HARMONIC FOLIATIONS ON A COMPLEX PROJECTIVE SPACE

By
Tohru Goton

1. Introduction.

In 1970, D. Ferus [6] gave an estimation on the codimension of a totally geodesic foliation on a sphere and a complex projective space, and successively P. Dombrowski [1] improved his results. Moreover, R. Escobales classified Riemannian foliations satisfying a certain condition on a sphere and a complex projective space in a series of his papers [2], [3], [4], [5].

On the other hand, F. Kamber and Ph. Tondeur [7], [8] studied the index of harmonic foliations with bundle-like metric on a sphere from a view point of harmonic mappings.

Recently, H. Nakagawa and R. Takagi [11] showed that any harmonic foliations on a compact Riemannian manifold of non-negative constant sectional curvature is totally geodesic if the normal plane field is minimal.

In this paper we will prove
Theorem. Let $\mathbf{P}_{m}(\mathbf{C})$ be a complex projective space of complex dimension m with the metric of constant holomorphic sectional curvature. If \mathscr{F} is a harmonic foliation on $\mathbf{P}_{m}(\mathbf{C})$ snch that the normal plane field is minimal, then Φ is totally geodesic.

I am grateful to professor Ryoichi Takagi for his kind guidance and constant encouragement.

2. Preliminaries.

We first establish some basic notations and formulas in the theory of foliated Riemannian manifolds. For details, see [9], [10], [11], [13].

Let (M, g) be an n-dimentional Riemannian manifold and \mathscr{F} a foliation with codimension q on M. Considering \mathscr{I} as an $(n-q)$-dimensional integrable distribution on M, we denote the orthogonal distribution of \mathscr{F} by \mathscr{I}^{\perp}, which is called the normal plane field.

Rceeived February 16, 1989. Revised May 22, 1989.

Therefore if we denote the space of vector fields on M by $\mathfrak{X}(M)$, each $X \in \mathscr{X}(M)$ can be decomposed as $X=X^{\prime}+X^{\prime \prime}$, where $X_{x}^{\prime} \in \mathcal{F}_{x}$ and $X_{x}^{\prime \prime} \in \mathcal{F}_{x}^{1}$ for each $x \in M$. Then two tensor fields A and h of type (1.2) on M are defined by

$$
\begin{align*}
& A(X, Y)=-\left(\nabla_{Y^{*}} X^{\prime \prime}\right)^{\prime}, \\
& h(X, Y)=\left(\nabla_{Y^{\prime}} X^{\prime}\right)^{\prime \prime}, \quad X, Y \in \mathfrak{X}(M) . \tag{1.1}
\end{align*}
$$

The ristriction of h to each leaf of \mathscr{F} is so-called the second fundamental form of the leaf.

Now, according to [11], we express them with respect to locally defined orthonormal frame field.

As for the range of indices the following convention will be used throughout this paper unless otherwise stated:

$$
\begin{aligned}
A, B, C, \cdots & =1,2,3, \cdots, n \\
i, j, k, \cdots & =1,2,3, \cdots, p \\
\alpha, \beta, \gamma, \cdots & =p+1, \cdots, n,
\end{aligned}
$$

where $p=n-q$ is the dimension of \mathscr{F}.
Let $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ be a locally defined orthonormal frame field of M such that $e_{1}, e_{2}, \cdots, e_{p}$ are always tangent to \mathscr{F}. Denote its dual by $\left\{\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right\}$.

The Riemannian connection form $\left\{\omega_{A B}\right\}$ with respect to $\left\{\omega_{A}\right\}$ are defined by the followings:

$$
\begin{align*}
& \omega_{A B}+\omega_{B A}=0, \\
& d \omega_{A}+\Sigma \omega_{A B} \wedge \omega_{B}=0 . \tag{1.2}
\end{align*}
$$

A relation between $\omega_{A B}$ and ∇ is given by

$$
\begin{equation*}
\nabla_{e_{A}} e_{B}=\Sigma \omega_{C B}\left(e_{A}\right) e_{C} . \tag{1.3}
\end{equation*}
$$

Then the components $h_{B C}^{A}$ (resp. $A_{C D}^{B}$) of h (resp. A) with respect to $\left\{e_{A}\right\}$ and $\left\{\omega_{A}\right\}$ are given by

$$
\begin{equation*}
h_{i j}^{\alpha}=\omega_{\alpha i}\left(e_{j}\right) \quad\left(\text { resp. } A_{\alpha \beta}^{i}=\omega_{\alpha i}\left(e_{\beta}\right)\right), \tag{1.4}
\end{equation*}
$$

and any other components vanish.
Since the distribution $\omega_{\alpha}=0$ is integrable,

$$
\begin{equation*}
h_{i j}^{\alpha}=h_{j i}^{\alpha} . \tag{1.5}
\end{equation*}
$$

The foliation \mathscr{F} is said to be harmonic or minimal (resp. totally geodesic) provided that $\sum h_{i i}^{\alpha}=0$ (resp. $h_{i j}^{\alpha}=0$), and owing to [9], [13], the normal plane field \mathscr{F}^{+}is said to be minimal provided that $\Sigma A_{\alpha \alpha}^{i}=0$.

A necessary and sufficient condition for the distribution $\omega_{i}=0$ to be integrable is $A_{\alpha \beta}^{i}=A_{\beta \alpha}^{i}$. On the contrary, the Riemannian metric g is bundle-like if and only if

$$
\begin{equation*}
A_{\alpha \beta}^{i}=-A_{\beta \alpha}^{i} . \tag{1.6}
\end{equation*}
$$

The curvature form $\Omega=\left(\Omega_{A B}\right)$ of M is defined by

$$
\begin{equation*}
\Omega_{A B}=d \omega_{A B}+\Sigma \omega_{A C} \wedge \omega_{C B}, \tag{1.7}
\end{equation*}
$$

and we define its components $R_{A B C D}$ by

$$
\begin{equation*}
\Omega_{A B}=-(1 / 2) \Sigma R_{A B C D} \omega_{C} \wedge \omega_{D}, \quad R_{A B C D}+R_{A B D C}=0 . \tag{1.8}
\end{equation*}
$$

Then the equalities $R_{A B C D}=-R_{B A C D}=R_{C D A B}$ hold.
Now for an (r, s)-tensor field $T=\left(T_{B_{1} A_{2}}^{A_{1} A_{2} \cdots A_{s} r}\right)$ on M, we define the coveriant derivative $\nabla T=\left(T_{B_{1} B_{1} A_{2} \cdots A_{B} r_{D}}^{A_{D}}\right)$ by

$$
\begin{align*}
& -\sum_{a=1}^{r} T_{B_{1}}^{A_{1} \cdots A_{a-1} C A_{a+1} \cdots A_{s} A_{s} \sigma_{C A_{a}}} \tag{1.9}\\
& -\sum_{b=1}^{s} T_{B_{1} \cdots B_{b-1} C B_{b+1} \cdots A_{s} A_{C B_{b}} .} .
\end{align*}
$$

Then we have followings ([11]):

$$
\begin{gather*}
h_{i j k}^{\alpha}-h_{i k j}^{\alpha}=R_{\alpha i j k}, \tag{1.10}\\
h_{i, \beta}^{\alpha}-A_{\alpha \beta j}^{i}-\sum h_{i k}^{\alpha} h_{k j}^{\beta}-\Sigma A_{\alpha \gamma}^{i} A_{\gamma \beta}^{j}=R_{\alpha i j \beta}, \tag{1.11}\\
A_{\alpha \beta \gamma}^{i}-A_{\alpha \gamma \beta}^{i}+\sum h_{i j}^{\alpha}\left(A_{\beta \gamma}^{j}-A_{\gamma \beta}^{j}\right)=-R_{\alpha i \gamma \beta} . \tag{1.12}
\end{gather*}
$$

From now on, we consider the case where M is the complex projective space $\mathbf{P}_{m}(\mathbf{C})$ of complex dimension $m(=n / 2)$ with the metric of constant holomorphic sectional curvature $4 c$.

Let J denote the complex structure of $\mathbf{P}_{m}(\mathbf{C})$ and put $J\left(e_{A}\right)=\Sigma J_{B A}\left(e_{B}\right)$. Then ($J_{A B}$) satisfies

$$
\begin{align*}
& J_{A B}+J_{B A}=0 \\
& \Sigma J_{A C} J_{C B}=-\delta_{A B} \tag{1.13}\\
& d J_{A B}=\Sigma\left(J_{A C} \boldsymbol{\omega}_{C B}-J_{B C} \omega_{C A}\right) \tag{1.14}
\end{align*}
$$

The last equation means that $\nabla J=0$. Moreover the curvature form $\Omega=\left(\Omega_{A B}\right)$ and its components $R_{A B C D}$ defined by (1.7) and (1.8) respectively are given by

$$
\begin{align*}
& \Omega_{A B}=c \omega_{A} \wedge \omega_{B}+c \Sigma\left(J_{A C} J_{B D}+J_{A B} J_{C D}\right) \omega_{C} \wedge \omega_{D}, \tag{1.15}\\
& R_{A B C D}=c\left(\delta_{A D} \delta_{B C}-\delta_{A C} \delta_{B D}\right)+c\left(J_{A D} J_{B C}-J_{A C} J_{B D}-2 J_{A B} J_{C D}\right) \tag{1.16}
\end{align*}
$$

Therefore we obtain

$$
\begin{equation*}
R_{A B C D E}=0 . \tag{1.17}
\end{equation*}
$$

3. Proof of the main theorem.

In this section we give the proof of our main theorem. In the case where $p=1$, any harmanic foliation is necessarily totally geodesic. Therefore we may assume $p \geqq 2$.

Consider the global vector field $v=\Sigma v_{A} e_{A}$ on $\mathbf{P}_{m}(\mathbf{C})$ defined by

$$
v_{k}=\Sigma h_{i j}^{\alpha} h_{i j k}^{\alpha}, \quad v_{\alpha}=0 .
$$

We first calculate the divergence δv of v.
In general H. Nakagawa and R. Takagi showed the following lemma ([11]):
Lemma 2.1. Let (M, g, \mathscr{F}) be a faliated Riemannian manifold and v a vector field on M defined above. Then
(1) the divergence δv of v is given by

$$
\begin{aligned}
\delta v= & \sum v_{i} A_{\alpha \alpha}^{i}+\sum h_{i j k}^{\alpha} h_{i j k}^{\alpha}+\sum h_{i j}^{\alpha} R_{\alpha i j k k} \\
& +\sum h_{i j}^{\alpha} R_{\alpha k i k j}+\sum h_{i j}^{\alpha} h_{k k}^{\beta} h_{i j \beta}^{\alpha}+\sum h_{i j}^{\alpha} h_{k k i j}^{\alpha} \\
& +\sum\left(h_{i k}^{\beta} R_{\alpha \beta j k}+h_{l k}^{\alpha} R_{i l j k}+h_{i l}^{\alpha} h_{k l j k}\right) h_{i j}^{\alpha} \\
& +\sum h_{i j}^{\alpha} h_{l k}^{\alpha} h_{i j}^{\beta} h_{l k}^{\beta}+2 \sum h_{i j}^{\alpha} h_{i k}^{\beta} h_{j l}^{\alpha} h_{i k}^{\beta},
\end{aligned}
$$

and
(2) if the foliation \mathcal{F} is harmonic,

$$
\Sigma h_{i i j k}^{\alpha}=-2 \Sigma h_{i j}^{\beta} h_{i l}^{\alpha} h_{i k}^{\beta} .
$$

Therefore if the foliation \mathscr{G} is harmonic and the normal plane field \mathcal{F}^{\perp} minimal, we obtain

$$
\begin{align*}
\delta v= & \sum h_{i j k}^{\alpha} h_{i j k}^{\alpha}+\Sigma h_{i j}^{\alpha} h_{l k}^{\alpha} h_{i j}^{\beta} h_{i k}^{\beta} \tag{2.1}\\
& +2 \sum \operatorname{Tr}\left(H^{\alpha} H^{\alpha} H^{\beta} H^{\beta}-H^{\alpha} H^{\beta} H^{\alpha} H^{\beta}\right) \\
& +\Sigma\left(h_{i k}^{\beta} R_{\alpha \beta j k}+h_{l k}^{\alpha} R_{i l j k}+h_{i l}^{\alpha} R_{k l j k}\right) h_{i j}^{\alpha},
\end{align*}
$$

where H^{α} denotes the $p \times p$ matrix ($h_{i j}^{\alpha}$).
The essential part of the proof is to show that δv is non-negative on $\mathbf{P}_{m}(\mathbf{C})$. For it, putting

$$
X=\Sigma\left(h_{i k}^{\beta} R_{\alpha \beta j k}+h_{l k}^{\alpha} R_{i l j k}+h_{i l}^{\alpha} R_{k j l k}\right) h_{i j}^{\alpha},
$$

we have only to show $X \geqq 0$, since

$$
\operatorname{Tr}\left(H^{\alpha} H^{\alpha} H^{\beta} H^{\beta}-H^{\alpha} H^{\beta} H^{\alpha} H^{\beta}\right) \geqq 0 \text { holds }([11])
$$

For simplicity we put

$$
\xi_{i j k}=\sum h_{i j}^{\alpha} J_{\alpha k}, \quad \eta_{i \beta}^{\alpha}=\sum h_{i j}^{\alpha} J_{\beta j}, \quad \mu_{i j}^{\alpha}=\sum h_{i k}^{\alpha} J_{k j}
$$

Then from (1.13), (1.16), we have

$$
\begin{align*}
X= & \sum_{\alpha, i, j} c p\left(h_{i j}^{\alpha}\right)^{2}+c Y \tag{2.2}\\
& +3 c \sum_{\alpha}\left\{2 \sum_{i}\left(\mu_{i i}^{\alpha}\right)^{2}+\sum_{i<k}\left(\mu_{i k}^{\alpha}+\mu_{k i}^{\alpha}\right)^{2}\right\}
\end{align*}
$$

where we put

$$
Y=\Sigma h_{i j}^{\alpha} h_{i k}^{\beta}\left(J_{\alpha k} J_{\beta j}-J_{\alpha j} J_{\beta k}-2 J_{\alpha \beta} J_{j k}\right)
$$

Next lemma gives the key inequality.
Lemma 2.2. For the Y above, the following inequality holds:

$$
\begin{aligned}
Y \geqq & -\left\{\left((p-1)^{2}+1\right) /(p-1)\right\} \sum_{i, j, \alpha}\left(h_{i j}^{\alpha}\right)^{2} \\
& +(p-2) \sum_{i} \sum_{j \neq k}\left(\xi_{i j k}\right)^{2}+\sum_{i} \sum_{j<k}\left(\xi_{i j k}+\xi_{i k j}\right)^{2} \\
& +\sum_{i} \sum_{j<k}\left(\xi_{i j j}-\xi_{i k k}\right)^{2}+(p-1)^{-1} \sum_{i, \alpha, \beta}\left(\eta_{i \alpha}^{\beta}\right)^{2}
\end{aligned}
$$

Proof of lemma 2.2. For any real number $t \neq 0$, an inequality $\left(t \sum h_{i j}^{\alpha} J_{\alpha \beta}-\right.$ $\left.t^{-1} \sum h_{i k}^{\beta} J_{j k}\right)^{2} \geqq 0$ holds, which implies

$$
-2 \sum h_{i j}^{\alpha} h_{i k}^{\beta} J_{\alpha \beta} J_{j k} \geqq-t^{2} \sum h_{i j}^{\alpha} J_{\alpha \beta} h_{i j}^{\gamma} J_{\gamma \beta}-t^{-2} \sum h_{i k}^{\beta} J_{j k} h_{i l}^{\beta} J_{j l}
$$

By (1.10), the right hand side of this equation is equal to

$$
\begin{aligned}
& =-t^{2} \sum h_{i j}^{\alpha} h_{i j}^{\gamma}\left(-\sum J_{\alpha k} J_{\gamma^{k}}+\delta_{\alpha \gamma}\right)-t^{-2} \sum h_{i k}^{\beta} h_{i l}^{\beta}\left(-J_{\alpha k} J_{\alpha l}+\delta_{k l}\right) \\
& =-\left(t^{2}+t^{-2}\right)_{i, j, \alpha}\left(h_{i j}^{\alpha}\right)^{2}+t^{2} \sum_{i, j, k}\left(\xi_{i j k}\right)^{2}+t^{-2} \sum_{i, \alpha, \beta}\left(\eta_{i \alpha}^{\beta}\right)^{2} .
\end{aligned}
$$

Therefore, putting $t=\sqrt{p-1}$, we obtain

$$
\begin{aligned}
& Y+\left\{\left((p-1)^{2}+1\right) /(p-1)\right\} \sum_{i, j, \alpha}\left(h_{i j}^{\alpha}\right)^{2} \\
& \geqq \sum_{i, j, k} \xi_{i j k} \xi_{i k j}-\sum_{i, j, k} \xi_{i j j} \xi_{i k k}+(p-1) \sum_{i, j, k}\left(\xi_{i j k}\right)^{2}+(p-1)^{-1} \sum_{i, \alpha, \beta}\left(\eta_{i \alpha}^{\beta}\right)^{2} \\
& =\sum_{i, j}\left(\xi_{i j j}\right)^{2}+2 \sum_{i} \sum_{j<k} \xi_{i j k} \xi_{i k j}-\sum_{i, j}\left(\xi_{i j j}\right)^{2}-2 \sum_{i} \sum_{j<k} \xi_{i j j} \xi_{i k k} \\
& \quad+(p-1) \sum_{i, j}\left(\xi_{i j j}\right)^{2}+(p-1) \sum_{i} \sum_{j \neq k}\left(\xi_{i j k}\right)^{2}+(p-1)^{-1} \sum_{i, \alpha, \beta}\left(\eta_{i \alpha}^{\beta}\right)^{2} \\
& =(p-2) \sum_{i} \sum_{j \neq k}\left(\xi_{i j k}\right)^{2}+\sum_{i} \sum_{j<k}\left(\xi_{i j k}+\xi_{i k j}\right)^{2}+\sum_{i} \sum_{j<k}\left(\xi_{i j j}-\xi_{i k k}\right)^{2}+(p-1)^{-1} \sum_{i, \alpha, \beta}\left(\eta_{i \alpha}^{\beta}\right)^{2}
\end{aligned}
$$

which is the required inequality.
We are now in a position to complete the proof of the theorem. Owing to lemma 2.2, (2.1) and (2.2), we obtain

$$
\begin{aligned}
\delta v \geqq & \sum_{i, j, k, \alpha}\left(h_{i j k}^{\alpha}\right)^{2}+\sum_{i, j, k, l, \alpha}\left(\sum_{i j}^{\alpha} h_{l k}^{\alpha}\right)^{2}+2 \sum_{\alpha, \beta} \operatorname{Tr}\left(H^{\alpha} H^{\alpha} H^{\beta} H^{\beta}-H^{\alpha} H^{\beta} H^{\alpha} H^{\beta}\right) \\
& +c\{(p-2) /(p-1)\} \sum_{i, j, \alpha}\left(h_{i j}^{\alpha}\right)^{2}+c(p-2) \sum_{i} \sum_{j \neq k}\left(\xi_{i j k}\right)^{2}+c \sum_{i} \sum_{j<k}\left(\xi_{i j k}+\xi_{i k j}\right)^{2} \\
& +c \sum_{i} \sum_{j<k}\left(\xi_{i j j}-\xi_{i k k}\right)^{2}+\{c /(p-1)\} \sum_{i, \alpha, \beta}\left(\eta_{i \alpha}^{\beta}\right)^{2} \\
& +3 c \sum_{\alpha}\left\{2 \sum_{i}\left(\mu_{i i}^{\alpha}\right)^{2}+\sum_{i<k, \alpha}\left(\mu_{i k}^{\alpha}+\mu_{k i}^{\alpha}\right)^{2}\right\} \geqq 0,
\end{aligned}
$$

since $p \geqq 2$ by assumption.
Since $\mathbf{P}_{m}(\mathbf{C})$ is orientable and compact, we have

$$
\int_{\mathbf{P}_{m}(\mathrm{C})} \delta v * 1=0,
$$

where $* 1$ denotes the volume element of $\mathbf{P}_{m}(\mathbf{C})$. This together with the above inequality shows

$$
\Sigma h_{i j}^{\alpha} h_{k l}^{\alpha}=0, \quad \text { and so } \quad h_{i j}^{\alpha}=0
$$

The theorem is now completely proved. (q. e. d.)

Next corollary is now obvious:
Corollary. Let $\mathbb{P}_{m}(\mathbf{C})$ be the complex projective space of complex dimension m with the metric of constant holomorphic sectional curvature. Let \subseteq be a harmonic foliation for which the metric is bundle-like. Then the foliation \mathscr{F} is totally geodesic.

4. Some other results and remarks.

In this section the preceding notations are kept.
We call a foliation on $\mathbf{P}_{m}(\mathbf{C})$ Kähler (resp. totally real) if $J_{\alpha i}=0$ (resp. $J_{i j}=0$) at each point.

Let \mathscr{G} be a totally geodesic foliation on $\mathbf{P}_{m}(\mathbf{C})$. Then from (1.10) and (1.16) we obtain

$$
J_{\alpha k} J_{i j}-J_{\alpha j} J_{i k}-2 J_{\alpha i} J_{j k}=0 .
$$

Therefore

$$
0=\Sigma\left(J_{\alpha k} J_{i j}-J_{\alpha j} J_{i k}-2 J_{\alpha i} J_{j k}\right) J_{\alpha j} J_{i k}
$$

$$
=-\sum_{\alpha, i}\left(\sum_{j} J_{\alpha j} J_{i j}\right)^{2}-\sum_{i, j, k, \alpha}\left(J_{\alpha j} J_{i k}\right)^{2}
$$

which implies

$$
\begin{equation*}
J_{\alpha_{j}}=0 \text { or } J_{i k}=0 \text { at each point. } \tag{3.1}
\end{equation*}
$$

Proposition 3.1. Let \mathscr{T} be a totally geodesic foliation on $\mathbf{P}_{m}(\mathbf{C})$. Then \mathscr{F} is Kähler or totally real.

Proof.
Set $K=\left\{x \in \mathbf{P}_{m}(\mathbf{C}) \mid \mathscr{I}\right.$ is Kähler at $\left.x\right\}$ and $T=\left\{x \in \mathbf{P}_{m}(\mathbf{C}) \mid \mathscr{F}\right.$ is totally real at $\left.x\right\}$. Then (3.1) implies the followings:
(a) K and T are open in $\mathbf{P}_{m}(\mathbf{C})$,
(b) $K \cap T=\varnothing$,
(c) $K \cup T=\mathbf{P}_{m}(\mathbf{C})$.

These (a), (b), (c) and connectedness of $\mathbf{P}_{m}(\mathbf{C})$ show the assertion. (q.e.d.)
Remark 1. There is a well-known example of a foliation on a complex projective space which is induced by the fiber bundle

where $\mathbf{P}_{n}(\mathbf{H})$ denotes the quaternionic projective n-space.
R. Escobales [5] has proved that the above example is the only non-trivial Riemannian foliation on $\mathbf{P}_{n}(\mathbf{C})$ by $\mathbf{P}_{k}(\mathbf{C})$ by making use of his results [3], [4] and Ucci's result [15].

Remark 2. The above example is totally geodesic and Kähler. The auther does not know examples of totally geodesic and totally real foliations on a complex projective space.

Does there exist a totally geodesic foliation on a complex projective space which is totally real?

This question seems to be of interest.

References

[1] Dombrowski, P., Jacobi fields, totally geodesic foliations, and geodesic differential forms, Resultate der Math. 1 (1978), 156-194.
[2] Ecobales, R. Jr., Riemannian submersions with totally geodesic fibers, J. Differential Geom. 10 (1975), 253-276.
[3] Escobales, R. Jr., Riemannian submersions from complex projective space, J. Differential Geom. 13 (1978), 93-107.
[4] Escobales, R. Jr., Sufficient conditions for a bundle like foliation to admit a Riemannian submersion onto its leaf space, Proc. Amer. Soc. 84 (1982), 280-284.
[5] Escobales, R. Jr., Riemannian foliations of the rank one symmetric space, Proc. Amer. Math. Soc. 95 (1985), 495-498.
[6] Ferus, D., Totally geodesic foliations, Math. Ann. 188 (1970), 313-316.
[7] Kamber, F.W. and Tondeur, Ph., Infinitesimal automorphisms and second variation of the energy for harmonic foliation, Tôhoku Math. J. 34 (1982), 525-538.
[8] Kamber, F.W. and Tondeur, Ph., The index of harmonic foliations on spheres, Tarns. Amer. Math. Soc. 275 (1983), 257-263.
[9] Kitahara, H., Differential geometry of Riemannian foliations, Lecture notes, Kyungpook National Univ. 1986.
[10] Molino, P., Feuilletagesriemannien, Lecture notes, Université des Sciences et Techniques du Languedoc, 1982-1983.
[11] Nakagawa, H. and Takagi, R., Harmonic foliations on a compact Riemannian manifold of non-negative constant curvature, Tôhoku Math. J. 40 (1988), 465-471.
[12] O'Neill, B., The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469.
[13] Reinhart, B., Differential geometry of foliations, Springer-Verlag, Berlin, Heidelberg, New York, 1983.
[14] Tondeur, Ph., Foliations on Riemannian Manifolds, Universitext, Springer-Verlag, 1988.
[15] Ucci, J., On the non-existence of Riemannian submersions from $\boldsymbol{C P}(7)$ and $\boldsymbol{C P}(3)$, Proc. Amer. Math. Soc. 88 (1983), 698-700.

Department of Mathematics
Faculty of Mathematics and Physical Sciences
Graduate School of Science and Technology
Chiba University
Chiba, 260
Japan

