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1. Introduction.

In 1970, D. Ferus [6] gave an estimation on the codimension of a totally

geodesic foliationon a sphere and a complex projective space, and successively

P. Dombrowski [1] improved his results. Moreover, R. Escobales classified

Riemannian foliationssatisfying a certain condition on a sphere and a complex

projective space in a series of his papers [2], [3], [4], [5].

On the other hand, F. Kamber and Ph. Tondeur [7], [8] studied the index

of harmonic foliations with bundle-like metric on a sphere from a view point of

harmonic mappings.

Recently, H. Nakagawa and R. Takagi [11] showed that any harmonic

foliations on a compact Riemannian manifold of non-negative constant sectional

curvature is totally geodesic if the normal plane fieldis minimal.

In this paper we will prove

Theorem. Let Pm(C) be a complex projective space of complex dimension m

with the metric of constant holomorphic sectionalcurvature. If 3 is a harmonic

foliation on Pm(C) snch that the normal plane fieldis minimal, then 3 is totally

geodesic.

I am grateful to professor Ryoichi Takagi for his kind guidance and constant

encouragement.

2. Preliminaries.

We firstestablish some basic notations and formulas in the theory of foliated

Riemannian manifolds. For details,see [9], [10], [11], [13].

Let (M, g) be an n-dimentional Riemannian manifold and £Fa foliationwith

codimension q on M. Considering 3" as an (n―^)-dimensional integrable dis-

tribution on M, we denote the orthogonal distributionof £Fby ff1,which is called

the normal plane field.
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Therefore if we denote the space of vector fields on M by X{M), each

X(B3C(M) can be decomposed as X― X' + X", where X'X^3X and ^i'effi for

each xgM. Then two tensor fields A and h of type (1.2) on M are defined by

A{X,Y) = -Wy.X")',

(1.1)
/i(X, r) = (7y,ZT, *, Yz=X(M).

The ristriction of /i to each leaf of 3 is so-called the second fundamental form

of the leaf.

Now, according to [11], we express them with respect to locally defined

orthonormal frame field.

As for the range of indices the following convention will be used throughout

this paper unless otherwise stated:

A, B, C, ■■■=1, 2, 3, -, n

i, j, k, ･･･=1, 2, 3, ■･･, p

a, j8,T, ■■■=P + h ■■■, n,

where p ―n―q is the dimension of £F.

Let {eu e2, ･･･, en) be a locally defined orthonormal frame field of M such

that 0i, e2, ■■■, ep are always tangent to 3. Denote its dual by {a)u a)2>･･･, o)n}-

The Riemannian connection form {(Dab) with respect to {<da} are defined by

the followings:

(1.2)

d(t)A+^2t(0AB/＼a>B= 0.

A relation between a)AB and 7 is given by

(1-3) VeA8B ― HdiCB^A)Qc ･

Then the components hie (resp. Acd) of h (resp. A) with respect to {eA} and

{a)A} are given by

(1.4) h?j = (oai(ej) (resp. Ai? ~(Dai{e^)),

and any other components vanish.

Since the distribution a)a=0 is integrable,

(1.5) hfj=h]t.

The foliation £Fis said to be harmonic or minimal (resp. totally geodesic)

provided that S/it"=0 (resp. hfj=Q), and owing to [9], [13], the normal plane

field 31 is said to be minimal provided that 2M≪a―0.
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A necessary and sufficientcondition for the distributiona)i=0 to be integra-

ble is Aiap= Alpa. On the contrary, the Riemannian metric g is bundle-likeif

and only if

(1.6) Aia? = ~Aipa.

The curvature form Q = (QAB) of M is defined by

(1.7) QAb ― d<oAB+J}a)ACA(t)cB,

and we define its components RAbcd by

(1.8) Qab = -^/2)^Rabcd(0cAQ)d, Rabcd+Rabdc = O.

Then the equalities Rabcd~ ―Rbacd―Rcdab hold.

Now for an (r, s)-tensor fieldT=(Tb＼b＼'"-bI)on ^, we define the coveriant

derivative lT=(T$＼i＼::.irD) by

(1.9) ^Ti＼JAZiictoc = dTi＼i＼zir

- S Ti＼-:A^CAa±xzirs(l)cAa

a =l

s

― S T^i:'.:"b6:"'cb6+"1";;.bJ(Wcb6.
6=1

Then we have followings ([11]):

(1.10) h?jk-hfkj = RaiJk,

(1.11) h?}f>-Atafij-J}h?Mj-'2AiarAfr = Raijp,

(1.12) Aifr-A^+^hWAh-Alti) = -Rairp.

From now on, we consider the case where M is the complex projective

space POT(C) of complex dimension m ( = n/2) with the metric of constant holo-

morphic sectional curvature 4c.

Let / denote the complex structure of Pm(C) and put J(eA)=^JBA(eB). Then

(Jab) satisfies

Jab+Jba = 0,
(1.13)

^IJacJcB = ―§AB>

(1-14) dJAB = ^(JACO)cB ―jBC(OCA)-

The last equation means that V/=0. Moreover the curvature form Q―{QAB)

and its components RAbcd defined by (1.7) and (1.8) respectively are given by

(1.15) QAB = c(oaA<ob+C2XJacJbd+JabJcd)<0cA<dd,

(1.16) RABCD~ C(dADdBc―dAcdBD) + C(jADjBC―jAcjBD ―2jABjcD)-
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Therefore we obtain

(1.17)
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RABODE ― 0

3. Proof of the main theorem.

In this section we give the proof of our main theorem. In the case where

p = l, any harmanic foliationis necessarily totally geodesic. Therefore we may

assume p^2.

Consider the global vector fieldv ―^vaQa on Pm(C) defined by

vk = ?ih?jh?jk, va = 0.

We firstcalculate the divergence dv of v.

In general H. Nakagawa and R. Takagi showed the following lemma ([11]):

Lemma 2.1. Let (M, g, 3) be a foliated Riemannian manifold and v a vector

field on M defined above. Then

(1) the divergence dv of v is given by

8V = %VtAiaa + '2h?jkh?Jk+ 2lh?jRaijkk

+HMRafiJk + hfkRilji+ hflhkiJk)h?J

+Hh?jhfkhtM*+23MjhtkhfMk,

and

(2) if the foliation <3 is harmonic,

Therefore if the foliation 3 is harmonic and the normal plane field 3X

minimal, we obtain

(2.1) dv = ^h?Jkh?Jk + ^hfJhfkhlMk

+2^Tr(HaHaHPHP-HaH?HaHP)

+ ?l(hlkRapjkJrh'?kRiljk+ h'?lRkljk)h'}j,

where H" denotes the pxp matrix (/z"_,-)･

The essential part of the proof is to show that dv is non-negative on Pm(C).

For it, putting

X=5X!iPikRapjk + hfkRiljk+ h?lRkjlk)hfj,

we have only to show X'^0, since
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Tr(HaHaHPHP-HaHPHaHP)^O holds ([11]).

For simplicity we put

$<}k = ~Zh?jJak, yip = ^hfjjpj, fifj- ^h?kJkj

Then from (1.13), (1.16), we have

(2.2)
X= 2 cp(h?j)2+cY

a.i.J

+3cS{2S(^)2+ SGua+Aifi)1}
a I i i<* J
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where we put

Y = i:h?jhUjakJpj-JajJpk-2JapJJk).

Next lemma gives the key inequality.

Lemma 2.2. For the Y above, the following inequality holds:

Y ^ -{((p-iy+l)/(p-l)} S (hfjf
i.j.a

+(£-2)2 2(^-*)2+£ 2(&,*+&*,)*
i j*k i j<k

+2 23(^-^**)8+(/>-l)-1i2/J(7i≪)2.

Proof of lemma 2.2. For any real number ^0, an inequality (f5}hijjap ―

t'^h^JjkY^O holds, which implies

-2J}hfMkJaPJJk ^ -t^hfjJaphljJrp-r'-Zh^JjMjji.

By (1.10), the right hand side of this equation is equal to

= -t^h?jhlj(-J]JakJrk+8ar)-t-^h^hU-JakJai+dkl)

i.j.a i,j,k i.a.P

Therefore, putting t= Vp ―l, we obtain

Y+{((p-lf + l)/(p-l)} 2 W

- 2(£<>,)8+22 2 ^>*^*>-2(^)2-22 2^^**
i.j i j<k i,j i j<k

+(/>-ds(^)2+(/>-i):s sc&^+cj-d-1 uMa)
2

8+(/>-iri Zj A'/ ia)
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which is the required inequality.
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(q.e.d.)

We are now in a position to complete the proof of the theorem. Owing to

lemma 2.2,(2.1) and (2.2), we obtain

i.j.k.a i.j.k.l.a a.8

+ c{(p-2)/(p-l)＼ S (/if,)2+c(/)-2)SS(^*)24-cSS(^*+^^)2
i.j.a i j±k i j<k

+css(^,-eui)!+{^-i)} s (>?u2

+3cS

a ＼.i i<k,a >

since p^2 by assumption.

Since Pm(C) is orientableand compact, we have

JPmCC)

dv*l = 0

where *1 denotes the volume element of Pm(C). This together with the above

inequality shows

YihijKi ― 0> and so hfj = 0.

The theorem is now completely proved. (q. e.d.)

Next corollary is now obvious:

Corollary. Let Pm(C) be the complex projective space of complex dimension

m with the metric of constant holomorphic sectionalcurvature. Let 1 be a harmonic

foliationfor which the metric is bundle-like. Then the foliation 1 is totally

geodesic.

4. Some other results and remarks.

In this section the preceding notations are kept.

We call a foliation on Pm(C) Kdhler (resp. totally real) if Jai―0 (resp.

Jij=O) at each point.

Let 5 be a totallygeodesic foliation on Pro(C). Then from (1.10) and (1.16)

we obtain

JakJij―JajJik―2-JaiJjk= 0.

Therefore

0 = l>j(jakjij―jaijik~2>jaijjk)jajjik



which implies

(3.1)
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a. * ^ 3 ' i.j.k.a

Jaj
0 or Jik 0 at each point.
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Proposition 3.1. Let 3 be a totallygeodesic foliation on Pm(C). Then 1

is Kdhler or totallyreal.

Proof.

Set K={x(EFm(C)＼% is Kahler at x] and T={xePm(C)| 1 is totally real at x}

Then (3.1) implies the followings:

(a) K and T are open in Pm(C),

(b) Kr＼T = 0,

(c) ^ur = pm(C).

These (a),(b),(c) and connectedness of Pm(C) show the assertion. (q. e.d.)

Remark 1. There is a well-known example of a foliation on a complex

projective space which is induced by the fiber bundle

Pi(C) > P2n+1(C)

I

P.(H)

where Pn(H) denotes the quaternionic projective n-space.

R. Escobales [5] has proved that the above example is the only non-trivial

Riemannian foliationon Pn(C) by P*(C) by making use of his results [3], [4]

and Ucci's result [151.

Remark 2. The above example is totally geodesic and Kahler. The auther

does not know examples of totally geodesic and totally real foliationson a

complex projective space.

Does there exist a totally geodesic foliation on a complex projective space

which is totallyreal ?

This question seems to be of interest.
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