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1. Introduction.

In 1970, D. Ferus [6] gave an estimation on the codimension of a totally
geodesic foliation on a sphere and a complex projective space, and successively
P. Dombrowski [1] improved his results. Moreover, R. Escobales classified
Riemannian foliations satisfying a certain condition on a sphere and a complex
projective space in a series of his papers [2], [3], [4], [5].

On the other hand, F. Kamber and Ph. Tondeur [7], [8] studied the index
of harmonic foliations with bundle-like metric on a sphere from a view point of
harmonic mappings.

Recently, H. Nakagawa and R. Takagi [11] showed that any harmonic
foliations on a compact Riemannian manifold of non-negative constant Sectional
curvature is totally geodesic if the normal plane field is minimal.

In this paper we will prove

THEOREM. Let P,(C) be a complex projective space of complex dimension m
with the metric of constant holomorphic sectional curvature. If F is a harmonic
foliation on P,(C) snch that the normal plane field is minimal, then F is totally

geodesic.

I am grateful to professor Ryoichi Takagi for his kind guidance and constant
encouragement.

2. Preliminaries.

We first establish some basic notations and formulas in the theory of foliated
Riemannian manifolds. For details, see [9], [10], [117, [13].

Let (M, g) be an n-dimentional Riemannian manifold and & a foliation with
codimension ¢ on M. Considering ¢ as an (n—gq)-dimensional integrable dis-
tribution on M, we denote the orthogonal distribution of & by ¥+, which is called
the normal plane field.
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Therefore if we denote the space of vector fields on M by (M), each
X&%(M) can be decomposed as X=X'+ X", where X;=%, and XyeF; for
each x&M. Then two tensor fields A and A& of type (1.2) on M are defined by

AX, Y) = -y X"Y,
MX,Y)=FpXY, X, Yex(M).

(1.L)

The ristriction of 4 to each leaf of & is so-called the second fundamental form
of the leaf.

Now, according to [11], we express them with respect to locally defined
orthonormal frame field.

As for the range of indices the following convention will be used throughout
this paper unless otherwise stated:

A, B, C =123, n

Z') ]‘) k) e :]‘) 2, 3) e b p

a, B, 1, =p+1, -, 0,
where p=n—gq is the dimension of &.
Let {e,, es, -+, e,} be a locally defined orthonormal frame field of M such
that e,, ey, ---, ¢, are always tangent to ¥. Denote its dual by {w,, @, -+, @s}.

The Riemannian connection form {w,z} with respect to {w,} are defined by
the followings :

Waptwgs =0,

dCUA+2(l)AB/\0)B =0.

(1.2)

A relation between w,z and V is given by
1.3) Ve, o5 = 2wes(es)ec .

Then the components hg. (resp. AZp) of h (resp. A) with respect to {e,} and
{w,} are given by

1.4) h$; = waile;) (resp. ALz = waileg)),

and any other components vanish.
Since the distribution w,=0 is integrable,

(1.5) /llqj = h;'li.

The foliation & is said to be harmonic or minimal (resp. totally geodesic)
provided that > h%=0 (resp. A%=0), and owing to [9], [13], the normal plane
field F* is said to be minimal provided that 3}A%,=0.
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A necessary and sufficient condition for the distribution ®;=0 to be integra-
ble is Aiz=Aj%,. On the contrary, the Riemannian metric g is bundle-like if
and only if

(1.6) Als = —Ab,.
The curvature form 2=(8,z) of M is defined by
(L.7) Q45 = dos+30 40 Ncs,
and we define its components R, zcp by
(1.8 Q45 = —(1/2)ZR 4pcpwc Ay, R apcpt Rappe = 0.

Then the equalities R zcp—=—Rzicp=~Rcpap hold.
Now for an (r, s)-tensor field T=(T 4152 4r) on M, we define the coveriant
derivative VT =(T #1422 47p) by

T Ajdp 4
(1.9) STHgedrewe = dT 52T

[

-
— > T4 TAesiClari T ETWey,,

S
A 4
— 2 T§ B, 6B, Biwes, -

Then we have followings ([11]):

(110) hq‘jxjk'_h?kj = Raijk ’
(1.11) h?]‘:q“Afxﬂj—Ehfkhéj—EAirAgﬂ = Raijp,
(1.12) Al pr—Abys+hi(Aly—Als) = —Raus -

From now on, we consider the case where M is the complex projective
space P,(C) of complex dimension m (=n/2) with the metric of constant holo-
morphic sectional curvature 4c.

Let J denote the complex structure of P,,(C) and put J(es)=2>]/ss(es). Then
( J4p) satisfies

]AB+JBA = 0,
(1.13)
ZJAC]CB = ‘*543:
(1.14) dJ18=2(Jac®or— Jrccs) .

The last equation means that VJ/=0. Moreover the curvature form £=(2.,5)
and its components R,pcp defined by (1.7) and (1.8) respectively are given by

(1.15) Qup = cosNOg+cS(JacTap+ JapJop)wc Ny,
(1.16) Rugcp = 6(5/40530*5,105312)4-6(]AD]Bc—fAc]BD—zfABJCD).
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Therefore we obtain

(1.17) Rapepe = 0.

3. Proof of the main theorem.

In this section we give the proof of our main theorem. In the case where
p=1, any harmanic foliation is necessarily totally geodesic. Therefore we may
assume p=2.

Consider the global vector field v=>lv4e, on P,(C) defined by

Ve = Eh?jh?ﬂ y Vo = 0.
We first calculate the divergence dv of v.

In general H. Nakagawa and R. Takagi showed the following lemma ([117):

LEMMA 2.1. Let (M, g, F) be a faliated Riemannian manifold and v a vector
Jfield on M defined above. Then '

(1) the divergence ov of v is given by
0v = 2w Aba +Zhiahin+ ZhiiRaiser
AR arta s+ ShhohE s+ R
+2(hGRapsa+hfuRusu+hihe)h

+ S h&hghEhE, +22h?jhfkhfﬁh€k ,
and

(2) if the foliation & is harmonic,
Shige = —22hb;he kA .
Therefore if the foliation ¥ is harmonic and the normal plane field &+
minimal, we obtain
@2.1) ov = Dhehie+Shehihi;hh,
2T r(H H*HPFHE—HHEH*H?#)
+D(hGeRassr+hieRirje+ AR ;)RS

where H“ denotes the pXp matrix (hf).
The essential part of the proof is to show that dv is non-negative on P, (C).
For it, putting

X= Z(h?kRaﬁjk+hf'kRi1jk+h§szkjtk)h?j ’

we have only to show X=0, since
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Tr(H*H*HFHP—H*HPH*H?f) =0 holds ([11]).
For simplicity we put
§ijp = 2hfJan, =220 s, pl = ZhE -
Then from (1.13), (1.16), we have
(2.2) X= a%jcp(hﬁj)2+cY

+3e {2+ I entusr)
where we put
Y = Shihi JarTss—JasJsr—2]ap]is)-
Next lemma gives the key inequality.
LEMMA 2.2. For the Y above, the following inequality holds:
Y = —((p=DHD/(p=D) T (he)

HP=DE FE 3 3 Eon )
+4§J]%(Eijj'_'éikk)2+(p—l)—li.a2”8(7]éa)2-

PROOF of lemma 2.2. For any real number ¢=0, an inequality (t33A% Jag—
t'AE, J;2)?=0 holds, which implies
—23hEGhAe Jap i = — 1220 JashlsJra—t 2 SRE s Jinhb ;.
By (1.10), the right hand side of this equation is equal to
= —1"Zh{hi (=D JarJrrHa) =t PZhEe (= JarJar+040)
= —(tz+t“z)i;a(h?;)z-HZi’E (Sijk)z-l-t‘zi_;ﬂ(ﬂﬁm)z-

Ik

Therefore, putting t=+'p—1, we obtain

Y+ {((p—1)2+1)/(1>—1)}i;a(hé’j :
é 1_]ZhEijkEikj—i';kfiijikk+(p_l)i'gk(sijk)z—i_(p—l)‘li ;5(77%“)2
= 2060 +220 2 €ipbuny— 2(615))" =223 26156 1ns
1,7 T J<k i, J 1 j<k
+(p—l)iZj(EmY+(p—1);%(&”)%(1)—1)"1 gﬁ(n%)z

=(p=22 2+ DGt +2 26— -1 2 (98,
T 57k T j<k T j<k i,a, 8
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which is the required inequality. (g.e.d.)

We are now in a position to complete the proof of the theorem. Owing to
lemma 2.2, (2.1) and (2.2), we obtain

ov = g (hge )P+ Zk}[ (thjh;’k)2+2EﬁTr(H”H“HﬁHﬂ—H“HﬂH“Hﬂ)
ik, a Lk a,
+c{(P-Z)/(P—l)}ijZﬂ(h?j)“rC(ﬁﬂZ);]%(Ei,—k)“rc;];k(ém+§ikj)2

+c§j<2k(§ijj_5ikk)2+ {C/(ﬁ—l)}i ;ﬁ(ﬁea)z

+3e2Suar+ 3 (et 20,

since p=2 by assumption.
Since P,(C) is orientable and compact, we have
S dusl =0,
Pm ()

where *1 denotes the volume element of P,(C). This together with the above

inequality shows
thqjhl{:l :O, and so hf‘j:().

The theorem is now completely proved. (q.e.d.)
Next corollary is now obvious:

COROLLARY. Let P,(C) be the complex projective space of complex dimension
m with the metric of constant holomorphic sectional curvature. Let F be a harmonic
foliation for which the metric is bundle-like. Then the foliation F is totally
geodesic.

4. Some other results and remarks.

In this section the preceding notations are kept.
We call a foliation on Pn(C) Kdhier (resp. totally real) if J,;=0 (resp.
J:;=0) at each point.
Let ¢ be a totally geodesic foliation on P,(C). Then from (1.10) and (1.16)
we obtain
JawJis=JaiJir—2]aiJ;2 = 0.
Therefore

0= JarSij—JasJir—2]aiJie)Ja;Jir
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2
== 5(Sad) =, T Uash?,
which implies
(CRY) Ja;=0 or J;, =0 at each point.
PROPOSITION 3.1. Let F be a totally geodesic foliation on Pn(C). Then &
is Kdhler or totally real.
PROOF.

Set K={x<=P,(C)|F is Kihler at x} and T={x=P,(C)|F is totally real at x}.

Then (3.1) implies the followings :
(a) K and T are open in P,(C),

by KNT = @,
(¢) KUT =P,(C). .
These (a), (b), (¢c) and connectedness of P,(C) show the assertion. (q.e.d.)

REMARK 1. There is a well-known example of a foliation on a complex
projective space which is induced by the fiber bundle

P(C) —— P2ri(C)

l

P.(H)

where P,(H) denotes the quaternionic projective n-space.

R. Escobales [5] has proved that the above example is the only non-trivial
Riemannian foliation on P,(C) by P,(C) by making use of his results [3], [4]
and Ucci’s result [15].

REMARK 2. The above example is totally geodesic and Kihler. The auther
does not know examples of totally geodesic and totally real foliations on a
complex projective space.

Does there exist a totally geodesic foliation on a complex projective space
which is totally real ?

This question seems to be of interest.
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