>*WC))= {ZeChomz(M, T): Z(C)=0}

= {ZeChomz(M, T):Z(xr)=0, VxeC, Vrei?}

= {ZeChom^M, T): X(C)=0}

=^r(C).

5. Existence of dualities

In this section, given a compact ring (A, a), we construct all compact rings

(R, t) for which there exists a duality between £-Aa and Rt-X.

5.1 Lemma. Let {A, a) be a right linearly topologizedring, KA an injective

cogenerator of Mod-A,, R=End(KA). Then the simple submodules of RK are

exactly those isomorphic to Hom^CV, KA), when V runs over the simple submodules

of KA. Moreover Soz(RK)=Soz(KA) and Soc(RK) is essentialin RK.

Proof. Let £P be the set of open right maximal ideals of (A, a). We

prove that, for any PeS3, AnnK(P) is a simple submodule of RK and that every

simple submodule of RK can be obtained in this way. Let us fix Pe£P and let

x, y^AnnK(P) be non zero. Since P is open in (A, a) and KA is a cogenerator

of LT-Aa, itis AnnA(x)=P=AnnA(y). Thus there exists a morphism / : xA~*yA

such that f(x)=y and this morphism / extends to an endomorphism of KA.

Hence there is rei? such that y = rx and this proves that Ann^CP) is a simple

submodule of RK.

Conversely, let RS be a simple submodule of RK and igS be non zero.

There exists Peff such that Ann^(x)gP. Let y^AnnK(P), y^O : since AnnA(y)

=P, there exists a surjective morphism /: xA―>yA such that f(x)=y. Then

-y= 7-x,for some r<BR, so that AnnK(P)ts=RS; since BS is simple, we have S=

Ann^(P).

Let now RS be a simple submodule of RK and let Pe£P be such that 5=

AnnK(P). Since KA is a cogenerator of Mod-^4ff, the simple module A/P is iso-

morphic to a simple submodule V of KA. The assignment /―/(£), where e=

l-＼-P^A/P clearly defines an isomorphism of left i?-modules Hom^(^4/P, KA)―>

ArmK(P) and composing this with the isomorphism Hoiru(V, KA)―>Hom^(^4/P, KA)
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yields the desired isomorphism.

Now Soc (KA)=J] {AnnK(P) ＼P(E&}, since KA is a cogenerator of Mod-A,,

and so the equality <S>oz{RK)=^oz{KA) is proved.

To end the proof it is sufficientto show that Soc(/d), as an i?-submodule

of RK, is essential. Let x(=RK, x^O; there exists Pe£P such that AnnA(x)<^P

and KA contains a submodule V isomorphic to A/P. Thus there exists a mor-

phism / : xA-*N such that /(x)^0 and, by extending this via the injectivityof

KA, we get r<^R = End(KA) such that rx^Soc(RK)=Soc(KA) and rx^O. ＼J

5.2 Definition. Let (A, a) be a right linearly topologized ring and let

{Wx)x(ea be a system of representatives of all simple non isomorphic modules in

Mod-A,. If MeMod-4,, then

Soc(M)=RiBAW＼m≫

where, for all l^A, mi is a suitable cardinal number. The family (mx)x&A is

called the grade of M. We say that M has finitegrade if every mx is finite.

5.3 Lemma. Let {A, a) be a right linearly topologized ring, KA an injective

cogenerator of Mod-Aa, R=End(KA) and endow R with the K-topology r. If

(R, t) is compact, then KA has finite grade.

Proof. Let N be the set of non negative integers and assume, by contra-

diction, that there exists a simple submodule S of KA such that KA contains an

infinitedirect sum S(N) of copies of 5. Denote by Sn the n-th component of

5(iV),let xoeSo, ^o^O, and set I=AnnR(x0). Then / is an open ideal of (R, z),

so that R/I is finite. Consider, for n>0 the element xbgS(JV) having the n-th

component equal to x0 and the other components equal to zero. Let cpn: S0-+Sn

be the /1-morphism such that <pn(xo)= xn (i.e.,the identity); then <pn extends

to an endomorphism fn:KA-^KA. The morphisms fn^R are all distinctand

non zero and clearly fn£I. Moreover, if n: R-^R/I is the canonical projec-

tion, it is obvious that 7r(fn)^7z(fm), if n^m. Since R/I is finite,this is

absurd. □

5.4. Let RK<=R-Mod be a faithfulmodule and endow R with the if-topology

t, which is Hausdorff.

(5.4

(i)

(ii)

1) The following conditions are equivalent:

RK is an injective object in i?r-Mod,

RK is an injective objectin i?r-LT,
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(iii) RK is quasi-injective.

(cf. [8], Proposition 6.6.)

Recall that RK called strongly quasi-injectiveif it is quasi-injectiveand, for

every submodule B of RK and every x^K＼B, there exists an endomorphism a

of RK such that Ba=0 and xa=£Q.

(5.4.2) The following conditions are equivalent:

(i) RK is an injective cogenerator in i?T-Mod,

(ii) RK is an injective cogenerator in Z?T-Mod,

(iii) RK is strongly quasi-iniective.

(5.4.3) Let (A, a) be a compact ring, KA a cogenerator of Mod-A, and R―

End(jK"^). Then the bimodule RKA is faithfully balanced and RK is

quasi-injective.

(cf. [7], Main Theorem.)

(5.4.4) Let RKA be a faithfully balanced bimodule and assume KA strongly

quasi-infective. Then the following conditions are equivalent:

(i) RK is strongly quasi-injective;

(ii) A is linearly compact in the K-topology and §oc(KA) is essentialin KA.

(cf. [71 Theorem 10.)

5.5 Theorem. Let (A, a) be a compact ring, KA an injective cogenerator of

Mod-A, of finitegrade, R=End(KA) and let R have the K-topology t. Then:

a) the himodule RKA is faithfully balanced;

b) Soc(KA)=Soc(RK) and both are essentialin KA and RK respectively;

c) RK is an injective cogenerator of i?r-Mod;

d) (R, r) is compact and RK has finitegrade.

Proof, a) By 5.4.1, the bimodule RKA is faithfully balanced.

b) Soc(/Ci) is essentialin KA since {A, a) is compact (see 2.1); by Lemma

5.2, Soc(/G)=Soc (RK) and SocGjif) is essential in RK.

c) Observe that the if-topology on A coincides with a by Corollaries 1.7

and 1.8. Therefore it follows from 5.4.4 and the preceding a) and b) that RK

is strongly quasi-injective. Thus RK is an injective cogenerator of i?z-Mod by

5.4.2.

d) Since (R, r) is complete, it sufficesto show that every finitelygenerated

module in i?T-Mod is finite.
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We prove firstthat a finitely generated module M in /?7-Mod has finite

length. Since M embeds in a finite power of RK, which is a cogenerator of

i?T-Mod, and any submodule of RKn is contained in the sum of its projections,

we need only to show that every finitelygenerated submodule of RK has finite

length; but this follows from [10], Proposition 2.3.

Thus we are reduced to seeing that every simple module S in i?r-Mod is

finite(cf. Lemma 3.3). By Lemma 5.1, we have S~HomA(W, KA), for some

simple submodule W of KA; since KA has finitegrade, it follows that

S^UomA(W, KA)=HomJW, Soc(KA))=HomA(W, Wn)

for some integer n, and this module is finitesince WA is.

Finally rK has finitegrade by Lemma 5.3. □

5.6≫ From this point on we will denote by (A, a) a compact ring, KA an

injective cogenerator with finitegrade of Mod-^4ff,R―En<l(KA) endowed with

its if-topology r. According to the preceding theorem, (R, z) is a compact ring,

RK is an injective cogenerator with finitegrade of 7?r-Mod and the bimodule

RKA is faithfully balanced.

If M<=X-Aa> we denote by Ht{M) the lefti?-modu!e Chom^M, KA) endowed

with the topology of uniform convergence on the compact submodules of M.

If C(M) is the family of all compact submodules of M, then a typical neighbor-

hood of zero in H^M) is

W(F)= {£eChonu(M, KA)＼$(F)=0}

for F^C(M), since KA is discrete.

Analogous notations and definitionshold also for every N<=Rr-X, though

we denote by H2(N) the right ^4-module with the topology of uniform conver-

gence on the compact submodules of N.

Arguing as in Theorem 4.6, we see that this topology coincides with the

usual compact-open topology.

5.7 Lemma. For every M^X-Aa, HX(M) belongs to Rt-X. Analogously

H2(N)(EX-Aa, for every N(eRz-X.

Proof. Let us prove, firstof all,that HX{M) is complete in its canonical

uniformity. Let (J;x)x<eabe a Cauchy net in H^M): then, for any FeC(M),

there exists X^A such that, for all X'',X"^XF in A,



56 E. Gregorio and A. Orsatti

and this implies that the net is eventually constant on every compact submodule

of M. Therefore the net converges uniformly on all compact submodules of M

to a morphism £:M->KA, which is continuous, since it is continuous on a com-

pact open submodule of M.

To prove H^M) is locally compact, it is sufficientto show that it has a

precompact open neighborhood of 0.

Let F be a compact open submodule of M: then a basis of neighborhoods

of zero in W(F) consists of the modules W(G), where G2F is a compact sub-

module of M. Thus we have to show that, under these conditions, CW(F)/CW{G)

is finite. Let <p:WiF^H^G/F) be the morphism defined, for ^W(F) and

xgG by

?(£)(*+F)=£(x).

This is a well-defined morphism, since q(F)=0 and, of course, Ker {(p)=cW{G),

so that <p induces an injection (W(F)/cW{G)c^Hl{G/F). Arguing as in Lemma

3.3, we get that H^G/F) is finiteand hence also <W(F)/W(G) is. Thus W(F)

is precompact and, being open in H^M), it is complete, hence compact.

To finish the proof, it is sufficientto show that H^M) is a left topological

module over (R, r). Since H^M) is a linearly topologized module, this amounts

to showing that, for any ^HX{M) and any FgC(M),

(W(F):$)={r^R＼r^W(F)}

is an open left ideal in (R, t). Indeed,

(W(F): £)={r(ER |r£(F)=0} =Ann*(£(F))

and, since £(F) is a compact submodule of KA, it is finite,so that Ann4(£(F))

is open in the if-topology r of R. □

5.8 Lemma. Let f : L^>M be a continuous morphism in X-Aa. Then the

transposed morphism Hx{f): Hi(M)-^Hi(L) is a continuous morphism in Rz-X.

The proof is standard.

5.9 Theorem. By defining Hx and H2 as in 5.6, we get a pair of contra-

variant functors

X-Aa 7=^ Rz-£ ■

H2

5.10 Remark. If F and G are compact submodules of M<^X-Aa and F is

open, then F+G is an open compact submodule of M.
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5.11 Definition. Let MgI-4 and ff be a basisof neighborhoods of zero

in M. We say that 3 is a good basisfor M if

(1) 3 consistsof open compact submodules of M;

(2) if V1; V2 are in 3, then there existsVeEF such that V!+V2gV;

(3) for anv xeM there existsVgS such that xgeV.

If C0(M) denotes the family of all open compact submodules of M, then

C0(M) is a good basis for M. Indeed, conditions (1) and (2) are triviallyverified;

for condition (3), we have that xA is a compact submodule of M and, given

VeaM), xA+N^Cn(M).

5.12 Lemma. Let 3 be a good basis for M^X-Aa. If X is a compact sub-

set of M, there exists VeS such that X^V and so the topology on H^M) coin-

cides with the topology of uniform convergence on the elements of 3. Moreover

the family

<3={W(＼)＼V(E3}

is a good basisfor HX{M).

Proof. Fix Veff: there exists a finite subset {xu x2, ･･･, xn) of X such

that

n

1 = 1

*i+V)g|](Vi+V)

i=l

where XiGVjGff. By the definition of a good basis, there is FgEF such that

Let us prove that § is a good basis for i/x(M). As we have seen in 5.6,

W{F) is open and compact in H^M), for all F<=3. Moreover, if Fu F2^$,

cW(F1)+tW(F2)Q'W(F)

where F<=3 and FQFir＼Fz.

Finally, let £<=HX{M) and take FgeEF such that F£Ker(f) (recall that Ker(£)

is open in M); then B^W(F). D

5.13 Definition. Let M^X-Aa. The canonical morphism (dm: M-^H^H^M)

is defined by setting, for xgM and fe//i(M),

where, for the sake of clarity, we write all morphisms on the left. This is

well-defined, since Q)M(x) is a continuous morphism of HX(M) into RK. Indeed,

Ipf r.e=M: then
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Ker((oM(x))={^H1(M)＼^x)=0}=W(xA)

which is, by definitionan open submodule in HX(M).

It is clear that a)M is injective, since ChomA(M, KA) separates the points

of M.

We define in a similar way the canonical morphism <oN, for all N^Rt-X.

To maintain the convention of writing morphisms to the opposite side to

the scalars, we set o)M(x)―x.

5.14 Proposition. Let M<=X-Aa; then the canonical morphism

<oM: M ―> HiHi(M)

is injective,continuous and open onto its image i.e.,it is a topologicaland alge-

braic embedding of M into H2HX(M).

A similar result holds for any N<ElRz-£.

Proof. We have already remarked that mM is injective. The proof will

be complete if we show that

(1) Q>M(,F)=tW(<W(F))n＼m{a>ll),

for every F^C0(M), since we know that C0(M) is a good basis for M.

Let us prove the "<=" inclusion, which is equivalent to the continuity of

o)M. If xe^F, then (oM{x)&W{cW{F)), since, for all£&W{F), (£)*=£(*)=().

For the converse inclusion, we take xgM such that x=(oH(x)&W(?W(F)).

Assume that x<£F. Since F is an open compact submodule of M and KA is an

injective cogenerator of X-Aa, there exists a continuous morphism -q: M^KA

such that 7](F)=0 and ^(jc)=£O.Thus (ly)ic^O with 7]<=CW(F) and this contra-

dicts the fact that x&W{cW(F)). □

5.15. Let MeCM-A: then it is clear that //1(M)Gi?I-Mod. Conversely, if

Nei?T-Mod, then H2(N), which is Homij(iV, RK) with the topology of pointwise

convergence, is in CM-Aa, by reasoning as in Lemma 3.3 and Proposition 3.5.

Of course, analogous results hold for modules in Rt-CM and Mod-yl^.

5.16 Proposition. For any Me CM-A,, the canonical morphism o)M is a

topologicalisomorphism. A similar result holds for any N^RZ-CM.

Proof. We have already shown that <oM is a topological embedding; since

Im(o>^) is compact, we need only to prove that it is dense in H2Hi(M).

Let L = <£i,■･･,£n> be a finitelygenerated submodule of the discrete module
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Hi(M) and let / : L~^RK be a morphism. We want to show that there exists

xgM such that the restriction of x―a)M{x) to L coincides with /. Consider

the submodule X of K＼ defined by

X=ml)x, -,(gn)*)＼xeM}

and set y=(($i)f, ･･･,(In)/). Assume by contradiction that y<£X. Since KA is

an injective cogenerator of Mod-A,, there exists a morphism (p^＼＼omA{Kn, K)

such that ^(30^0 and <p(X)=0. Identify <p with an n-tuple (r1?･･-,rn), with

ri^R=End(KA). By the ^-linearity of x, for all xeM, we have

n

VI v (t ＼r

i = l

so that the morphism S?=i r^i

(,?/*y

( S3 r£t)*=( S3 r,e,)(*)=O

=0 and this is absurd, since otherwise

n

S(

i = l

r

A)/=Sr^)/=^)^O.

Let g^H2Hi(M); a typical neighborhood of g in H2Hi(M) is of the form

g+WiF), where F={t-U ■■･,%n＼is a finitesubset of HX{M). By the preceding

result,there exists xeM such that (^i)g=($i)x―^i(x), for z= l, ･■･, n. There-

fore x^(g+<W{F))r＼＼rn{<i>M)and this proves the density.

5.17 Proposition. For any ATei?T-Mod the canonical morphism toN is an

isomorphism. A similar result holds in Mod-^4<,.

Proof. We need only to show that a)N is surjective. Let Y―lm{a)N) and

assume there exists y^HiHi{N)＼＼m(<i)N). Since RK is an injective cogenerator

of i?T-Mod, there is a continuous morphism /3:HiHz(N)-*RK such that (F)/3=0

and (y)p*O. Thus ^H2H,H2{N) and /3^0. Set M=H2(N)£ECM-Aa; by Pro-

position 5.16, there exists a<^M=H2(N) such that a>M{a)=a = fi. Then, for all

x<=N, we have xeF and so

0=(x)jS=(x)≪ = Jc(≪)=(x)≪

which implies that ≪=0; contradiction. D

We can now state the main theorem of this section, which summarizes and

generalizes the previous results.

5.19 Theorem. Let (A, a) be a compact ring, KA an injective cogenerator

of Mod-A, with finitegrade, R=End(KA) and z be the K-topology on R. Then

(R, t)is compact, RK is an injective cogenerator of i?T-Mod with finitegrade and

the bimodule RKA is faithfully balanced. Moreover, for all M^X-Aa and /Ve
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Rr-X, the canonical morphism a>N and wN are topologicalisomorphisms. In parti-

cular (Hu H2) is a duality between X-Aa and Rx-X.

Proof. Let M<=X-Aa and let F be a compact open submodule of M. Then

we have the exact sequence

0―>p-^M JUd―*o

so that we obtain the commutative diagram with exact rows

i n
0―≫ F

0>M

M

I

J/2ffi(0
0 ―-> //^(F) >H2H,{M)

HiHykt)

(On

D ―>0

I

H,HX{D) ―> 0

Since (t)M is a topological

□

and, since (df and <dd are isomorphisms, also o)M is

embedding, it is a topological isomorphism.

5.19. Let (A, a) be a compact ring. Among allinjective cogenerators with

finitegrade of Mod-A,, there is one which realizes the Pontryagin duality be-

tween X-Aa and Aa-X. We want to determine it.

Let (Wx)x^a be a system of representatives of the non isomorphic simple

modules in Mod-Aff, Dx=EndA(Wx) and nx be the dimension of Wx as a left

vector space over Dx. As we already know, nx is finite,for every X&A. Set

dim(A o)=(nx)xeA .

5.20 Theorem. Let {A, a) be a compact ring, KA an injective cogenerator

of Mod-Aa with finite grade. Then KA realizes the Pontryagin duality between

X-Aa and Aa-X if and only if the grade of KA coincides with dim (A, a).

Proof. The condition is sufficientby the structure theorem 2.3.

To show the necessity, let dim (A, o)={nx)x^A, so that

Set R = End(KA) and consider, on R, the Zf-topology r.

Let F: A0-£-*X-Aa be the Pontryagin duality and set TA―r{Aa). Then

TA is an injective cogenerator of Mod-A. with finite grade and (A, a) is topo-

logically isomorphic to End(T^) with the T-topology. By Theorem 2.3, the

grade of TA coincides with dim (A, a), so that TA=KA. Hence (R, t) is topo-

logically isomorphic to (A, a). □
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