
TSUKUBA J. MATH.

Vol. 8 No. 1 (1984). 31-54

ISOMETRIC IMMERSIONS OF LORENTZ SPACE

WITH PARALLEL SECOND FUNDAMENTAL FORMS

By

Martin A. Magid

Introduction

In a series of papers, [Fl], [F2], [F3], [F4], D. Ferus classified submanifolds

of euclidean space with parallelsecond fundamental forms. These submanifolds

form an important class of examples. In [F4], Ferus shows that they appear in

many topics in differentialgeometry.

There has been much recent work on parallelsubmanifolds of other ambient

spaces―notably the work of H. Naitoh, [Nal]-[Na4] and M. Takeuchi [T]. An

interesting problem is to classify the parallel submanifolds of euclidean spaces

equipped with indefinite metrics.

This paper studies specialclassesof parallelsubmanifolds in /2f, Lorentz space

of signature (1, m―1) and in Rf, euclidean space of signature (2,m―2). All

umbilical submanifolds are classified,as well as isometric immersions Rn -> R"+k,

R" ->-J??+2and jR? -≫J?2"+2with parallelsecond fundamental forms. These theorems

indicate some of the modifications which will be necessary in order to obtain a

complete classification.

The preliminary section(0) gives some basic results about indefinite Riemannian

geometry. These include an indefinite version of the result of Allendoerfer and

Erbacher for reducing the codimension of an isometric immersion with parallel

second fundamental form (F*a = 0), and an improved version of Petrov's canonical

forms for symmetric transformations of Lorentz space.

Section 1 classifiesisometric immersions R＼->R＼,R＼-+R＼and. Rn-+R"+Ic with

F*a~Q. These maps include a flat ^-dimensional umbilic with lightlike mean

curvature vector (1.4) and the complex circleof radius k£C (1.12).

Section 2 contains the main classificationresults. These state that isometric

immersions R"-*RlHZ and /2f->/2 +2 with F*a―0 are either quadratic in nature,

like the flatumbilical immersion with lightlike mean curvature vector, or the

product of the identity map and previously determined low dimensional maps.

Most of the results in this paper are taken from the author's Brown University
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doctoral dissertation. The author gratefully acknowledges Professor Katsumi

Nomizu's constant encouragement and patience.

Notation and Terminology

Rfj denotes the ^-dimensional affine space with the metric ( , ) whose canon-

ical form is

-h

Ip-i-j

o,

where Ik is the kxk identity matrix and Oj is the jxj O matrix. The metric is

non-degenerate iff i = 0, in which case we write Rf.

In general, if M is a /^-dimensional manifold whose tangent spaces have a

metric of signature (i,p―i―j,f) we write Mf4,

The indefinite sphere, hyperbolic space and lightcone are defined as follows:

S?-1(r)= {a;e/2f: (x,x) = r2}, r>0

Hf:1＼r)={xeRf: O, x)= -r2}, r<0

LCff^ixeRf: (x,x)=Q and xi-0)

The isometric immersions

t -≫(a cos (//≪),a sin (£/#))

* -> (h sinh (*/&), & cosh (tlb))

t -> (6 cosh (f/&), 6 sinh (#/*))

are called circle maps. The first maps onto SlczR2 or H＼dRl, the second onto

S{cR2i and the third onto Hlc:R＼. The circle maps, along with the map

are called one-dimensional maps.

A vector X in an indefinite inner product space is called spacelike if (X,X)>0,

timelike if (X,X)<0 and null or lightlike if (X,X)=O, where ( , ) is the inner

product. A curve is called spacelike, timelike, or null depending on the character

of its tangent vectors.

A basis Xh ･■-, Xn of an indefinite inner product space with the signature

(p, n―p) is called orthonormal if the vectors are pairwise orthogonal, the first p

are unit timelike and the last n―p are unit spacelike. If the signature is (1, n―1),

so that the inner product space is Lorentz, we can define a pseudo-orthonormal

basis {/,/,Xu ■■-,Xn-i}. In such a basis (/,/)=()=(/, /)= (/,Xt)=(/, Xt＼ (I,!)= l and

(Xi,Xj)=dij, l<z", j<,n~2. A a over a vector will always have inner product 1
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with the hatless vector.

We recall the following notation from [K-N], vol.II,ch. 7. If /: (M, g)->(M, g)

is an isometric immersion of one indefinite Riemannian manifold into another, and

if the Riemannian connections are denoted by F and F, then for vector fields X

and Y on M we have the following decomposition,

I. Vxf*Y=f*VxY+a{X,Y).

Here/*FAY is the tangential component and a{X,Y) is the normal component.

a is called the second fundamental form of /. For a normal fieldf to M we have

II. PxS^-f+AtX+Vg.

At is called the shape operator associated to £and F1 is called the normal con-

nection. A and a are related by the equation

g(A(X,Y) = g(a(X,Y),e.

a is said to be parallelif

(FtaYX, Y): = Fha(X, Y)-a(FzX, Y)-a(X, FZY) = O.

0. Preliminaries

Defining the mean curvature vector rjas in the Riemannian case, we have

the following.

0.1 Proposition, If /: M-+M is an isometric immersion of one indefinite

Riemannian manifold into another with parallelsecond fundamental form, then

(i) the mean curvature vector is parallel: F£=Q.

(ii) the firstnormal spaces N^x), xsM are P-parallel.

Nl(x) := {N＼x)}1 where N°(x)= {£eN(x): ^=0}.

The next theorem is about isometric immersions with parallel first normal

spaces and so can be applied toimmersions with parallelsecond fundamental forms.

0.2 Theorem (Indefinite version of a theorem of Allendoerfer and Erbacher).

Let /: M" -*･Rf be an isometric immersion of an indefinite Riemannian manifold

with signature (i,n―i)into R . If the firstnormal spaces are parallel,then there

exists a complete n+k dimensional totallygeodesic submanifold M* of Rf (where

n = $imM and k = A＼mNl) such that /(M)cAf*.

Note: M* = R's,t*for some s, / and ^ need not be zero. The proof of the

theorem shows that t measures the degenerate part of N＼
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Proof. The assumption means that for any curve z from x to y the parallel

displacement of normal vectors along r with respect to the normal connection

maps Nl(x) onto Nl{y). Thus the dimension of Nl is a constant, say k. If £is

a normal vector field such that feiV(x) for each x in M, then F^eN^x) for all

X in TX{M). Since F1 is a metric connection, the subspaces N°(x) are also parallel

relative to the normal connection. In fact £gN＼ 0&N° implies 0 = X($, 6) = (V^, 0)

+ (£>VxO)- Since the first term is zero, so is the second.

Let x0 be a point of M and consider the n + k dimensional subspace E of jR

through f(x0) which is perpendicular to N°(x0). E― TX(S(M) 0 Nl(x0). The degenerate

part of E is N°(xo)r＼Ni(xo). It will be shown that f(M)czE. Let xt be any curve

in M starting at x0. For any f0 in Na(xo) let & be the result of P-parallel dis-

placement of £<>along ^/..so that $t^N0(x,). For the euclidean connection we have

which means that gtis parallelin Rf and so is a constant vector. Now we have

―(/(■Xd-A-Vo), £,)= (/*(*,.), fo)

= 0

so that f(xt) liesin E. Since xt is an arbitrary curve in M, f{M)cE.

Next is an indefinite version of Moore's lemma [Mo 1] which gives a condition

that allows an isometric immersion of a product manifold to be decomposed into

a product of immersions.

0.3 Theorem. Let M be an indefinite Riemannian product M,xM2. If /: M-≫

R] is an isometric immersion with a(X, F) = 0 whenever XsTx(Mi) and YsTx(M2)

then /=/iX/2: M1xM2->R"11xRj* and each /≫is an isometric immersion.

The decomposition theorems here involve the shape operators of Riemannian

manifolds. A shape operator of a Riemannian manifold is always diagonalizable,

but thisis not the case for a shape operator of a Lorentzian manifold. In order

to analyze the latter,a specialcase of Petrov's Principal axis theorem for a tensor

is needed ([P] pp. 50-55).

0.4 Theorem. Let V be a real ^-dimensional vector space equipped with a

Lorentzian metric and let A be linear transformation of V which is symmetric

with respect to this metric. Then A can be put into one of the followingfour

forms with respect to bases whose inner products are given by G.
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These will be referred to as the case where there: are simple real eigenvalues,

is a non-simple eigenvalue of multiplicity2, is a non-simple eigenvalue of multi-

plicity3 or is a complex eigenvalue. The first and fourth cases will be said to

have simple eigenvalues.

This is a slightly sharper version of the theorem in [P]. Theorem 2, p. 229

[Mai] allows us to use an orthonormal basis in the case of a complex eigenvalue

instead of the more complicated basis which Petrov employs.

The following proposition can be proved using 0.4. Another proof can be

found in [Mo 21

0.5 Proposition. Let M(c) and M(c) denote space forms of constant curvature

c and c. Suppose

(i) MS(c) is isometrically immersed in M"+1(c)

or (ii) M&c) is isometrically immersed in M'1+＼c)

or (iii) M['(c)is isometrically immersed in M"+1(c).

If c^c and n>2 then the immersion is umbilical and in case (i) c>c, in case

(ii)c<c and in case (iii)c>c.

It is necessary to know what form a Lorentzian symmetric matrix takes if it
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commutes with one of the four standard Lorentziansymmetric matrices.

0.6 Proposition. Let A and B be square matrices which are symmetric with

respect to a Lorentzian inner product. If, with respect to a pseudo-orthonormal

basis.

'1 1

0 2

and B commutes with A then

/I b

0 ft

: ci

0

r>
c*.

?J
lco

*i4

0

dh

lJks

dlj

where drtiis krxkr.

0.7 Proposition. Let A and B be square matrices which are symmetric with

respect to a Lorentzian inner product. If, with respect to a pseudo-orthonormal

basis,

A=

2 0 1

0 2 0

0 1 X

and B commutes with A, then

M*

hhi

^≫-4s
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where d＼jis krxkr.

0.8 Proposition. Let A and B be square matrices which are symmetric with

respect to a Lorentzian inner product. If, with respect to an orthonomal basis

a 0

-P a

and B commutes with A then

r

s

0

r

≪4>

d＼j

M*

Q>ij /

/3^0

where drtjis krxkr.

Propositions 0.6, 0.7 and 0.8 can be obtained by letting B have the form of

a general symmetric matrix and setting AB and BA equal.

0.9 Partially umbilical immersions. If /: M]-≫R is an isometric immersion

and there is a globally denned normal vector field0 such that

(i) 6 is everywhere non-zero

(ii) P0=O

(iii) A,=Xld J=5fcO

then f(M'j) is contained inside

c≫-./V(M)＼ if (0,6)>0,
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H£-A=?tz&£) if (0,0)<O and

LC£[＼ if (O,0)= O.

0.10 Corollary. If 0 in 0.9 Is the mean curvature vector, then f(M") is

immersed minimally in S ~*or H sxl.(Such an immersion is called pseudo-

umbilicalby Chen and Yano [Y-C].)

Proofs. Note firstthat the vector f(x) + 0/X is constant for allx in M. Denoting

this vector bv c we have

(f(x)-ctf(x)-c) = W,Oll) =
{6,0)

r-

Because 8 is parallelthis is a constant, and so f{x) is contained in the sphere,

hyperbolic space or lightcone with center c.

Moreover, if 0 is the mean curvature vector of f(M") in R , then 0 is parallel

to the position vector f{x) ―c and so f(M") is minimal in either S "1 or H^l[＼

Here ^0 implies (6,6)^-0. Q. E. D.

1. Isometric Immersions with Parallel Second Fundamental Forms: Rn^R"+k,

The classificationof these isometric immersions will follow from some general

facts about submanifolds with F*a=0 and global, parallelnormal fields.

The firststep is to classifyone-dimensional submanifolds with parallelsecond

fundamental forms. Thus, the firstproposition deals with non-null curves which

have parallel mean curvature vector.

1.1 Proposition. Let x(s) be a non-null curve in an indefinite euclidean space

RJ with parallelmean curvature vector -q.

(i) If 7]―Qthen x(s)is a line segment.

(ii) If (y],yj)^Othen x(s) is part of a circle map.

(iii) If (77,r/)=Q and ^0 then a?(s)is a curve in R20ylor /2fa of the form sl->

(s,as2+6s + c). The firstmap is denoted by U＼ the second by t//.

In case (iii)the metric vanishes on the second coordinate. R2jA is imbedded

in R3J+1by sending (x＼x2)*-*(x2,x＼ x2).

Proof. Let x(s) be a curve in Rf with s its arc-length parameter and X(s)=

dx{s)jds―'.x(s) its unit tangent vector. If D denotes the flatconnection in Rf we

see that DsX(s) is normal to x(s) and so DsX(s)=a(X(s), X(s)). The mean curvature



Isometric Immersions of Lorentz Space 39

vector 7j{s)= (X(s),X(s))a(X(s)),X(s)). Because r/s) is parallel (r/s), y/s))= &, a con-

stant. If 57=0 then DsX(s) = 0 and x(s) is a line segment.

If k=£0 set Y(s) = Y/(s)lV＼k＼,so that Y(s) is a unit vector normal to x(s). X(s)

and Y(s) form an orthonormai frame along x(s) such that

DsX(s)=V＼k＼(X(s),X(s))Y(s)

and a(X(s), X(s))

･(
dxm)

DtY(s) =

53hp

dx%dx'dxk

/?

X(s)

=((^o/)*^'(^o/)*

5

3^

)

Q. E. D.

Vl*|

(ii)follows by 0.2 and inspection.

Now suppose (y],r])―0 and jy^O. By 0.2 x(s)cR2OA or R＼A, depending on the

length of X(s). Since x(s)is an immersed submanifold

ar(s)= (s,0(s))or (0(s),s),

where the metric vanishes on the second coordinate. Thus

i(s) = (l,<&') or (f//,l)

= (0, <j>")or (0, 0). The second possibility is totally geodesic. Since

Fta(X(s),X(s))=O

ft"=0 and 0(s)=as2 + bs + c. Q. E. D.

One way to obtain submanifolds of an indefinite inner product space with

parallel second fundamental forms is to consider umbilical immersions. We will

find,besides the sphere and hyperbolic space, a third type of umbilical immersion,

and from these a complete classificationof umbilical immersions.

1.2 Lemma. Suppose/: Mf->R}+k+* is an isometric immersion. If p: Rnj+k+s-

Rrj+kis projection onto the firstn+k coordinates then pof: Mf -> R]+Ic is an iso-

metric immersion.

Proof. Choose x0 in M and let U be a coordinate neighborhood of x0 with co-

ordinates (a?1, ･ ･ ･, xn). Let /(a?1, ･ ･ ･, xn) = (fl, ･■･,fn+k, h＼ ･ --,hs), where the metric

vanishes in the last s coordinates. Clearlv

-V*~w'f*dx≫
)

1.3 Lemma. Let/: M?-+R?+,m+s bean isometric immersion with parallelsecond

fundamental form. If f(x＼■･･,xn) = (f＼･･･,fn+m, h＼---,hs) locally,then

dzhv

~2jM-1 Jidxudx* ^v
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Proof. If / has parallelsecond fundamental form then

Pka(X, Y) = a(PzX, Y) + a(X, VZY) .

If p is projection onto the last s coordinates then

Vbp°a{X, Y)=poa{rzX, Y)+poa(X, FZY).

Replacing X, Y, Z by djdxJ, d＼dxl＼djdx'1yields the lemma, since, as is well

I/nmun

d2f

dxjdxk =*W.(lj|r)
/ d ＼ (

V dxk/ ＼

3

d

0XJ OX

)

Q. E. D.

1.4 Theorem. Let /: M"k -~+Rf be a complete umbilical immersion. Assume the

mean curvature vector ry^-O, so that / is not totally geodesic.

(i) If (v, r})>0 then /(M)cS£ci?£+1

(ii) If (v,v)<0 then f(M)czHZ(zRKl

(iii) If (37,57)^0 then M=Rl and f(M)(zRl;il as an umbilic.

In this last case f(x＼ ･■･xn) = (x1, ■■-,xn,a(-ZU ^2+S"=*+i xl*)+ b,z1+ ■■･ +

bnxn+c) and Rtf1 is imbedded in RnkH by (?/',-･ -,^M)i->(yra+1,y＼---,vn,yn+l).

Both affine spaces have the standard metric. Denote this submanifold by US.

Proof. If (r?,rj)i=Othen by 0.2 there is an Rl+1 or RUl into which Ml is iso-

metrically immersed, depending on the sign of (30,yj). This mapping is umbilical

and by 0.10 the image is contained in a sphere or hyperbolic space.

If (t),7})=Qthe image of Ml is in R^＼ By 1.2 /: Ml -*Rnk is an isometric

immersion so that Ml~Rl.

1.3 allows 11s to determine all /zsuch that

f(x＼ ･ --,xn) = (x＼ ■･ -, xn,h{x＼ ■--,xn))

As in 1.3 we have

-(
d

dx1

･(
dx')
= (O,---,O,A,y).

a£r

)
≫=<°.-■･.≫.*,).

dx
i ≫

In addition, because / is umbilical,

dxJ ) ＼dxi

It follows easily that h is of the desired form. Q. E. D.

The classificationof umbilical immersions allows us, following Walden [Wa],

to determine Riemannian immersions with parallelsecond fundamental forms and

trivialnormal connections in an indefinite euclidean space. Later this will allow
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us to classifyisometric immersions Rn->R"rk with parallel second fundamental

forms.

1.5 Theorem. If /: Mra->i2"f& is an isometric immersion of a complete

Riemannian manifold with parallel second fundamental form and trivial normal

connection, then / is a product of umbilical immersions.

f(Mn)=Rl° x C/'1X ■･■X £/'*X S ix ･･ ･ X Sm≫ X //*' X ･■･ X Hn*

Here UlPCiRl1p'i2 as an umbilic p―＼, "-,x

Sm≪cRm≪n as an umbilic # = 1, -―,y

Hnr(zR"r*1 as an umbilic r=l, -―,z

and R^±R＼p+2±Rm<i+1±R?r+＼ Note k=2x + y + z and j = x + z.

Proof. [Wa].

We now prove some lemmas.

1.6 Lemma. Let/: R7} ―>J? be an isometric immersion with parallel second

fundamental form. If (x＼ -■･,xn)is a global coordinate system with Fa.dj=O,i,j=

1,･･･,n, then a(dt,dj) is a global parallel normal field.

Proof. This is an easy consequence of the definitionof F*a=0.

1.7 Lemma. Let/: Mj-+R£ be an isometric immersion. If a global normal

field d is parallel with respect to the normal connection, then Ag commutes with

As for all normal vectors B.

Proof. Since R1(X,Y)6 = FjtF^d-~F^F}t0-Fl1x,Y1e=0,this result follows from

Codazzi's equation and the non-degeneracy of the metric on M.

1.8 Proposition. If/: Rn-^R^k is an isometric immersion with parallelsecond

fundamental form, then it has trivialnormal connection, i.e.,i?i=0.

Proof. It must be shown that, for any two normal vectors f and 6, A^ and Ao

commute. By 1.6 and 1.7, if j is in the firstnormal space N＼x) then Ar com-

mutes with every other shape operator. On the other hand, if p£N°(x)then Ap =

0 and Ap commutes with every shape operator.

If the metric restricted to the first normal space is non-degenerate this is

sufficientbecause the normal space equals N°(x)0 Nl(x).

If the metric restricted to N＼x) is degenerate then N°(x)+N1(x) is not the

entire normal space. In this case there is a unique lightlike direction d in N＼x)

CiNHx). Choosing a lightlike d with (d,S)= l we see that N°(x),N＼x) and 8 span
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the normal space. Since At commutes with itselfit is clear that all shape opera-

tors commute. Q. E. D.

1.8 allows us, in conjunction with 1.5, to classifyisometric immersions of Rn

infn J?'Hfcwith nnrallpisprnnH ftmrlampnfsi fnrmc

1.9 Theorem. If/: Rn->R?+k is an Isometric immersion with parallel second

fundamental form, then / has one of the following forms:

(i) / is a product of circle maps and a totallygeodesic map.

/=s,x ･■■xsjxld: R'x--- xRixRn-J-+S1x ■■■xS'x/T-'c/Jr*

or f=hxsix---xsjxld: RlxR'X ■･･xRlxRn~j~l

-+ FP xSl x ･･■x S1x Rn-J-lr. R?+k .

(ii) / is a product of a flatumbilical map, circle maps, and a totallygeodesic

f=uxslx---xsjxld: RmxRlx---xRxxRn-m-j

-> Um x S1x ･･･ xSl x /2B-m >c/2f+*

≪is one of the flat umbilical immersions of Theorem 1.4.

1.10 Example. Let /: R2^R'i2 be the isometric immersion (x, y)＼->(x,y, xy,

x2―yz/2) with metrics (+ , +) and ( + , +,0,0). The associated mapping into R＼,

where Rl,2~~>Rtby {y＼y2,y*,yi)＼->(y＼yi,y＼y'i,y＼yi)neither has trivial normal

connection nor splitsinto a product of umbilics. This shows that in 1.8 and 1.9

the rprpivincrsnnrp must Kp nf Ip^cf T nrpnt?

1.11 Lemma. If d is a global parallel normal vector field associated to an

isometric immersion of R" with parallel second fundamental form then Ae has

constant entries with respect to a flat coordinate system on R?.

Proof. Let {x＼ ･ ･ -,xn} be a global coordinate system such that Fd.dj=0, l<f,i<w.

Since the immersion has F*a = 0

Q = A9(Ftid,)= Pai(A9dJ)= F3t(alidl+' ■■+anjdn) = {dialj)dl+ ･ ･■+(dianJ)dn .

Therefore, diakj = Q for all i, j, k. Q. E. D.

In order to classify isometric immersions with F*≪=0 from Rf to R?+2 or R"+'

it is necessary to determine those from R＼ to R＼ or R＼. For this we need some

ovomnioc

1.12 Example. Complex circle of radius k. Fix a non-zero number c + id=n in

C and let a+ib = K~＼ C2 can be identified with R＼ by sending (x+iy,u + iv) to
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(x,u,y,v). The metric on R＼is ({x,u,y,v),(x,u,y,v)) = x2-＼-n2―yz―v2. The map-

ping {x,y)~~x+ iy = z＼ > k(cosz,sin z)gC2 is an isometric immersion of R＼into R＼

with parallel second fundamental form. Let / be the complex structure on R＼

which comes from multiplication by i on C1. Then there is a natural orthonormal

basis ＼Tc.£＼for the normal st>ace such that

a]
and AjS =

＼

L a
"1

The mean curvature vector y=al;-＼-bJt;and Act-nue――h. By 0.9, f'(Rf) is con-

tained in SH^c^cF) or HK-V'^TcF) or LC;＼.

1.13 Example, f : R＼-+R＼ where R＼ has the standard metric.

V 2f'(x, y)―((l+c)siny, (l+c)cosy, (l-c)s'my, (I―c) cosy)

+ (x + cy)(―cos y,sin y,cos y, ―siny), cgR .

This mapping has, with respect to a pseudo-orthonormal basis for the normal

space {37,77},where v is the mean curvature vector, shape operators

m; a - 4; a

The basis for T{Rf) is {d/dx.d/dy}. Since 4*_c,= /2,f'(R＼)is contained in S23(V-2c)

or Hi( ―V2c) or LCV The shape operators associated to the immersions into the

sphere or hyperbolic space have non-simple real eigenvalues and non-zero trace.

Thus by the fundamental theorem of surfaces they are the unique immersions

with these shaoe ooerators.

1.14 Example. 5-scroll over the null cubic C in R＼([G 1]). In R＼ take a null

curve x(v) with a null frame, that is, a set of vector fieldsA(v), B{v), C(v) such

that t(v)= A(v), (A,A) = (B,B) = (A,Q = (B,Q = O and (A,B) = (C,Q = 1. If these

satisfy the following system of equations

A＼v)= ki{v)A(v)+ k2(v)C(v)

B(v)= k1(v)B(v)

C(v)=-ki(v)B(v)

then fr(u,v)―x(v)-ruB(v) is a Lorentz surface in Rl called a Z?-scrollover x(v).

If ^!=0and^2^l then y4= 0 and the curve is called the null cubic C. ([B],p. 240).

In this case we have the 5-scroll over the null cubic C.

1.14' Example. ^'-scrollover the null cubic C in R＼. This is the same as

1.14. with obvious modifications.
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1.15 Theorem. If /: R＼-> R＼ is an isometric immersion with parallel second

fundamental form then, up to a rigid motion, / has one of the following forms.

(i) /is totallygeodesic

(ii) / is a product of one-dimensional maps

(iii) /: R＼--+K＼clR＼is a 5-scroll over the null cubic C.

Note: In case (iii)the mean curvature vector is zero, even though the im

mersion is not totallygeodesic.

1.16 Lemma. If/: R)->R) or R)+l j = 0,1 Is an isometric immersion with par-

allelsecond fundamental form and the mean curvature vector ^=0 then the first

normal space has dimension less than two.

Proof of 1.16: Assume that the firstnormal space is two-dimensional and let

fi, f2 be an orthonormal basis of N{x). Using 0.4 put A$1 into the appropriate

canonical form. Thus

Since Ah commutes with

Lo
01 or
-a A

Ah it

Lo -b＼

IS

or

of

ro 11

Lo oj

the form

i-o 6-1

lo ol

A calculationof a on the basis of TX{M)

at most one-dimensional. Q. E. D.

r °
or
L-r

o /n

/3 oj

.

]

shows that the firstnormal spaces are

Proof of 1.15: There are two cases to consider 7?―0 and wi=Q.

Case I. 7/=0. By 1.16 the firstnormal space is zero or one-dimensional. If it

is zero-dimensional, then / is totallygeodesic. If it is one-dimensional, let f span

the first normal space. Then by 0.2 f{R＼)c.R＼and As has rank one and trace

zero, so

A

[G 1] shows that this is the 5-scrollover the null cubic.

Case II. rj-t-0.Put An into one of the three possible canonical forms. We will

see that Ar) can only be diagonal. Let r< be the unit vector in the direction of rt

and choose another unit normal vector ? such that fir;.
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then ^4?~ since An and At commute. But fx= 1/2 trace At

{/,/} is the pseudo-orthonormal basis with respect to which Av and

A( are represented, then the Gauss equation yields

o=(A,, /,i)(Av, I,i)-(Av, i,iy+iAi, ixaJ, i)-(A(i, iy

= ―(const. 2.Y.

This implies that /I―0, contradicting 37^0.

Similarly, if Av. =
＼ U

then At =
＼

L―b a＼ I

0 fl
. The Gauss equation gives a―

c 0

b ―c~O contradicting ry^O.

If Av is diagonalizable with distinct eigenvalues, then all other A( are diago-

nalizable and 0.3 shows that /: R＼->R＼ can be decomposed as

/,x/2: R[xR'-*R＼xR＼ or

R＼xR2 or

R＼xR＼

Each ft has parallel mean curvature vector, so by 1.1

fl(R＼)=S[;URi)=Ri or

/i(J*{)=SI;/I(J21)= S1 or

A(Ri)=R＼;A(Ri)=Si.

If An―ll% then there is a minimal immersion of R＼ into S^(c). The shape

operator A of this minimal immersion can, a priori,be one of the three types.

Once again, the Gauss equation shows that A must be diagonalizable. In this

finalcase the map splitsas above. Q. E. D.

1.17 Theorem. If /: R＼-*R＼ is an isometric immersion with parallel second

fundamental form, then, up to a rigid motion, / has one of the following forms.

(i) /is totally geodesic

(ii) / is a product of one-dimensional maps

(iii) / is a complex circle, as in 1.12

(iv) / is a Z?-scrQll over the null cubic, as in 1.14, 1.14'

(v) / is as in 1.13

(vi) /: R＼-+R＼AcR＼ where (x, y)＼-+{q(x,y), x, y, q(x, y)) and q(x, y) ―axi+bxy +

cy2+dx + ey + g. rjis lightlike.

Proof. The proof is divided into three cases: case I (■//,9)--£(),case II (rp rj)= O

and k^O, and case III n=0.



46 Martin A. Magid

Case I. {rj,>?)^0. Suppose firstthat ATlis diagonal. If the eigenvalues are

distinct then, as before, the map splitsinto a product of one-dimensional maps,

giving (ii). If the eigenvalues are equal, say to /, then R＼ immerses minimally

into S＼or H＼. By examining the Gauss equations, we see that the shape operator

A of this minimal immersion can only be of the form

'"[.-/! Oj

with respect to an orthonormal basis {e,f} with (/,/)=―1. If SI has constant

curvature c>0 then 0 = cr-[(-/32)/-l] = c-/S2. If H? has constant curvature e<0

then 0 = f + (-/32/-l) = c'+ /32. Both occur. In fact, in 1.12 let c = l/VT, d=0 if

2>0 and d=l/V'-/(, c = 0 if i<0. We have two maps: the given / and the /' in

1.12. We see that A,f = Ari/, Aj;f = A^r, {r]f,Vf)= {rlfl,rJf,),O^/M5?/-.3?/-) and 0 =

^ = ^ = 17^=^ so that we have a map /: Nf->Nfl, from the normal bundle

of / to the normal bundle of /', covering an isometry, which preserves bundle

metrics, bundle connections, and shape operators. By the uniqueness theorem for

immersions, there is a rigid motion from one image onto the other.

Av cannot have a non-simple real eigenvalue. If it did, the Gauss equation

would imply that (rj,-n)=0.

If Av =
r ≪ fii

L-(3 a]
then A^＼

This isometric immersion is also rigidly equivalent

Case II. (^,yj)=O and ^0. Assume that

― C _3 or (2)
[°o 1

0

o ri

-r oj

to a complex circle

]or (3)[_
0
/31

/3
Oj

where a=£Q and /3^=0. Trace A, = 0 because (yj,r?)= 0. Choosing 3y in the normal

space so that {^,^} forms a pseudo-orthonormal basis, and using the fact that

trace A*=2, we see that

+-" G,-J≪(2> E a≫*> l:
0

If (1) holds the map splitsand the possibilitieshave been classified.If (2) holds,

the isometric immersion is equivalent to 1.13. If case (3) holds y = 0 and the map

is equivalent to a complex circle.

We must also consider what happens if /!,= (). This implies that the first

normal space is one-dimensional and lightlike,so f{RX)C.K＼A. 1.3 shows that
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f(x, y) = (q(x, y), x, y, q(x, y))

and q{x, y) = axz + bxy + cx2+dx + ey + g.

Case III. rj―O. By 1.16 the first normal space is one-dimensional if the map

is not totally geodesic. Let 0 span the first normal space. If (0,0)^0 then f(Rf)

is contained in Rl or R＼ and A9 must have rank one and trace zero. Thus As =

ro in

. In this case the immersion is equivalent to 1.14 or 1.14'. If (0,0)―Q then

Ae = 0 and the map falls into (vi). Q. E. D.

For completeness we state the classification of isometric immersions from R2

to R* with parallel second fundamental form.

1.18 Theorem. If/: R^^-R* is an isometric immersion with parallel second

fundamental form, then / is either totally geodesic or a product of one-dimensional

maps.

2. The K-Dimensional Classification.

Here we classifyisometric immersions from R% into Rln'2or R"+2 with parallel

second fundamental forms. All such maps break into two classes. Immersions

in the first class are quadratic in nature, like the flat umbilical immersion with

lightlike mean curvature vector in 1.4. Immersions in the second class are pro-

ducts of the identity map and one of the two-dimensional immersions in 1.15, 1.17

or 1.18 or the B-D scrollimmersion of R＼into R＼ given below.

2.1 Example. B-D scroll over the null quintic Q. Consider a null curve x(v) in

R＼ with a frame A(v), B(y), C(v), D(v) and E{v) along x(v) such that x(v)= A(v),

A, B are lightlike, C unit timelike, D, E unit spacelike, C,D,E±A,B, (A,B) = 1

and C, D, E are mutually orthogonal. In addition, suppose A = bE, B=0, C――D,

t) C+E, and E=―bB―D. Note that the fifthderivative of A is zero, so that

x(v) is a quintic Q. Let f(u,v,w) ―x(v)+ uB(v) + wD(v). This is an isometric im-

mersion of Rl into R＼ with {3/3w,d/dv,ajdw) forming a pseudo-orthonormal basis of

R＼. If f=―w>jB(y)+ C(v) and fi = ―wB(v) + E(v) then {£,f1} form an orthonormal

basis of the normal space, Pf = 0 = F1^1

"0

A(= 0

.0

o r

0 o

1 0.

b 1"

0 0

1 0.

with respect to {djdu,d/dv,djdw}.

2.2 Lemivia. Let /: M? ->R]Tk be an isometric immersion with P*a=0 and a
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definite firstnormal space. If x^M and £is a parallelnormal fieldin a neigh-

borhood of xo such that A=xo has a complex eigenvalue, then / decomposes, in a

neighborhood of x0, as /,x/t: M^xM^-^R^xR'lf.

Proof. Let a(x)±ifi(x),Xx(x),*■･, Am(x) be the distinct eigenvalues of A^ at x.

First we show that h{x) is constant and that

T* = lXeTx(M): A(xX=hX}

is a parallel distributionon M".

Let XeT＼ ZzT{M). Then

O = FziAsX)-At(FzX)

= Vz(XX)-Ae(VzX)

= {Z＼)X+W2X)-A*{VZX)

^(zx)x+x(Pzxy~M(Fzxy)

where ( )･*■denotes the orthogonal complement of T1. Thus (ZX) = § and AS(FZX)

= k(FzX). It follows that each T^ is paralleland each lk is constant.

Now let Cx-(Tp)Ln ･･･ n(T> )1. C is also a paralleldistribution. In fact,let

ZgTM, YqC and Xe T* c･ ･■c TV Then 0 = Z(X, F) = (FZX, Y) + (X, FZY) =

(X,FZY) so FzYgC. Therefore M? = M?xMn-t locally. Because A< and Ag com-

mute for all normal vectors 0, each A≪ has the same form by 0.8 and so a(X, Y)

=0 whenever X is tangent to M? and Y is tangent to M ~~2.The theorem follows

by 0.3. Q.E. D.

Let V and W be vector spaces. For a bilinear map a: Vx V-^-W define the

relative nullity space of a, N(a), by

N(a) = {XeV: a(X, Y) = 0 for all Y in V].

a is said to be flat with respect to an inner product (, ) on W if

(a(X, Z), a(Y, W)) = {a{X, W), a(Y, Z))

for all X Y, Z, W in F. We then have

2.3 Proposition. ([Mo 2])

(i) If a:Vx V~>W is flatwith respect to a positive definiteinner product on

W then dim iV(a)>dim V-dimW.

(ii) If a: Vx V'-*W is flatwith respect to a Lorentzian inner product on W

and dimW=2 then either dim N(a)>6＼mV-dimW or a(X, Y) is null for all X, Y

in V.

Note: This will be referred to as Moore's nullity result
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2.4 Theorem. If/: R" ->Rfi2 is an isometric immersion with parallel second

fundamental form then

f=AxId: R＼xRn-z-+R*xir-2 or

f=IdxA: R?-*xR2-+R'r*xR*

where /i is one of the two-dimensional maps of 1.15 or 1.18.

Proof. We consider the two cases ??=0 and r/^0.

Case I. j?=0. We will see below that in this case the firstnormal space is

0- or 1-dimensional. If it is 1-dimensional, then /QR?)cjRr+1 non-trivially.If 0

spans the first normal space then Ae can be put into the only rank one, trace

zero canonical form. It is clear then that / can be decomposed as fiXld: R{xRn~z

-+RtxRn~2 where fx is the B-scroll over the null cubic.

Now it is shown that the first normal space cannot be two-dimensional.

Suppose that it is two-dimensional and let {d1} be an orthonormal basis of the

firstnormal space.

We will assume As can be put into one of the canonical forms and then show

that the firstnormal space is not two-dimensional.

If At were diagonal with respect to an orthonormal basis, then by minimality

and 2.3 it has at most two non-zero eigenvalues ±/tand the eigenspaces are one-

dimensional. The same reasoning shows that thisis also true for A^, and in fact

the eigenspaces are the same as those of As. If this is true, then the firstnormal

space is one-dimensional.

If A? had a non-simple eigenvalue of multiplicity2 then combining 2.3, min-

imality and the fact that Ae and Ax commute, we have

A< =

0

0

1

0

and A^ ―

0≫_2

0

0

0

6

b

0

0

0

0

6

0

0

･･･CjQ "-0

0

On-Z

with respect to a pseudo-orthonormal basis {/,/,eu ･ ･･, en~z}. This gives ≪(/,/)=

6 + 6?1, a(ej, ej)―0 and a(ej, /)= cJ-cJ-. Flatness of a gives 0 = (c/f-＼c/s1) ―c} so that

the first normal space is one-dimensional.

If At has a complex eigenvalue then A^ does also and so
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A,=

0 /?

B 0
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On-2

and A;±

o r

-r o

On-2

The firstnormal space has dimension one.

If As had a non-simple eigenvalue of multiplicity3 we see that

JL =

0

0

0

0

0

1

1

0

0

0K_3

and .4fi =

0 b c

0 0 0

0 c 0

On-,

with respect to a pseudo-orthonormal basis {l,!,e,eu ･･■,en_3}.Here a(i,e)=£+ d;1

and a(e,e)= 0 so that l+c2 = 0, which is impossible.

Case II. r;=£0.Here we show that At/ is diagonalizable. Choose rf to be a

unit vector in the direction of t]and y/1 to be a unit vector perpendicular to rj.

Suppose firstthat An. is of the form

Ar

X t

0 X

X

･^ra-2

*=£0

with respect to a pseudo-orthonormal basis {/,/,eu ■■-,en-%}. By Moore's result,

we see that either Ai^O and all Aj=O or A=0 and exactly one ZJoi=O.

We have ≪(/,/)= 0 and ≪(/,l) = ty'+nr)1-. The Gauss equation applied to the plane

spanned by / and / shows //= 0 = l Thus ^0=£0 for some ;0. Moore's result then

gives each c/ = 0 and possibly one djdo^0. However, trace A^=0 forces djojo~O.

Therefore a(ejo,ejo)= /ljo7}',a(eja,l)=0 and a(!J) = trf'+ by]L. From this we get ^0 = 0

and so AT. cannot have a non-simple eigenvalue of multiplicity two.
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Then 2.3 implies X―Q ―Xj, contradicting

AH _S

If An had a complex eigenvalue, then by 2.2 the map splits, but the two-

dimensional argument shows this splittingcan't occur.

Finally, if An is diagonalizable,it has at most two non-zero entries,and the

map splits into a product of the identity map and one of the possible two-

dimensional maps. Q. E. D.

If the normal space is Lorentzian, then there are more possibilities.

2.5 Theorem. If/: R?-+Rlt+2 is an isometric immersion with parallelsecond

fundamental form, then / is one of the following.

(i) f=flXId: RlxRn-z->mxRn~2

(ii) f=f1xld: Rf~2xR2->RT2xRt where /, is one of the two-dimensional

maps.

(Hi) f^f.xld: RlxRn-3->RlxRn-s where f, is the B-D scrollover the null

quintic.

(iv) / is a quadraticmap:

(x＼･■-,xn)i->(q(x),x1,---,xn,q{x)) with

q(x＼■･･,xn)= j＼aijxixj+ J＼biXl+c.

Proof. We consider three cases. Case I: 0?,j?)=£0,Case II: (9,37)=0, rj^O, Case

III: ry= 0.

Case I. We show that An cannot have any non-simple real roots, and that if

it has simple roots it splits as in (i) and (ii).

Let rf be a unit vector in the direction of rjand let 3?xbe a vector orthogonal

to v satisfying (≫',v')+(vL,vL)=0. Define o'―(v',rf)and r=(≫■■■,w1). If

(X t

0 X

＼

h

An-2

' ft b Ci---cTC_2>

0 ft

A,,= "

＼ Cn-2 >

with respect to a pseudo-orthonormal basis {/,/,eu ･ ･･, en_2} with ^^0, then Moore's
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result says Ar has rank <2 and non-zero trace. Then either /?= 0 = t-1= ■･･ = cn-z

and one x^O or ^=^0 and t/jy= O = /!i= Ci. If ,2^0 then / would split into the pro-

duct of the identity map and a non-existent two-dimensional map, so assume x = 0.

Since ≪(/,/)= 0 and ≪(/,/) = ryr/, r//2 = 0 implying that /j= 0. By 2.3 and the fact

that trace AiJ-=0 all dij = O. Then a(eio, /) = 0, a(eh, eJo)= /.Jo<x7]'and ≪(/,i) = ah/ + br7]L

so Q = (2JoG7)/,atrf + bT7]L) = AJoat which would imply ^0=0, which cannot happen.

^4,/
cannot have a non-simple real eigenvalue of multiplicity 3, non-zero trace

and rank <2.

If Av> is diagonalizable then, as above, it has one or two non-zero entries and

the map splits into a product of the identity map and a two-dimensional map. The

same is true when A*, has a complex eigenvalue.

Case II. >y^0 and (rhjy)=O.

If
^4,^0
and has simple eigenvalues the map splits into the product of the

identity map and an appropriate two-dimensional map.

When

A,=

X 1

0 X

h A*=

where 9 is a lightlike normal vector satisfying (y,r))= l we see that /L=O = /Lj. If

fx^O then Cj ―Q―dij and the map reduces to a product of the identity map and a

known two-dimensional immersion. On the other hand, /.≪cannot be zero. If /j= 0

then for some j0, djgj0^0 and possibly cjo=£Q, while all the other entries are 0.

This would give a(l,i)~r)+ br],a(eh,l) = cjoy]and <x(eh,eJo)= dJohrj. Because a is flat

we have O = (^+br], dJojl/j)~djojo,contradicting trace A^O.

When Av has a non-simple eigenvalue of multiplicity three then A* is of the

form

ft

0

0

b

Ct

0

I1

Cn-%

d ･ ' -Cn-2

dij

Using the arguments above, we have pt―Q―dij,contradicting once again that

trace A^O.
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If Ay ―Q it is easy to see using 1.3 that / is quadratic in nature and we get

(iv).

Case III. rj^O.

If the firstnormal space is one-dimensional and definite then the immersion

is the product of the identity and the ^-scroll. If the firstnormal space is one-

dimensional and lightlike,the immersion is quadratic.

If the normal space is two-dimensional, arguments similar to those above show

that if {-,I1} is an orthonormal basis of the first normal space then the only

canonical form possible for A- and A;1 is

At =

0 0 1

0 0 0

0 10

^v

0 b 1

0 0 0

0 10

and / splitsas the product of the identity map and the B-D scroll over Q. Q. E. D.
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