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ON WEIERSTRASS POINTS OF RIEMANN SURFACES

ASSOCIATED WITH r(n, 2#0

By

Masaaki Homma

Introduction. Let f be a congruence subgroup of SL(2, R), and let R(F) be

the Riemann surface associated with F, i.e., R(F) is the canonical compactification

of F＼H, where H is the upper half plane of C. If the genus of R(F) is not less

than two, then we can ask the following problems:

Problem 1. Is R(F) hyperelliptic ?

Problem 2. Are the cusps of R(F) Weierstrass points?

Historically, Problems 1 and 2 are completely solved for F = F(n) by H. Petersson

[8] and by B. Schoeneberg [9] respectively. In the case of F0(n), partial solutions

are given by J. Lehener and M. Newmann [6] and A.O.L. Atkin [2].

The purpose of this note Is to answer both problems in the case of F = F(n, 2n)

(as for the definition of I＼n, 2ri), see Definition 1). Our results are the following:

1. R(I＼n, 2n)) is non-hyperelliptic for any positive integer ≪i^4 (see Theorem

4).

2. Every cusp of R(F(n, 2n)) is a Weierstrass point for any even integer n^4.

But there is an example, where the opposite situation may occur if n is odd (see

Theorem 6 and Remark 1).

Notation. SL{2, R) (resp. SL(2, Z)) is the special linear group of degree two

over the real number field R (resp. the rational integer ring Z), and PSL(2, R) is

the projective special linear group of degree two over R. When J is a subgroup

of SL(2, R), the image of J under the canonical homomorphism SL(2, R)―>PSL

(2, R) is denoted by A. H* means the disjoint union of the upper half plane H,

the rational numbers Q and {oo}.

Let F be a congruence subgroup of SL(2, Z), and let o―＼ _■)be an element

of F (or F). When z is a point on H*, o(z) means (az + b)/(cz+d), where a/0 (<z^0)

means c>oand (aoo+b)/(coo+d) means a/c. For a point z on H*, Fz (resp. Fz)

means the isotropy subgroup of F (resp. F) at z. We denote the canonical pro-

jection H*―*R(F) by nr, and the genus of R(F) by a(F).

Received September 13, 1977. Revised September 4, 1978.



66 MasaakI Homma

§1. Genera of R(r(n, 2n))

We start with the definitionof the congruence subgroup F(n, In) for a positive

integer n. These groups prove themselves useful when one discusses the theory

of moduli of abelian varietiesby means of the theory of theta functions in the

case of general dimension. But we treat only the one dimensional case.

Definition 1. Let n be a positive integer. We define,

F(n, 2n)=＼(a
*W(≫)|a*

= ≪f=O mod. 2n＼

The following lemma is an easy consequence of the definition(cf.Igusa [3]).

Lemma 1. (0) Fin, 2n) is a congruence subgroup of SL(2, Z).

(1)

(2)

r(n, 2n)=＼(a

1＼c d)
er(n)＼ac= bd=O mod. 2n

If n is an even integer, then

F(n, 2n)=-
＼c d

＼er(n)＼b
= c = O mod. 2}

( 3) If n is an odd integer, then

I＼n, 2≪)= /＼≫)nr(l,2).

We continue to investigate the group Fin, 2n).

Lemma 2. (1) (Igusa [3]) Assume that n is an even integer. Then,

(a) Fin, In) is a normal subgroup of F{n),

(b) r(n)/F(n, 2n)~(Z/2Z)@(Z/2Z), and thisisomorphism is induced by

Iz+nl ,)i―>(b mod. 2, c mod. 2),
＼c d

(c) [/'(I): Fin, 2≪)] =

24

P2

)

{if ≫= 2)

{if n^A),

where p＼n means that p runs over all prime numbers dividing n.

(2) Assume that n is an odd integer. Then,

(a) I＼n, 2n) is a normal subgroup of f(l, 2), but it is not a normal subgroup

of r(n),

(b) r(n, 2n) = r(2n)+I＼2n)(l . ), where the right hand side of the equa-

lity means the coset decomposition of F(n, 2n) mod. I＼2n),

(c) [/'(I): r(n, 2n)]=-

f#-?)

{if ≫=1)

(if n^3).
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Proof. (1) Ail of them are the special cases of results in Igusa's paper [3].

(2) (a) Since F(n, 2≫)= /＼w)nr(l>2)> Fin, 2n) is a normal subgroup of/'(I,2).

It can easily be verified that

to f(n, 'In)but that

/I n

VO 1

/I n

lo i

K＼ ―n n

―n 1+n

] belongs to F(n) and that

KoD
1
_
/i ― n ― n%

＼ ―n

fl ―n n

＼ ~n 1 + n

t+n+riy

]belongs

does not belongs to F(n, 2n), so F(n, 2ri) is not a. normal subgroup of P(n).

i ). Then―n ＼.-＼-nj

we see that the coset decomposition of G mod. T＼2n) is given by G ―r(2n)+r(2n)

( . I and that the inclusion relations r(n)^[＼n, 2ri)Z)G=£r(2n) holds. Since
＼ ―n ＼+n)

＼_r{n): /7(2≪)]= 6, we have r(≫, 2≫)=G.

(c) It is clear that [f(w, 2≪): r(2≪)]=2. Combining this equality with the

known formula:

6

era): r(≫)]=Uw.n/1_i＼

2 v＼n＼ P2/

we obtain our formula.

{if n = 2)

(if ≫^3)

The following proposition is the main purpose in this section.

Q.E.D.

Proposition 3. (1) Let n be an even integer. Then R(F{n, 2n)) has no elliptic

point. The number of cusps on R(F(n, 2n)) is equal to 6 if n = 2, and is equal to

r>＼nK) if n^4. The genus of R(f(n, 2n)) is given by the following formula:

0 (if≫= 2)

gVXn,2n))= 1 + ln,(w_3) f^ 1 ＼ {if ^4)
6 p＼n＼P I

(2) Let n be an odd integer. Then R{T{n, 2ri)) has no ellipticpoint if ≪^3,

and has exactly one ellipticpoint, whose order is two, if n ―1. In the case of'n = l,

R(r(l, 2)) has exactly tivo cusps which are represented by oo and 1. In the case of

n^3, R{T{n, 2≫))has ―n2＼＼
V＼nB) cusps lying over 717-a,2)(°°)and Krv.v (1) re-

spectively. Hence the number of the cusps on R(F(n, 2n)) is equal to n2＼＼

The genus of RiFin, 2ri))is given by the following formula:

0

{/(/'(≫, 2≪))= 1 + 1

8
n＼n ―4) f]

p＼n
(if n^S)

(* h)
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Proof. (1) Since F(n) (w^2) has no ellipticelement, F(n, 2n) has no elliptic

element. Since [T(l)oo: F(n, 2n)oa]= 2n! the number of cusps on R{T＼n, 2m)) is

equal to [/'(I): F(n, 2n)]/2n. Our formula comes from the genus formula of Rie-

mann surfaces associated with modular groups (cf.G. Shimura [10] Proposition 1.40).

(2) Since R(F(2)) is a covering Riemann surface of genus 0 over R(F(1,2)),

R(F(1,2)) is of senus 0. Suppose that R(F(1,2)) has an ellipticpoint of order 3.

Then T(l,2) must have an element
la b

＼c d
whose trace is 1 or ―1. On the other

hand, ab=cd=O mod. 2. These contradict to ad―bc = l, so i?(T(l,2)) has no elliptic

point of order 3. By the similar argument, we see that oo and 1 on H* are not

r(l, 2)―equivalent. Let ^ be the number of the cusps on R(F(1, 2)),and v% the

number of ellipticpoints of order 3. Then we have v^2 and v2i?l. On the other

hand, by the genus formula, we get the equation 0 = 1+3/12―^2/4--v0O/12. There-

fore we have voa=2 and v2= l.

Next, we shall calculate the number of cusps on R(F(n, 2n)) in the case of w^3.

We put,

i4r)= the number of cusps on R(F(n. 2n)) lying over nrm,^ (°°)

= [f(l,2): r(n, 2≪)]/[f(l,2)m: f (≪,2≪)00],

v^==the number of cusps on R(F(n, 2ri))lying over 7rrri.2->(1)

=rr(i,2):

Since Fin, 2^)^=

Let a=l
1

?)

F(n, 2≫)]/[r(l,2),: r(n, 2n){＼.

J /I 2nm＼

l＼0
1
) meZ＼ , we have v^°)= ―w2[]

Then o(l) = oo, so a(l＼n, 2n)i)a

By Lemma 2, for any odd integer n, we see that

or{n, 2n)a-1= a(r(2n)+r{2n)( / ))a-
＼―n 1+n/

= r(2n)+f(2n)(l nY

Hence {oT{n, 2n)o-1)l=
I(I n ＼

, and also

[r(l, 2＼ : r(n, 2n＼-＼= [(ctF(1, 2>-1)oo :

Therefore v£>=
2 P＼nH)

H)

= {or(n, 2w)<r1)0o.

{or{n, 2n)o-l)oo-]= n.

Finally, by the genus formula we get our formula.

O.E.D.
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§2. The answer to the firstproblem

Let R be a Riemann surface of genus g, and let P be a point on R. We saj

that a positive integer m is a gap at P, if there exists no rnerornorphic function

on R with a pole of order m at P and holomorphic at any other point. It is known

that for any P there are exactly g gaps and that except for finitelymany points

the gap sequence coincides with {1,2,･･-,g}. A point on R whose gap sequence

differsfrom {1,2, ---,gr}is called a Weierstrass point.

If the genus g is greater than or equal to two, then at least 2g+2 Weierstrass

points exist, the number of the Weierstrass points on R, say iv, satisfiesthe fol-

lowing inequalities:

2g+2^w^(g-l)g(g+l),

and w is equal to 2g+2 if and only if R is hyperelliptic.

The purpose in this section is to prove the following theorem. Our proof gose

in the same way as Peterson's proof for the principal congruence case [81.

n

Theorem 4. R(F(n, 2ri))is a non-hyperellipticRiemann surface for any integer

^4.

Before proving our theorem, we state some remarks. In the case of n^A,

there exists a Weierstrass points on R(r(n, 2n)) because their genera are greater

than two.

Definition 2. Let R be a Riemann surface of genus g^2.

e= £/?:R―^{0,1} is denned bv the following:

0

1

if P is not a Weierstrass point

if P is a Weierstrass point.

Let G be an automorphism group of R, and let R―≫R' = G＼Rbe the canonical

covering map. Then there exists a function i=&R,G'. R'―^{0,1} such that the

following diagram is commute:

k ― 7Tra,2) >

R R'

A
＼

l

'

l

Proof of Theorem 4. The first,we assume that n is an odd integer. We out.

≪=≪(≪) = [T(1,2): r(n, 2≫)] = RiH)-
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v^ = v^＼n)―the number of cusps on R(J＼n, 2n)) lying over tt(oo)

y^)= v2)(≫)= the number of cusps on R(F(n, 2ri))lying over tt(1),

4 2>|n＼ P" I

By Proposition 3, we have v£)(n)= v£Xn)= v(ri). Since F(n, 2n) is a normal sub-

group of r(l,2), we have

#(r(l,2) = (f(l,2)/r(≪, 2n))＼R(!＼n,2n)).

Futhermore, we put

£― £iJ(/Vra,2m)) >

£―£iJ(r(n,2ra))>r(l,2)//'(n,2n)･

Then it is easy to show that the number of the Weierstrass points on R(F(n, 2n))

is given by

e(7r(V-r))-~+£(^(oo)>+l(7r(l)>+ Z' e(F)/i
Z p

(1)

where 2' nieans that P runs over all points on R(f(l,2)) except for n(l), tt(oo)and
p

and 7t{s/―l). Suppose that R{r(n, In)) is hyperelliptic. Then (1) is equal to 2g(F

(n, 2n))+2. Therefore

8 = y(≪)･(nx+2y +2z+2nw+4-n) (2)

must have an integral solution on x, y, z and w. But 1/11(1―^)^C(2) where
V＼n＼ P )

C(s)is Riemann's zeta function. Hence v(n)^n2/2C,(2)= 3n2/n2. Hence, in the case

of n^7, we have v(n)>8. In the case of n = 5, we see that v(5)= 12. Therefore

y(≪)>8 for all our cases. This is a contradiction.

Next, let n be an even integer, Our proof is similar to the firstcase. We put,

x ― xrw >

AI=Al(w) = [r(l):

v = v(n) = n2＼＼

p＼n

(l

r{n, 2w)] = 2≪s[]

V＼n

1

pi

)

£― £iJ(r(n,2?O) i

£=::£i?(r(w,2n)),r(i)/r(n,2n) ･

(l-1)

Then the number of the Weierstrass points on R(F(n, 2ri))is given by
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sWV-1")) ･ -f +≪Weto^ '3))･ f+iWoo)) ■v+ E'fiCP) ･ A* (3)

where 2]' means that P runs over all points on R(F(i)) except for 7r(oo),n{^/―1)
p

and n{e2"J-11*).Suppose that R{T＼n, 2n)) is hypereiliptic. Then

12=v(n) ･ (Znx+2ny+3z+6nw+3-~n) (4)

must have an integral solution on x, y, z and w. By the simular discussion to the

first proof, we have v(n)>12 if n^Q. In the case of n―A, since v(4)= 12, 2 = 12x

+8y+32+24w must have an integral solution on x, y z and w. But itis impossible.

In any case,(4) has no integral solution. This is a contradiction. Q.E.D.

Corollary 5. On i?(/'(4,8)),its cusps coincide with its Weierstrass points,and

the gap sequence at any Weierstrass points is {1,2,5}.

Proof. By the formula (3) in the proof of Theorem 4, the number of the

Weierstrass points on R(F(A, 8)) is given by

4(12e(7r(V3!)) + 8e(7r(e2*^~T/3))+ 3e(7r(oo))+ 242 'e(P)).
p

Since the genus of i?(/'(4,8)) is 3, the number of the Weierstrass points is at most

24. Therefore £(tt(oo))is 1 and e(P) is 0 for any other point P. Since the number

of the Weierstrass points is 12, all gap sequences are {1,2,5}. Q.E.D.

§3. The answer to the second problem

The main purpose in this section is to prove the following theorem.

Theorem 6. Let n be an even integergrater than or equal to 4. Then any

cusp of R(T(n, 2m))is a Weierstrasspoint. Furthermore the Weierstrasspoints

coincidewith the cuspsprovided thatn = A.

Before startingour proof,we statetwo lemmas without proofs.

Lemma 7. (Accola [1],Komiya [4]) Let R―>Rr be an abelian covering of

Riemann surfaces of type (p, p) where p is a prime integer, and let R and R' have

the genera g and g' respectively,and the genera of all intermediate Riemann sur-

faces between R and R' be glf･･',gp^. Then we have the following formula:

TtQi=g+pQf ･

Lemma 8. (Schoeneberg [9]) Let R be a Riemann surface of genus g^2, and

a be an automorphism of order n. Suppose that P is a fixed point of a on R, and
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that the gap sequence at P is ＼nx,■■･>n0}.Then the genus of (o)＼R coincides with

the cardinality of the set

{j＼nj= O mod. n Ki<g}.

Here (a} means the automorphism group of R generated by a.

Proof of Theorem 6. In the case of ≫=4, the statement of the theorem was

already proven by Corollary 5. So, from now on, we assume that n is an even

integer grater than 4. Since each element of r(l)/F(n, 2ri)induces a permutation

on the set of all cusps on R(I＼n, 2n)) and the group of these permutations is transi-

tive, it sufficesto prove that some cusp is a Weierstrass point. By Lemma 2, we

see that RiFin, 2n))―>R(F(n)) is an abelin covering of type (2,2). We put,

/I n＼

"1=lo i

02=1 -,) ,
＼n 1/

<73 =

c ― n n ＼

― n 1+n/

Hi=I＼n, 2m) + /'(≫,2n)oi (f=1, 2, 3)

Then we see the following diagram and relations:

of R(r(n,

r(n)/F(n

2m)) over R{r{n))

Hjrin, 2n

I

＼

Hi/Tin, 2n) Hs/T(n, 2≫)

{1}

d 1M11)^
Hence R(Ht) (*= 1,2,3) have the same

G

/

iMo i) =H%

genus as one another,say gr. By Lemma

7, we get the equation 3g'=g(F(n, 2n))+2g(r(n)), so

"/=14 n＼n-A)＼＼(l~)

P＼n＼ PI

Furthermore, we see that the automorphism a% mod. Fin, In) is of order 2 and

that it has a fixed point which is a cusp. Therefore, by Lemma 8, it sufficesto
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show that the inequality

g{[＼n, 2≫))-V =
4≫*n(l―L)"1^2

O :p＼n＼ P I

holds. It Is clear that the above inequality holds if n^6. Finally,

2g(F(n, 2n))+2―(the number of the cusps on R(I＼n, 2ri)))

= 4+-U≪(n-6)n(l-i)>0

J p＼n＼ P I

under the condition ≪^6. This implies that there exists a Weierstrass point which

is not a cusp under the condition n^6. Q.E.D.

Finally we shall state two remarks. The firstremark is a counter-example

against the conclusion of Theorem 6 for an odd integer case,and the second remark

concerns itselfwith Komiya and Kuribayashi's result.

Remark 1. If n is an odd integer, then the conclusion of Theorem 6 is not

always true. In fact, we saw that a ―
c ― n n ＼

― n 1+nJ
acts on R(F(2rij) as an auto-

morphism of order 2 having a fixed point 7rrc2n)(l)and that R{F{n, 2n))= (a}＼R(r

(2ri)). On the other hand, the gap sequence at 7rrao)(l)cm ^(^(10)) is

{1,2,･･■,8,9,11,13,17,19} (Lewittes [7]).

Hence the gap sequence at 7ztc5,io)(1)on i?(r(5,10))is

{1,2,3,4}.

Therefore nrczi<≫(l)is not a Weierstrass point, but it is a cusp.

Remark 2. Recently, A. Kuribayashi and K. Komiya discovered that there

are exactly two Riemann surfaces up to isomorphism which are of genus 3 having

exactly 12 Weierstrass points [5]. Our R{F(A, 8)) is of genus 3 and has exactly 12

Weierstrass points. It coincides with

Z4+F4+Z4 = 0 in P2 (#)

in their paper (cf.Igusa [3]).

On the other hand, we see that T(4,8) acts on infixed point free. Furthermore,

we saw that the cusps of i?(T(4,8)) coincides with the Weierstrass points and that

r(4, 8) is a normal subgroup of T(l). Therefore the automorphism group of the

curve (#) is isomorphic to f＼l)/f(4,8).
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