ON THE CAUCHY PROBLEM FOR ANALYTIC SEMIGROUPS WITH WEAK SINGULALITY

By
Kenichiro UMEzU

I. Introduction and Results

Let X be a Banach space with norm $\|\cdot\|$ and \mathfrak{A} a linear operator defined in X. We consider the following initial-value problem: Given an element $u_{0} \in X$ and an X-vauled function f defined on an interval $I=[0, T]$, find an X valued function u defined on I such that
(*)

$$
\left\{\begin{array}{l}
\frac{d u}{d t}(t)=\mathfrak{A} u(t)+f(t), \quad 0<t \leqq T \\
u(0)=u_{0}
\end{array}\right.
$$

In this paper, under the condition that the operator \mathfrak{H} generates an analytic semigroup with weak singularity, we give sufficient conditions on the function f for the existence and uniqueness of solutions of the problem $(*)$.

We say that a function $u(t)$ is a strict solution or simply a solution of the problem $(*)$ if it satisfies the following three conditions:

$$
\begin{equation*}
u \in C([0, T] ; X) \cap C^{1}((0, T] ; X) \tag{1.1}
\end{equation*}
$$

(1.2) $\quad u(t)$ is in the domain $\mathscr{D}(\mathfrak{A})$ of the operator \mathfrak{A} for $0<t \leqq T$.

$$
\begin{equation*}
u(0)=u_{0} \quad \text { and } \quad \frac{d u}{d t}(t)=\mathfrak{A} u(t)+f(t), \quad 0<t \leqq T \tag{1.3}
\end{equation*}
$$

Here $C([0, T] ; X)$ denotes the space of continuous functions on $[0, T]$ taking values in X, and $C^{1}((0, T] ; X)$ denotes the space of continuously differentiable functions on ($0, T]$ taking values in X, respectively.

We recall the following fundamental result in the theory of analytic semigroups (cf. Pazy [2]; Tanabe [4]):

THEOREM 1.0. Assume that the following three assumptions are satisfied:
(A.1) The operator \mathfrak{A} is a densely defined, closed linear operator in X.
(A.2) There exist constants $0<\omega<\pi / 2$ and $\lambda_{0}<0$ such that the resolvent set of \mathfrak{A} contains the region $\Sigma(\omega)=\left\{\lambda \in \boldsymbol{C} ;\left|\arg \left(\lambda-\lambda_{0}\right)\right|<\pi / 2+\omega\right\}$.

Received April 17, 1990, Revised October 2, 1990.
(A.3) If $0<\varepsilon<\omega$, then there exists a constant $C(\varepsilon)>0$ such that the resolvent $(\mathfrak{A}-\lambda)^{-1}$ satisfies the estimate:

$$
\left\|(\mathfrak{A}-\lambda)^{-1}\right\| \leqq \frac{C(\varepsilon)}{1+|\lambda|}, \quad \lambda \in \Sigma(\varepsilon) .
$$

Then the operator \mathfrak{A} generates a semigroup e^{24} in X which is analytic in the sector $\Delta(\omega)=\{z=t+i s \in \boldsymbol{C} ; z \neq 0,|\arg z|<\omega\}$.

If $0<\gamma<1$, we let
$C^{r}([0, T] ; X)=$ the space of X-valued, continuous functions $f(t)$ on $[0, T]$ such that we have $\|f(t)-f(s)\| \leqq M|t-s|^{r}, t, s \in[0, T]$ for some constant $M>0$.

Now it is known (cf. Pazy [2], Theorem 3.2) that the following theorem holds.

Theorem 1.1. Assume that the operator \mathfrak{M} satisfies Assumptions (A.1), (A.2) and (A.3). If $f \in C^{\gamma}\left([0, T]\right.$; X) with $0<\gamma \leqq 1$, then, for any $u_{0} \in X$, the problem (*) has a unique solution which takes the following form:

$$
\begin{equation*}
u(t)=e^{t a} u_{0}+\int_{0}^{t} e^{(t-s) \mathfrak{x}} f(s) d s \tag{1.4}
\end{equation*}
$$

The next Besov space version of Theorem 1.1 is due to Muramatu [1] (see [1], Theorem B).

Theorem 1.2. Assume that the operator \mathfrak{X} satisfies Assumptions (A.1), (A.2) and (A.3). If f belongs to the Besov space $B_{\infty, 1}^{0}((0, T) ; X)$, then, for any $u_{0} \in$ X, the problem (*) has a unique solution which takes the form of (1.4).

Remark 1.1. Theorem 1.2 is a generalization of Theorem 1.1. In fact, the following inclusion holds:

$$
\bigcup_{0<r \leq 1} C^{r}([0, T] ; X) \subsetneq B_{\infty, 1}^{0}((0, T) ; X) .
$$

EXAMPLE 1.1. The following function f belongs to the space $B_{\infty, 1}^{0}((0, T)$; \boldsymbol{R}), but does not belong to the spaces $C^{\gamma}([0, T] ; \boldsymbol{R})$ for any $0<\gamma \leqq 1$.

$$
f(t)=\left\{\begin{array}{cll}
\frac{1}{\log t} & \text { if } & 0<t \leqq T \\
0 & \text { if } & t=0
\end{array}\right.
$$

For the precise definition of the Besov space $B_{\infty, 1}^{0}((0, T) ; X)$, we refer to Section 2.

We say that the operator \mathfrak{A} satisfies Assumption (AS) θ_{θ} with $0<\theta<1$ if it satisfies Assumptions (A.1) and (A.2) and the following weaker assumption than (A.3):
(A.3) $)_{\theta}$ If $0<\varepsilon<\omega$, then there exists a constant $C(\varepsilon)>0$ such that the resolvent $(\mathfrak{H}-\lambda)^{-1}$ satisfies the estimate:

$$
\left\|(\mathscr{A}-\lambda)^{-1}\right\| \leqq \frac{C(\varepsilon)}{(1+|\lambda|)^{\theta}}, \quad \lambda \in \Sigma(\varepsilon) .
$$

By Theorem 5.3 of Taira [3], we know that the operator \mathfrak{A} which satisfies Assumption (AS) $)_{\theta}$ with $0<\theta<1$ generates an analytic semigroup $e^{2 \boldsymbol{2}}$ such that

$$
\left\|e^{z q}\right\| \leqq \frac{M_{0}}{|z|^{1-\theta}}, \quad z \in \Delta(\omega)
$$

Thus, such an analytic semigroup as $e^{2 \text { 2l }}$ may be called an analytic semigroup with weak singularity. We remark that Assumption (A.3) $)_{1}$ is nothing but Assumption (A.3).

A concrete example of \mathfrak{A} which satisfies Assumption (AS) ${ }_{\theta}$ is given by Taira [3]. Furthermore, Taira [3] has demonstrated that the operator \mathfrak{A} generates an analytic semigroup $e^{t \mathscr{2}}$ which does not necessarily have the following property:

$$
\lim _{\substack{t \rightarrow 0 \\ t \in U(\omega)}} e^{t \vartheta} u_{0}=u_{0} \quad \text { for all } \quad u_{0} \in X
$$

Here $\Delta(\omega)=\{\lambda \in \boldsymbol{C} ;|\arg \lambda|<\omega\}$. More precisely, using fractional powers of the operator \mathfrak{A}, Taira [3] has proved that if Assumption (AS) $)_{\theta}$ is satisfied, then the operator \mathfrak{A} generates an analytic semigroup $e^{t \mathscr{U}}$ which has the property

$$
\lim _{\substack{1 \pm \rightarrow \rightarrow 0 \\ t \in \Delta(\omega)}} e^{t \underline{2}} u_{0}=u_{0}
$$

for all $u_{0} \in \mathscr{D}\left((-\mathfrak{A})^{\alpha}\right)$ with $1-\theta<\alpha<1$. Here if the operator \mathfrak{A} satisfies Assumptions (A.1), (A.2) and (A.3) $)_{\theta}$, we can define the fractional powers $(-\mathfrak{A})^{-\alpha}$ of \mathfrak{A} for $1-\theta<\alpha<1$ by

$$
(-\mathfrak{U})^{-\alpha}=\frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} t^{-\alpha}(t-\mathfrak{N})^{-1} d t
$$

and also define the fractional powers $(-\mathfrak{A})^{\alpha}$ by

$$
(-\mathfrak{U})^{\alpha}=\text { the inverse of }(-\mathfrak{U})^{-\alpha} \text {. }
$$

By the definition of $(-\mathfrak{A})^{\alpha}$, we have the following:

$$
\begin{aligned}
& \mathscr{D}(\mathfrak{H}) \subset \mathscr{D}\left((-\mathfrak{A})^{\alpha}\right) \subset X, \quad 1-\theta<\alpha<\theta, \\
& \mathscr{D}\left((-\mathfrak{A})^{0}\right)=X .
\end{aligned}
$$

The following theorem is due to Taira [3] (cf. [3], Theorem 8.2). In the case $\theta=1$, the theorem coincides with Theorem 1.1.

Theorem 1.3. Assume that the operator \mathfrak{A} satisfies Assumption $(A S)_{\theta}$ with $1 / 2<\theta<1$. If $f \subseteq C^{r}([0, T] ; X)$ with $1-\theta<\gamma \leqq 1$, then, for any $u_{0} \in \mathscr{D}\left((-\mathfrak{X})^{\alpha}\right)$ with $1-\theta<\alpha<\theta$, the problem (*) has a unique solution which takes the form of (1.4).

In this paper, using Besov space theory, we prove the following result:
Theorem 1.4. Assume that the operator \mathfrak{A} satisfies Assumption $(A S)_{\theta}$ with $1 / 2<\theta<1$. If f belongs to the Besov space $B_{\infty}^{1-\theta},((0, T) ; X)$, then, for any $u_{0} \in$ $\mathscr{D}\left((-\mathfrak{X})^{\alpha}\right)$ with $1-\theta<\alpha<\theta$, the problem (*) has a unique solution which takes the form of (1.4).

Remark 1.2. Theorem 1.4 is a generalization of Theorem 1.3 and Theorem 1.2. In fact, the following inclusion holds (cf. Corollary 2.1 and Remark 2.2):

$$
\bigcup_{1-\theta<r \leqq 1} C^{r}([0, T] ; X) \subsetneq B_{\infty, 1}^{1-\theta}((0, T) ; X) .
$$

Example 1.2. The following function f belongs to the space $B_{\infty, 1}^{1-\theta}((0, T)$; $\boldsymbol{R})$, but does not belong to the spaces $C^{\gamma}([0, T] ; \boldsymbol{R})$ for any $1-\theta<\gamma \leqq 1$.

$$
f(t)=\left\{\begin{array}{cll}
\frac{t^{1-\theta}}{\log t} & \text { if } & 0<t \leqq T \\
0 & \text { if } & t=0
\end{array}\right.
$$

The rest of this paper is organized as follows:
In Section 2 we state the basic definition and properties of Besov spaces that will be used in the sequel.

In Section 3 we present a brief description of the analytic semigroups with weak singularity generated by the operator \mathfrak{A} which satisfies Assumption (AS) θ_{θ} with $0<\theta<1$.

Section 4 is devoted to the proof of our main Theorem 1.4 by following the argument in the proof of Theorem B of Muramatu [1].

2. Besov spaces

This section is devoted to a description of the definition and properties of Besov spaces (for the details, see Muramatu [1]). We define Besov spaces on an open set Ω in \boldsymbol{R}^{N}, but, in this paper, only use the case when Ω is an open interval $I(N=1)$.

Let Ω be an open set in \boldsymbol{R}^{N}, X a Banach space with norm $\|\cdot\|, 1 \leqq p \leqq \infty$ and m a non-negative integer. For an X-valued function f on Ω, we define

$$
\begin{gathered}
\|f\|_{L^{p}(\Omega ; x)}=\left\{\begin{array}{lll}
\left(\int_{\Omega}\|f(x)\|^{p} d x\right)^{1 / p} & \text { if } & 1 \leqq p<\infty, \\
\underset{x \in \Omega}{\operatorname{ess} \sup ^{2}\|f(x)\|} & \text { if } & p=\infty,
\end{array}\right. \\
\|f\|_{L^{p}(\Omega ; x)}=\left\{\begin{array}{lll}
\left(\int_{\Omega}\|f(x)\|^{p}|x|^{-N} d x\right)^{1 / p} & \text { if } & 1 \leqq p<\infty, \\
\underset{x \in \Omega}{\operatorname{ess} \sup ^{1}\|f(x)\|} & \text { if } & p=\infty,
\end{array}\right. \\
\|f\|_{H^{m, p}(\Omega ; X)}=\sum_{|\alpha| \leqq m}\left\|\partial^{\alpha} f\right\|_{L^{p}(\Omega ; X)} .
\end{gathered}
$$

Here all the derivatives $\partial^{\alpha} f$ are taken in the sense of distributions. If $X=\boldsymbol{R}$, we simply write $\|\cdot\|_{L^{p}(\Omega ; X)},\|\cdot\|_{L^{p}(\Omega ; X)}$ and $\|\cdot\|_{H^{m, p} p_{(\Omega ; X)}}$ as $\|\cdot\|_{L^{p}(\Omega)},\|\cdot\|_{L^{p_{(}(\Omega)}}$ and $\|\cdot\|_{H^{m, p}}(\Omega)$ respectively.

We introduce function spaces as follows:
$L^{p}(\Omega ; X)=$ the space of X-valued functions such that $\|f\|_{L^{p}(\Omega ; X)}$ is finite.
$L_{*}^{p}(\Omega ; X)=$ the space of X-valued functions such that $\|f\|_{L^{p}(\Omega ; X)}$ is finite.
$H^{m, p}(\Omega ; X)=$ the space of functions $f \in L^{p}(\Omega ; X)$ whose derivatives
$\partial^{\alpha} f,|\alpha| \leqq m$, in the sense of distributions, belong to $L^{p}(\Omega ; X)$.

The spaces $L^{p}(\Omega ; X)$ and $H^{m, p}(\Omega ; X)$ are Banach spaces with the norms $\|\cdot\|_{L}^{p}(\Omega ; X)$ and $\|\cdot\|_{H^{m, p}}(\Omega ; X)$, respectively.

Definition of Besov spaces. Let X be a Banach space with norm $\|\cdot\|, \Omega$ an open set in $\boldsymbol{R}^{N}, 1 \leqq p, q \leqq \infty$ and σ a real number such that $\sigma=m+\theta$ with an integer m and $0<\theta \leqq 1$.
(a) The case $m \geqq 0$ and $0<\theta<1$: The Besov space $B_{p, q}^{o}(\Omega ; X)$ is the set of all functions $f \in H^{m, p}(\Omega ; X)$ such that the seminorm

$$
\begin{aligned}
|f|_{B_{p, q}^{\sigma}(\Omega ; x)} & =\sum_{|\alpha|=m}\left\||y|^{-\theta} \mid \partial^{\alpha} f(x+y)-\partial^{\alpha} f(x)\right\|_{L^{p}\left(\Omega_{1, y} ; x\right)} \|_{L^{q}\left(R^{N}\right)} \\
& =\sum_{\mid \alpha i=m}\left(\int_{R^{N}}\left(\int_{\Omega_{1, y}}\left\|\partial^{\alpha} f(x+y)-\partial^{\alpha} f(x)\right\|^{p} d x\right)^{q / p} \frac{d y}{|y|^{\theta \theta+N}}\right)^{1 / q}
\end{aligned}
$$

is finite. Here $\Omega_{k, y}=\bigcap_{j=0}^{k} \Omega-j y$ and $\Omega-j y=\{z-j y ; z \in \Omega\}$.
(b) The case $m \geqq 0$ and $\theta=1$: The Besov space $B_{p, q}^{\sigma}(\Omega ; X)$ consists of all functions $f \in H^{m, p}(\Omega ; X)$ such that the seminorm

$$
\begin{aligned}
& |f|_{B_{p, q}^{\sigma}(\Omega ; X)} \\
& \quad=\sum_{|\alpha|=m}\left\||y|^{-1}\right\| \partial^{\alpha} f(x+2 y)-2 \partial^{\alpha} f(x+y)+\partial^{\alpha} f(x)\left\|_{L^{p}\left(\Omega_{2, y ;} ; x\right)}\right\|_{L^{q}\left(R^{N}\right)}
\end{aligned}
$$

is finite.
The space $B_{p, q}^{\sigma}(\Omega ; X)$ is a Banach space with the norm

$$
\|f\|_{B_{p, q}^{\sigma}(\Omega ; X)}=\|f\|_{H^{m, p}(\Omega ; X)}+|f|_{E_{p, q}^{\sigma}(\Omega ; X)}
$$

(c) The case $m<0$: The Besov space $B_{p, q}^{\sigma}(\Omega ; X)$ is the set of all distributions f of the form

$$
\begin{equation*}
f=\sum_{|\alpha| s-m} \partial^{\alpha} f_{\alpha}, \quad f_{\alpha} \in B_{p, q}^{\theta}(\Omega ; X) . \tag{2.1}
\end{equation*}
$$

The space $B_{p, q}^{\sigma}(\Omega ; X)$ is a Banach space with the norm

$$
\|f\|_{B_{p, q}^{\sigma}(\Omega ; X)}=\inf _{|\alpha| \leqslant-m} \sum_{\alpha}\left\|f_{\alpha}\right\|_{B_{p, q}^{\theta}(\Omega ; X)},
$$

where the infimum is taken over all expressions of the form (2.1).
In the rest of this section we describe a characterization theorem of Besov spaces. In the following we denote the interval $(0, T)$ by I.

We introduce two function spaces.
(i) $\mathcal{K}_{0}(I)$ is the set of all functions $\phi \in C^{\infty}\left(\boldsymbol{R}^{2}\right)$ which satisfy the following conditions:
(2.2) For any $t \in \boldsymbol{R}$, there exists a compact set K_{t} in \boldsymbol{R} such that K_{t} contains the support of $\phi(t, \cdot)$.
(2.3) For any compact set K in I, there is a compact set $K_{1} \subset I$ such that supp $\phi(t,(t-\cdot) / \tau) \subset K_{1}$ for $t \in K$ and $0<\tau \leqq 1$.
(ii) $\mathscr{K}_{m}(I)$ is the set of m-th derivatives $\partial_{s}^{m} \phi(t, s)$ of the functions in $\varkappa_{0}(I)$.

Let ϕ_{0} be a function in $C_{0}^{\infty}(\boldsymbol{R})$ which satisfies the conditions:

$$
\operatorname{supp} \phi_{0} \subset I, \int_{R} \phi_{0}(t) d t=1
$$

If $0<c \leqq 1$, we define ϕ, e_{m}, e_{m}^{*} as follows:

$$
\begin{gather*}
\phi(t, s)=\frac{m}{m!} s^{m} \phi_{0}(t-s), \tag{2.4}\\
e_{m}(t, s)=\sum_{k=0}^{m-1} \partial_{s}^{k}\left\{\frac{1}{k!} s^{k} \phi_{0}(t-s)\right\}, \quad m=1,2, \cdots, \\
e_{m}^{*}(t, s)=2 e_{m}(t, s)-\int e_{m}(t, r) e_{m}(t-c r, s-r) d r, \quad m=1,2, \cdots \tag{2.5}
\end{gather*}
$$

Then we have the following results:
Lemma 2.1. The functions ϕ, e_{m} and e_{m}^{*} introduced above belong to the space $\mathcal{K}_{0}(I)$. Further ϕ, e_{m} and e_{m}^{*} belong to the space $\mathcal{K}_{0}(J)$ for any open interval $J \supset I$.

Lemma 2.2 (Integral representation of distributions). Let $0<c \leqq 1$ and $m=$ $l+h$ where l and h are non negative integers. Let ϕ, e_{m}^{*} be the functions as above. If f is an X-valued distribution on I, then it can be represented as follows:

$$
\begin{aligned}
f(t)= & \int_{0}^{c}\left\langle\frac{1}{\tau} \phi_{0, h}\left(t, \frac{t-s}{\tau}\right), u_{l}(\tau, s)\right\rangle_{s} \frac{d \tau}{\tau} \\
& +\sum_{j=0}^{h} \int_{0}^{c}\left\langle\frac{1}{\tau} \phi_{0, m+j}\left(t, \frac{t-s}{\tau}\right), u_{j n}(\tau, s)\right\rangle_{s} \frac{d \tau}{\tau} \\
& +\frac{1}{c}\left\langle e_{m}^{*}\left(t, \frac{t-s}{c}\right), f(s)\right\rangle_{s}
\end{aligned}
$$

where $\langle,\rangle_{\text {s }}$ denotes the pairing of $\mathscr{D}(\boldsymbol{R}) \times \mathscr{D}^{\prime}(\boldsymbol{R} ; X)$ and

$$
\begin{aligned}
& \phi_{i, j}(t, s)=\partial_{t}^{i} \partial_{s}^{j} \phi(t, s), \\
& u_{l}(\tau, t)=\int_{\tau}^{c}\left(\frac{\tau}{\tau^{\prime}}\right)^{l} \sum_{k=0}^{l}\left(\frac{l}{k}\right) \tau^{\prime k}\left\langle\frac{1}{\tau^{\prime}} \phi_{k, m+l-k}\left(t, \frac{t-s}{\tau^{\prime}}\right), f(s)\right\rangle_{s} \frac{d \tau^{\prime}}{\tau^{\prime}}, \\
& u_{j h}(\tau, s)=(-\tau)^{h-j}\binom{h}{j} \int_{0}^{\tau}\left(\frac{\tau^{\prime}}{\tau}\right)^{h}\left\langle\frac{1}{\tau^{\prime}} \phi_{h-j, l}\left(t, \frac{t-s}{\tau^{\prime}}\right), f(s)\right\rangle_{s} \frac{d \tau^{\prime}}{\tau^{\prime}} .
\end{aligned}
$$

Theorem 2.1 (Characterization of Besov spaces). Let $1 \leqq p, q \leqq \infty, \boldsymbol{\sigma} \in \boldsymbol{R}$ and m a non-negative integer such that $m>\sigma$, and $0<c \leqq 1$. An X-valued distribution f on I belongs to the space $B_{p, q}^{\sigma}(I ; X)$ if and only if the following conditions are satisfied:

$$
\begin{aligned}
& \left\langle\phi\left(t, \frac{t-s}{c}\right), f(s)\right\rangle_{s} \in L^{p}(I ; X) \quad \text { for any } \quad \phi \in \mathcal{K}_{0}(I) \\
& \tau^{-\sigma}\left\langle\phi\left(t, \frac{t-s}{\tau}\right), f(s)\right\rangle_{s} \in L_{*}^{q}\left((0, c) ; L^{p}(I ; X)\right) \quad \text { for any } \quad \phi \in \mathcal{K}_{m}(I)
\end{aligned}
$$

REMARK 2.1. (A) Let m, h and l be integers such that $-h<\sigma<l, m=l+$ h. Set

$$
\psi_{k}(t, s)=\partial_{t}^{k} \partial_{s}^{l-k} e_{m}^{*}(t, s), \quad k=0, \cdots, l
$$

Then $f \in B_{p, q}^{o}(I ; X)$ if the following conditions are satisfied:

$$
\begin{aligned}
& \tau^{-\sigma}\left\langle\frac{1}{\tau} \phi_{k, m+l-k}\left(s, \frac{s-r}{\tau}\right), f(r)\right\rangle_{r} \in L_{*}^{q}\left((0, c) ; L^{p}(I ; X)\right) \\
& \quad \text { for } \quad k=0, \cdots, l, \\
& \tau^{-\sigma}\left\langle\frac{1}{\tau} \phi_{h-j, l}\left(s, \frac{s-r}{\tau}\right), f(r)\right\rangle_{r} \in L_{*}^{q}\left((0, c) ; L^{p}(I ; X)\right) \\
& \quad \text { for } j=0, \cdots, h, \\
& \left\langle\psi_{k}\left(t, \frac{t-s}{c}\right), f(s)\right\rangle_{s} \in L^{p}(I ; X) \quad \text { for } \quad k=0, \cdots, l .
\end{aligned}
$$

(B) Furthermore, the norm of f in $B_{p, q}^{\sigma}(I, X)$ is equivalent with the sum of the corresponding norms of the above functions.

Corollary 2.1. We have the following inclusions:

$$
\begin{align*}
& B_{\infty, q_{1}}^{\sigma_{1}}(I ; X) \subset B_{\infty, q_{2}}^{\sigma_{2}}(I ; X) \quad \text { for } 1 \leqq q_{1}, q_{2} \leqq \infty, \sigma_{2}<\sigma_{1} . \tag{2.6}\\
& B_{\infty, q_{1}}^{\sigma}(I ; X) \subset B_{\infty, q_{2}}^{\sigma}(I ; X) \quad \text { for } 1 \leqq q_{1} \leqq q_{2} \leqq \infty, \boldsymbol{\sigma} \in \boldsymbol{R} . \tag{2.7}\\
& B_{\infty, 1}^{\infty}(I ; X) \subset L^{\infty}(I ; X) . \tag{2.8}\\
& B_{\infty, 1}^{m}(I ; X) \subset C^{m}([0, T] ; X) \quad \text { if } m \text { is a non negative integer. } \tag{2.9}\\
& B_{\infty, \infty}^{\theta}(I ; X)=C^{\theta}([0, T] ; X) \quad \text { for } 0<\theta<1 . \tag{2.10}
\end{align*}
$$

Further the inclusions (2.6), (2.7) and (2.8) are continuous.
Remark 2.2. From the inclusions (2.6) and (2.10), it follows that

$$
C^{\gamma}([0, T] ; X) \subset B_{\infty, 1}^{1-\theta}(I ; X) \quad \text { for } \quad 1-\theta<\gamma \leqq 1 .
$$

Theorem 2.2. Let $1 \leqq p, q \leqq \infty$ and $\sigma \in \boldsymbol{R}$. If $g \in B_{p, q}^{\sigma}(I ; X)$, then there exists a sequence $\left\{g_{n}\right\}_{n=1}^{\infty}$ such that

$$
\begin{aligned}
& g_{n} \in B_{p, q}^{\sigma}(I ; X) \cap C^{1}([0, T] ; X), \\
& g_{n} \longrightarrow g \text { in } B_{p, q}^{\sigma}(I ; X) \cap L^{1}(I ; X) \text { as } n \longrightarrow \infty
\end{aligned}
$$

3. Analytic semigroups with weak singularity

In this section we briefly state properties of analytic semigroups with weak singularity which will be used in the following section.

Theorem 3.1. Assume that a linear operator \mathfrak{A} satisfies conditions (A.1), (A.2) and (A.3) for $0<\theta<1$. Then we have the following :
(3.1) The operator \mathfrak{A} generates a semigroup $e^{2 \mathscr{2}}$ on X which is analytic in the sector $\Delta(\omega)$.
(3.2) The operators $\mathfrak{A}^{m} e^{2 \mathfrak{2 x}}$ and $\left(d^{m} / d z^{m}\right) e^{2 \mathfrak{2 x}}$ are bounded operators on X for any non-negative integer m and $z \in \Delta(\omega)$, and satisfy the following relation and estimate.

$$
\begin{aligned}
& \frac{d^{m}}{d z^{m}}\left(e^{z \mathscr{2}}\right)=\mathfrak{A}^{m} e^{2 \mathscr{Z}}, \quad z \in \Delta(\omega) . \\
& \left\|\mathfrak{A}^{m} e^{2 \mathscr{2}}\right\| \leqq M_{m}|z|^{\theta-1-m}, \quad z \in \Delta(\omega) .
\end{aligned}
$$

Here the letter M_{m} is a constant depending on m and ω.

Proof. We can define the semigroup $e^{2 q}$ for any $0<\varepsilon<\omega$ as follows:

$$
e^{2 \boldsymbol{2} I}=-\frac{1}{2 \pi i} \int_{\Gamma} e^{2 \lambda}(\mathfrak{\mu}-\lambda)^{-1} d \lambda .
$$

Here Γ is a path in the set $\Sigma(\varepsilon)$ such that $\Gamma=-\Gamma_{1}+\Gamma_{2}$ where

$$
\begin{aligned}
& \Gamma_{1}=\left\{r e^{-i(\pi / 2+\varepsilon)} ; 0 \leqq r<\infty\right\} . \\
& \Gamma_{2}=\left\{r e^{i(\pi / 2+\varepsilon)} ; 0 \leqq r<\infty\right\} .
\end{aligned}
$$

Then, according to Theorem 5.3 of Taira [3], we have the conditions (3.1) and (3.2) for $m=0,1$. In the following we show the condition (3.2) for general $m \geqq 2$.

First we show the following formula:

$$
\begin{equation*}
\frac{d^{m}}{d z^{m}}\left(e^{22}\right)=-\frac{1}{2 \pi i} \int_{\Gamma} \lambda^{m} e^{2 \lambda}(\mathfrak{A}-\lambda)^{-1} d \lambda, \quad m \geqq 1, z \in \Delta(\varepsilon) . \tag{3.3}
\end{equation*}
$$

For $z \in \Delta(\varepsilon)$ and $\lambda \in \Gamma_{1}$, we set

$$
\begin{aligned}
& z=|z| e^{i \alpha}, \quad 0 \leqq \alpha<\varepsilon, \\
& \lambda=r e^{-i(\pi / 2+\varepsilon)}, \quad 0 \leqq r<\infty .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\left|e^{z \lambda}\right| & =\left|e^{|z| r(\cos (\alpha-\pi / 2-\varepsilon)+i \sin (\alpha-\pi / 2-\varepsilon))}\right| \\
& =e^{-|z| r \cdot \sin (\varepsilon-\alpha)} .
\end{aligned}
$$

Hence it follows that for $z \in \Delta(\varepsilon)$ and $\lambda \in \Gamma_{1}$

$$
\begin{equation*}
\left\|\lambda^{m} e^{2 \lambda}(\mathfrak{A}-\lambda)^{-1}\right\| \leqq r^{m} e^{-|z| r \cdot \sin (\varepsilon-\alpha)} \frac{C(\varepsilon)}{(1+r)^{\theta}} . \tag{3.4}
\end{equation*}
$$

Similarly, for $z \in \Delta(\varepsilon)$ and $\lambda \in \Gamma_{2}$, we let

$$
\begin{aligned}
& z=|z| e^{i \alpha}, \quad 0 \leqq \alpha<\varepsilon, \\
& \lambda=r e^{i(\pi / 2+\varepsilon)}, \quad 0 \leqq r<\infty .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\left|e^{z \lambda}\right| & =\left|e^{|z| r(\cos (\alpha+\pi / 2+\varepsilon)+i \sin (\alpha+\pi / 2+\varepsilon) \mid}\right| \\
& =e^{-|z| r \cdot \sin (\varepsilon+\alpha)} .
\end{aligned}
$$

Hence it follows that for $z \in \Delta(\varepsilon)$ and $\lambda \in \Gamma_{2}$

$$
\begin{equation*}
\left\|\lambda^{m} e^{z \lambda}(\mathfrak{A}-\lambda)^{-1}\right\| \leqq r^{m} e^{-|z| r \cdot \sin (\varepsilon+\alpha)} \frac{C(\varepsilon)}{(1+r)^{\theta}} . \tag{3.5}
\end{equation*}
$$

If $z \in \Delta(\varepsilon)$, we have by the estimates (3.4) and (3.5)

$$
\begin{aligned}
& \int_{\Gamma}\left\|\lambda^{m} e^{2 \lambda}(\mathfrak{A}-\lambda)^{-1}\right\| d \lambda \\
\leqq & \sum_{i=1}^{2} \int_{\Gamma_{i}}\left\|\lambda^{m} e^{2 \lambda}(\mathfrak{A}-\lambda)^{-1}\right\| d \lambda \\
\leqq & C(\varepsilon) \int_{0}^{\infty} \frac{r^{m}}{(1+r)^{\theta}}\left(e^{-|z| r \cdot \sin (\varepsilon-\alpha)}+e^{-|z| r \cdot \sin (\varepsilon+\alpha)}\right) d r .
\end{aligned}
$$

Let $\rho=|z| r$. By interchanging the integral order, we have

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{r^{m}}{(1+r)^{\theta}}\left(e^{-|z| r \cdot \sin (\varepsilon-\alpha)}+e^{-|z| r \cdot \sin (\varepsilon+\alpha)}\right) d r \\
= & \int_{0}^{\infty}(\rho /|z|)^{m}\left(\frac{1}{1+\rho /|z|}\right)^{\theta}\left(e^{-\rho \cdot \sin (\varepsilon-\alpha)}+e^{-\rho \cdot \sin (\varepsilon+\alpha)}\right) \frac{d \rho}{|z|} \\
\leqq & |z|^{\theta-1-m} \int_{0}^{\infty} \rho^{m-\theta}\left(e^{-\rho \cdot \sin (s-\alpha)}+e^{-\rho \cdot \sin (s+\alpha)}\right) d \rho .
\end{aligned}
$$

Since $\sin (\varepsilon-\alpha)>0$ and $\sin (\varepsilon+\alpha)>0$, we obtain that

$$
\int_{0}^{\infty} \rho^{m-\theta}\left(e^{-\rho \cdot \sin (\varepsilon-\alpha)}+e^{-\rho \cdot \sin (\varepsilon+\alpha)}\right) d \rho<\infty .
$$

This implies that the operator $\int_{\Gamma} \lambda^{m} e^{2 \lambda}(\mathfrak{A}-\lambda)^{-1} d \lambda$ is bounded on X for $z \in \Delta(\varepsilon)$. Further we have

$$
\begin{equation*}
\frac{d^{m}}{d z^{m}}\left(e^{z \boldsymbol{2}}\right)=-\frac{1}{2 \pi i} \int_{\Gamma} \lambda^{m} e^{z \lambda}(\mathfrak{A}-\lambda)^{-1} d \lambda, \quad z \in \Delta(\varepsilon) \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\frac{d^{m}}{d z^{m}}\left(e^{z 2 g}\right)\right\| \leqq C|z|^{\theta-1-m}, \quad z \in \Delta(\varepsilon) . \tag{3.7}
\end{equation*}
$$

Here the letter C is a constant depending on m and ω.
Next, using induction on m, we show that

$$
\begin{equation*}
\frac{d^{m}}{d z^{m}}\left(e^{2 \mathfrak{Z}}\right)=\mathfrak{A}^{m} e^{2 \mathfrak{Z}}, \quad z \in \Delta(\varepsilon) . \tag{3.8}
\end{equation*}
$$

By Theorem 5.3 of [3], we have the equality (3.8) for $m=1$. We assume that the equality (3.8) holds for $m \geqq 1$. Then it follows from (3.6) that

$$
\begin{aligned}
\frac{d^{m+1}}{d z^{m+1}}\left(e^{2 \boldsymbol{2}}\right) & =-\frac{1}{2 \pi i} \int_{\Gamma} \lambda^{m+1} e^{z \lambda}(\mathfrak{A}-\lambda)^{-1} d \lambda \\
& =-\frac{1}{2 \pi i} \int_{\Gamma} \lambda^{m} e^{2 \lambda} \lambda(\mathfrak{A}-\lambda)^{-1} d \lambda .
\end{aligned}
$$

By Remarking that $\mathfrak{A}(\mathfrak{A}-\lambda)^{-1}=1+\lambda(\mathscr{A}-\lambda)^{-1}$, it follows that

$$
\frac{d^{m+1}}{d z^{m+1}}\left(e^{2 \mathscr{2}}\right)=-\frac{1}{2 \pi i} \int_{\Gamma} \lambda^{m} e^{2 \lambda} \mathfrak{A}(\mathfrak{U}-\lambda)^{-1} d \lambda-\frac{1}{2 \pi i} \int_{\Gamma} \lambda^{m} e^{2 \lambda} d \lambda
$$

The closedness of \mathfrak{A} tells us that

$$
\begin{aligned}
-\frac{1}{2 \pi i} \int_{\Gamma} \mathfrak{A} \lambda^{m} e^{2 \lambda}(\Re-\lambda)^{-1} d \lambda & =\mathfrak{A}\left(-\frac{1}{2 \pi i} \int_{\Gamma} \lambda^{m} e^{2 \lambda}(\mathfrak{A}-\lambda)^{-1} d \lambda\right) \\
& =\mathfrak{A} \frac{d^{m}}{d z^{m}}\left(e^{2 \mathfrak{Y}}\right) \\
& =\mathfrak{A}^{m+1} e^{z \mathfrak{Y}} .
\end{aligned}
$$

Note that

$$
\int_{\Gamma} \lambda^{m} e^{2 \lambda} d \lambda=0 \quad \text { for } \quad m \geqq 1
$$

Hence it follows that

$$
\frac{d^{m+1}}{d z^{m+1}}\left(e^{z \mathbb{Z}}\right)=\mathfrak{A}^{m+1} e^{z \mathfrak{Z}}, \quad z \in \Delta(\varepsilon)
$$

The statements (3.7) and (3.8) imply that

$$
\left\|\mathfrak{A}^{m} e^{z \mathscr{Z}}\right\| \leqq M_{m}|z|^{\theta-1-m}, \quad z \in \Delta(\varepsilon), \quad m \geqq 1
$$

with a constant $M_{m}>0$ depending on m and ω.
The proof of Theorem 3.1 is complete.

4. Proof of Theorem 1.4

In this section we prove Theorem 1.4 by following the proof of Theorem B of Muramatu [1]. If there exists a solution u of the problem (*) for $u_{0} \in$ $\mathscr{D}\left((-\mathfrak{A})^{\alpha}\right)$ with $1-\theta<\alpha<\theta$, we can uniquely write the solution in the following form:

$$
u(t)=e^{t \mathscr{q}} u_{0}+\int_{0}^{t} e^{(t-s) \mathscr{1}} f(s) d s, \quad 0 \leqq t \leqq T
$$

First we verify that u satisfies the condition (1.1). Theorem 1.3 tells us that

$$
e^{t श 2} u_{0} \in C([0, T] ; X) \cap C^{1}((0, T] ; X) .
$$

So, it suffices to show that

$$
F(\cdot)=\int_{0}^{\cdot} e^{(\cdot-s) \mathfrak{R}} f(s) d s \in C([0, T] ; X) \cap C^{1}((0, T] ; X)
$$

Since it is clear that $f \in B_{\infty, 1}^{1-\theta}(I ; X)$ implies $F \in C([0, T] ; X)$, we have only to verify that $F \in C^{1}((0, T] ; X)$. By Corollary 2.1, we have

$$
B_{\infty, 1}^{1}((\varepsilon, T) ; X) \subset C^{1}([\varepsilon, T] ; X) \quad \text { for any } 0<\varepsilon<T .
$$

Therefore, if $F \in B_{\infty, 1}^{1}((\varepsilon, T) ; X)$ for any $0<\varepsilon<T$, it follows that $F \in C^{1}((0$, $T]$; X).

Let I_{ε} be the open interval (ε, T). In the following we simply write \int_{R} as \int. In order to verify that $F \in B_{\infty, 1}^{1}\left(I_{s} ; X\right)$, we apply Theorem 2.1 with $I=I_{\varepsilon}$ and $m=4$. That is, we show that the function F satisfies the following conditions for $0<c \leqq 1$:

$$
\begin{align*}
& \int \phi\left(\cdot, \frac{-s}{c}\right) F(s) d s \in L^{\infty}\left(I_{\varepsilon} ; X\right) \quad \text { for } \quad \phi \in \mathscr{K}_{0}\left(I_{\varepsilon}\right), \tag{4.1}\\
& \tau^{-1} \int \frac{1}{\tau} \phi\left(\cdot, \frac{-s}{\tau}\right) F(s) d s \in L_{*}^{1}\left((0, c) ; L^{\infty}\left(I_{\varepsilon} ; X\right)\right) \tag{4.2}
\end{align*}
$$

for $\phi \in \mathscr{K}_{4}\left(I_{\varepsilon}\right) \cap \mathcal{K}_{4}(I)$ (cf. Lemma 2.1 and Remark 2.1(A)).
First, we show that F satisfies the condition (4.1). Since ϕ satisfies the condition (2.3), we have

$$
\begin{equation*}
\int \phi\left(t, \frac{t-s}{c}\right) F(s) d s=\int_{0}^{T} \phi\left(t, \frac{t-s}{c}\right)\left(\int_{0}^{s} e^{(s-r) \mathscr{M}} f(r) d r\right) d s . \tag{4.3}
\end{equation*}
$$

By interchanging the integral order of s and r and by integration by substitution with $s-r=s^{\prime}$, the right hand of (4.3) becomes

$$
\begin{aligned}
& \int_{0}^{T} \phi\left(t, \frac{t-s}{c}\right)\left(\int_{0}^{s} e^{(s-r) \mathfrak{R}} f(r) d r\right) d s \\
= & \int_{0}^{T}\left(\int_{r}^{T} \phi\left(t, \frac{t-s}{c}\right) e^{(s-r) \mathfrak{R}} d s\right) f(r) d r \\
= & \int_{0}^{T}\left(\int_{0}^{T-r} \phi\left(t, \frac{t-s^{\prime}-r}{c}\right) e^{s^{\prime} \mathfrak{Q}} d s^{\prime}\right) f(r) d r .
\end{aligned}
$$

Again, by interchanging the integral order of s and r, it follows that

$$
\begin{aligned}
& \int_{0}^{T}\left(\int_{0}^{T-r} \phi\left(t, \frac{t-s^{\prime}-r}{c}\right) e^{s^{\prime} \mathfrak{2}} d s^{\prime}\right) f(r) d r \\
= & \int_{0}^{T} e^{s^{\prime} \mathfrak{q}} d s^{\prime} \int_{0}^{T-s^{\prime}} \phi\left(t, \frac{t-s^{\prime}-r}{c}\right) f(r) d r .
\end{aligned}
$$

Hence we have

$$
\int \phi\left(t, \frac{t-s}{c}\right) F(s) d s=\int_{0}^{T} e^{s q} d s \int_{0}^{T-s} \phi\left(t, \frac{t-s-r}{c}\right) f(r) d r .
$$

Now we cite a lemma which we use in order to estimate the right term (cf. Muramatu [1], Lemma 3).

Lemma 4.1. Suppose that $1 \leqq p \leqq \infty, 0<\tau \leqq 1, f \in L^{1}(I ; X)$ and $\phi \in \mathscr{K}_{0}\left(I_{\varepsilon}\right)$.

Then there exists a constant $M_{1}>0$ such that

$$
\left\|\int_{0}^{T-s} \frac{1}{\tau} \phi\left(\cdot, \frac{--s-r}{\tau}\right) f(r) d r\right\|_{L^{\left.p_{(I} ; X\right)}} \leqq M_{1} \tau^{-1+1 / p}\|f\|_{\left.L^{1(I} ; X\right)}
$$

for $0 \leqq s \leqq T$.
By making use of Lemma 4.1 and the estimate:

$$
\left\|e^{s q}\right\| \leqq M s^{\theta-1}, \quad s>0
$$

it follows that

$$
\begin{align*}
& \left\|\int \phi\left(\cdot, \frac{-s}{c}\right) F(s) d s\right\|_{L^{\infty}\left(I_{\mathrm{s}} ; x\right)} \tag{4.4}\\
\leqq & \int_{0}^{T} \| e^{s V_{I}\|d s\| \int_{0}^{T-s} \phi\left(\cdot, \frac{\cdot-s-r}{c}\right) f(r) d r \|_{L^{\infty}(I ; X)}} \\
\leqq & C\|f\|_{L_{1(I ; X)}}
\end{align*}
$$

Here and in the following the letter C is a general constant independent of f.
Next we show that F satisfies the condition (4.2). Let $0<\tau \leqq c, \phi \in \mathscr{K}_{4}\left(I_{\mathrm{s}}\right) \cap$ $\mathscr{K}_{4}(I)$ and

$$
U(\tau, t)=\int \frac{1}{\tau} \phi\left(t, \frac{t-s}{\tau}\right) F(s) d s .
$$

We divide the integral with respect to s into two parts as follows:

$$
\begin{aligned}
U(\tau, t) & =\int \frac{1}{\tau} \phi\left(t, \frac{t-s}{\tau}\right) F(s) d s \\
& =\int_{0}^{T} e^{s \Omega} d s \int_{0}^{T-s} \frac{1}{\tau} \phi\left(t, \frac{t-s-r}{\tau}\right) f(r) d r \\
& =\left(\int_{0}^{\tau}+\int_{\tau}^{T}\right) e^{s \mathfrak{s}} d s \int_{0}^{T-s} \frac{1}{\tau} \phi\left(t, \frac{t-s-r}{\tau}\right) f(r) d r \\
& \equiv U_{1}(\tau, t)+U_{2}(\tau, t) .
\end{aligned}
$$

We cite a lemma which is used in order to estimate U_{1} and U_{2} (cf. Muramatu [1], Lemma 4).

Lemma 4.2. Assume that $1 \leqq p \leqq \infty, 0<\tau \leqq c, f \in L^{1}(I ; X)$ and $\phi \in \mathcal{K}_{0}\left(I_{\mathrm{s}}\right)$. Then there exists a constant $M_{2}>0$ such that

$$
\begin{aligned}
& \left\|\int_{0}^{T-s} \frac{1}{\tau} \phi\left(\cdot, \frac{-s-r}{\tau}\right) f(r) d r\right\|_{L^{p}\left(I_{\varepsilon} ; X\right)} \\
\leqq & \sum_{j=0}^{2} \frac{s^{j}}{j!}\left\|u_{j}(\tau, \cdot)\right\|_{L^{p}(I ; X)}+M_{2} s^{3} \tau^{-1+1 / p}\|f\|_{L_{1(I ; X)}}
\end{aligned}
$$

for $0 \leqq s \leqq \varepsilon$. Here

$$
\begin{aligned}
& u_{j}(\tau, t)=\int_{0}^{T} \frac{1}{\tau} \phi_{j, 0}\left(t, \frac{t-r}{\tau}\right) f(r) d r, \\
& \phi_{j, k}(t, s)=\partial_{t}^{j} \partial_{s}^{k} \phi(t, s) .
\end{aligned}
$$

Now we may assume that $0<c \leqq \varepsilon$. Lemma 4.2 gives that

$$
\begin{align*}
& \left\|U_{1}(\tau, \cdot)\right\|_{L^{\infty}\left(I_{s} ; X\right)} \tag{4.5}\\
\leqq & \int_{0}^{\tau}\left\|e^{s थ}\right\| d s\left\|\int_{0}^{T-s} \frac{1}{\tau} \phi\left(\cdot, \frac{-s-r}{\tau}\right) f(r) d r\right\|_{L^{\infty}\left(I_{s} ; X\right)} \\
\leqq & \int_{0}^{\tau} M s^{\theta-1}\left(\sum_{j=0}^{2} \frac{s^{j}}{j!}\left\|u_{j}(\tau, \cdot)\right\|_{L^{\infty}(I ; X)}+M_{2} s^{3} \tau^{-1}\|f\|_{L^{1}(I ; X)}\right) d s \\
\leqq & C \tau^{\theta}\left(\sum_{j=0}^{2} \tau^{j}\left\|u_{j}(\tau, \cdot)\right\|_{L^{\infty}(I ; X)}+\tau^{2}\|f\|_{\left.L_{1(I} ; X\right)}\right) .
\end{align*}
$$

Since $\phi \in \mathcal{K}_{4}\left(I_{\varepsilon}\right) \cap \mathcal{K}_{4}(I)$, we can represent ϕ as $\phi(t, s)=\partial_{s}^{4} \phi(t, s)$ where $\phi \in$ $\mathscr{K}_{0}\left(I_{\varepsilon}\right) \cap \mathcal{K}_{0}(I)$. By interchanging the integral order, we have

$$
\begin{aligned}
U_{2}(\tau, t) & =\int_{\tau}^{T} e^{s q} d s \int_{0}^{T-s} \frac{1}{\tau} \phi\left(t, \frac{t-s-r}{\tau}\right) f(r) d r \\
& =\int_{0}^{T-\tau}\left(\int_{\tau}^{T-r} \frac{1}{\tau} \phi\left(t, \frac{t-s-r}{\tau}\right) e^{s \mathcal{Q}} d s\right) f(r) d r \\
& =\int_{0}^{T-\tau}\left(\int_{\tau}^{T-r} \frac{1}{\tau} \psi_{0,4}\left(t, \frac{t-s-r}{\tau}\right) e^{s \mathcal{Q}} d s\right) f(r) d r
\end{aligned}
$$

where $\psi_{i, j}(t, s)=\partial_{i}^{i} \partial_{s}^{j} \psi(t, s)$. By integration by parts, it follows that

$$
\begin{aligned}
\int_{\tau}^{T-r} \frac{1}{\tau} \psi_{0,4}\left(t, \frac{t-s-r}{\tau}\right) e^{s \mathfrak{z}} d s= & \sum_{k=0}^{3} \psi_{0, k}\left(t, \frac{t-\tau-r}{\tau}\right)(\tau \mathfrak{N})^{3-k} e^{\tau \mathfrak{Q}} \\
& +\int_{\tau}^{T-r} \tau^{3} \psi\left(t, \frac{t-s-r}{\tau}\right) \mathfrak{H}^{4} e^{s \mathfrak{2} d s} .
\end{aligned}
$$

Hence we obtain that

$$
\begin{align*}
U_{2}(\tau, t)= & \int_{0}^{T-\tau}\left(\sum_{k=0}^{3} \psi_{0, k}\left(t, \frac{t-\tau-r}{\tau}\right)(\tau \mathfrak{A})^{3-k} e^{\tau^{2 \mathscr{U}}}\right. \tag{4.6}\\
& \left.+\int_{\tau}^{T-r} \tau^{3} \psi\left(t, \frac{t-s-r}{\tau}\right) \mathfrak{A}^{4} e^{s \mathscr{Q}} d s\right) f(r) d r .
\end{align*}
$$

We write the first and second terms of (4.6) as

$$
\begin{aligned}
& V_{k}(\tau, t)=\tau(\tau \mathfrak{A})^{3-k} e^{\tau \tau} \int_{0}^{T-\tau} \frac{1}{\tau} \phi_{0, k}\left(t, \frac{t-\tau-r}{\tau}\right) f(r) d r, \quad k=0,1,2,3, \\
& V_{4}(\tau, t)=\int_{0}^{T-\tau}\left(\int_{0}^{T-r} \tau^{3} \psi\left(t, \frac{t-s-r}{\tau}\right) \mathfrak{X}^{4} e^{s \mathcal{U}} d s\right) f(r) d r,
\end{aligned}
$$

respectively. That is, $U_{2}(\tau, t)$ is written as

$$
U_{2}(\tau, t)=\sum_{k=0}^{3} V_{k}(\tau, t)+V_{4}(\tau, t)
$$

By noting that

$$
\left\|\mathfrak{H}^{m} e^{t \mathscr{2}}\right\| \leqq M_{m} t^{\theta-1-m}, \quad t>0
$$

with a constant $M_{m}>0$ for $m=0,1,2, \cdots$, Lemma 4.2 gives that

$$
\begin{equation*}
\left\|V_{k}(\tau, \cdot)\right\|_{L^{\infty}\left(I_{\varepsilon} ; X\right)} \leqq C \tau^{\theta}\left(\sum_{j=0}^{2}\left\|\tau^{j} v_{j k}(\tau, \cdot)\right\|_{L^{\infty}(I ; X)}+\tau^{2}\|f\|_{L 1(I ; X)}\right) \tag{4.7}
\end{equation*}
$$

Here

$$
\text { for } k=0,1,2,3
$$

$$
v_{j k}(\tau, t)=\int_{0}^{T} \frac{1}{\tau} \psi_{j, k}\left(t, \frac{t-r}{\tau}\right) f(r) d r, \quad j=0,1,2, k=0,1,2,3
$$

$V_{4}(\tau, t)$ is, by interchanging the integral order of s and r, written by the following form:

$$
V_{4}(\tau, t)=\tau^{4} \int_{\tau}^{T} \mathfrak{A}^{4} e^{s \mathfrak{N}} d s \int_{0}^{T-s} \frac{1}{\tau} \psi\left(t, \frac{t-s-r}{\tau}\right) f(r) d r
$$

Lemma 4.1 and Lemma 4.2 give that

$$
\begin{align*}
& \left\|V_{4}(\tau, \cdot)\right\|_{L^{\infty}\left(I_{\varepsilon} ; X\right)} \tag{4.8}\\
\leqq & \tau^{4}\left(\int_{\tau}^{\varepsilon}+\int_{\varepsilon}^{T}\right)\left\|\mathfrak{H}^{4} e^{s \mathfrak{2}}\right\| d s\left\|\int_{0}^{T-s} \frac{1}{\tau} \psi\left(\cdot, \frac{\cdot-s-r}{\tau}\right) f(r) d r\right\|_{L^{\infty}\left(I_{\varepsilon} ; X\right)} \\
\leqq & \tau^{4} \int_{\tau}^{\varepsilon} M_{4} s^{\theta-5}\left(\sum_{j=0}^{2} \frac{s^{j}}{j!}\left\|v_{j 0}(\tau, \cdot)\right\|_{L^{\infty}(I ; X)}+M_{2} s^{3} \tau^{-1}\|f\|_{L^{1}(I ; X)}\right) d s \\
& +\tau^{4} \int_{\varepsilon}^{T} M_{4} s^{\theta-5} \tau^{-1}\|f\|_{L^{1}(I ; X)} d s \\
\leqq & C \tau^{4} \int_{\tau}^{\infty} s^{\theta-5}\left(\sum_{j=0}^{2} s^{j}\left\|v_{j 0}(\tau, \cdot)\right\|_{L^{\infty}(I ; X)}+s^{3} \tau^{-1}\|f\|_{L_{1}(I ; X)}\right) d s \\
& C \tau^{4} \int_{\varepsilon}^{T} s^{\theta-5} \tau^{-1}\|f\|_{L 1(I ; X)} d s \\
\leqq & C \tau^{\theta}\left(\sum_{j=1}^{2} \tau^{j}\left\|v_{j 0}(\tau, \cdot)\right\|_{L^{\infty}(I ; X)}+\left(\tau^{2}+\tau^{3-\theta}\right)\|f\|_{\left.L_{1(I} ; X\right)}\right)
\end{align*}
$$

Hence we have
(4.9) $\left\|U_{2}(\tau, \cdot)\right\|_{L^{\infty}\left(I_{\varepsilon} ; X\right)} \leqq \sum_{k=0}^{4}\left\|V_{k}(\tau, \cdot)\right\|_{L^{\infty}\left(I_{\varepsilon} ; X\right)}$

$$
\leqq C \sum_{k=0}^{3} \tau^{\theta}\left(\sum_{j=0}^{2} \tau^{j}\left\|v_{j k}(\tau, \cdot)\right\|_{L^{\infty}(I ; X)}+\left(\tau^{2}+\tau^{3-\theta}\right)\|f\|_{L^{1}(I ; X)}\right)
$$

By the estimates (4.5) and (4.9), we have

$$
\begin{align*}
& \left\|\tau^{-1} U(\tau, t)\right\|_{L^{1}}^{1}\left((0, C) ; L^{\infty}\left(I_{\varepsilon} ; X\right)\right) \tag{4.10}\\
= & \int_{0}^{c} \tau^{-1}\|U(\tau, \cdot)\|_{L^{\infty}\left(I_{\varepsilon} ; X\right)} \frac{d \tau}{\tau} \\
\leqq & C\left(\sum_{j=0}^{2}\left\|\tau^{-(1-\theta)} u_{j}(\tau, t)\right\|_{L^{2}}\left((0, C) ; L^{\infty}(I ; X)\right)\right. \\
& \left.+\sum_{j=0}^{2} \sum_{k=0}^{3}\left\|\tau^{-(1-\theta)} v_{j k}(\tau, t)\right\|_{L^{1}\left((0, C) ; L^{\infty}(I ; X)\right)}+\|f\|_{L_{1}(I ; X)}\right) .
\end{align*}
$$

By Remark 2.1 (B), it follows that

$$
\begin{equation*}
\left\|\tau^{-1} U(\tau, t)\right\|_{\left.L_{*}^{1}(c o, c) ; L^{\infty}\left(I_{s} ; X\right)\right)} \leqq C\left(\|f\|_{B_{\infty, 1}^{1-\theta}(I ; X)}+\|f\|_{L^{1}(I ; X)}\right) . \tag{4.11}
\end{equation*}
$$

It has been proved that F satisfies the condition (4.2).
Now, by making use of Remark 2.1 (B), the estimates (4.6) and (4.11) imply that

$$
\begin{equation*}
\|F\|_{B_{\infty, 1}^{1}\left(I_{\varepsilon} ; X\right)} \leqq C\left(\|f\|_{B_{\infty, 1}^{1-\theta}(I ; X)}+\|f\|_{L^{1}(I ; X)}\right) . \tag{4.12}
\end{equation*}
$$

Now we verify that u, given by the formula

$$
u(t)=e^{t \mathfrak{Y}} u_{0}+\int_{0}^{t} e^{(t-s) \mathfrak{R}} f(s) d s,
$$

satisfies the conditions (1.2) and (1.3). Theorem 1.3 tells us that $e^{t y} u_{0}$ satisfies the conditions (1.2) and (1.3). By virtue of Theorem 2.2, there exists a sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ such that

$$
\begin{equation*}
f_{n} \in B_{\infty, 1}^{1-\theta}(I ; X) \cap C^{1}([0, T] ; X), \tag{4.13}
\end{equation*}
$$

We let

$$
F_{n}(t)=\int_{0}^{t} e^{(t-s) \mathscr{q}} f_{n}(s) d s .
$$

Then we have by Theorem 1.3

$$
\begin{aligned}
& F_{n} \in C^{1}((0, T] ; X), \\
& F_{n}(t) \in \mathscr{D}(\mathfrak{A}), \quad 0<t \leqq T, \\
& \frac{d F_{n}}{d t}(t)=\mathfrak{A} F_{n}(t)+f_{n}(t), \quad 0<t \leqq T .
\end{aligned}
$$

By applying the inequality (4.12) to $f-f_{n}$ and $F-F_{n}$, we have

$$
\left\|F-F_{n}\right\|_{B_{\infty, 1}^{1}\left(I_{s} ; X\right)} \leqq C\left(\left\|f-f_{n}\right\|_{B_{\infty, 1}^{1-\theta}(I ; X)}+\left\|f-f_{n}\right\|_{L_{1}(I ; X)}\right) .
$$

Using the statement (4.14), we obtain that

$$
\begin{equation*}
\left\|F-F_{n}\right\|_{B_{\infty, 1}^{1}\left(I_{\varepsilon} ; X\right)} \longrightarrow 0 \text { as } n \longrightarrow \infty . \tag{4.15}
\end{equation*}
$$

On the other hand, we have

$$
\begin{aligned}
& \left\|\mathfrak{H} F_{n}-\frac{d F}{d t}+f\right\|_{B_{\infty, 1}^{0}\left(I_{s} ; X\right)} \\
= & \left\|-f_{n}+\frac{d F_{n}}{d t}-\frac{d F}{d t}+f\right\|_{B_{\infty, 1}^{0}\left(I_{z} ; x\right)} \\
\leqq & \left\|f_{n}-f\right\|_{B_{\infty, 1}^{0}\left(I_{s} ; X\right)}+\left\|\frac{d F_{n}}{d t}-\frac{d F}{d t}\right\|_{B_{\infty, 1}^{0}\left(I_{\varepsilon} ; x\right)} .
\end{aligned}
$$

We estimate the two terms of the right. The inclusion (2.6) and the statement (4.14) tell us that

$$
\begin{align*}
\left\|f_{n}-f\right\|_{B_{\infty, 1}^{0}\left(I_{\varepsilon} ; x\right)} & \leqq C\left\|f_{n}-f\right\|_{B_{\infty, 1}^{1-\theta}\left(I_{\varepsilon} ; x\right)} \tag{4.16}\\
& \leqq C\left\|f_{n}-f\right\|_{B_{\infty, 1}^{1-\theta}(I ; X)} \longrightarrow 0 \text { as } n \longrightarrow \infty
\end{align*}
$$

The definition of Besov spaces and (4.15) give that

$$
\begin{equation*}
\left\|\frac{d F_{n}}{d t}-\frac{d F}{d t}\right\|_{B_{\infty, 1}^{0}\left(I_{s} ; X\right)} \leqq\left\|F_{n}-F\right\|_{B_{\infty, 1}^{1}\left(I_{\varepsilon} ; X\right)} \longrightarrow 0 \quad \text { as } \quad n \longrightarrow \infty . \tag{4.17}
\end{equation*}
$$

From (4.16) and (4.17), it follows that

$$
\begin{equation*}
\left\|\mathfrak{N} F_{n}-\frac{d F}{d t}-f\right\|_{B_{\infty, 1}^{0}\left(I_{\varepsilon} ; X\right)} \longrightarrow 0 \text { as } n \longrightarrow \infty . \tag{4.18}
\end{equation*}
$$

By using the inclusion (2.8), if $t \in I_{\varepsilon}$, the statements (4.15) and (4.18) imply that as $n \rightarrow \infty$

$$
\begin{aligned}
& F_{n}(t) \longrightarrow F(t) \text { in } X, \\
& \mathfrak{N} F_{n}(t) \longrightarrow \frac{d F}{d t}(t)-f(t) \text { in } X .
\end{aligned}
$$

By virtue of the closedness of \mathfrak{A}, it follows that

$$
\begin{aligned}
& F(t) \in \mathscr{D}(\mathfrak{A}), \quad 0<t \leqq T, \\
& \mathfrak{A} F(t)=\frac{d F}{d t}(t)-f(t), \quad 0<t \leqq T .
\end{aligned}
$$

The proof of Theorem 1.4 is now complete.
Remark 4.1. The proof of Theorem 1.4 tells us that for any $\varepsilon>0$

$$
f \in B_{\infty, 1}^{1-\theta}((0, T) ; X) \Longrightarrow F \in B_{\infty, 1}^{1}((\varepsilon, T) ; X) .
$$

This implies that the regularity of F is as maximal as possible. In other words, if $\sigma>1$ and $1 \leqq q \leqq \infty$, it does not necessarily hold that $F \in B_{\infty, q}^{\sigma}((\varepsilon, T) ; X)$ if
$f \in B_{\infty, 1}^{1-\theta}((0, T) ; X)$.

References

[1] Muramatu, T., Besov spaces and analytic semigroups of linear operators, J. Math. Soc. Japan, Vol. 42 (1990), 133-146.
[2] Pazy, A., Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, Berlin, 1983.
[3] Taira, K., The theory of semigroups with weak singularity and its applications to partial differential equations, Tsukuba J. Math., Vol. 13 (1989), 513-562.
[4] Tanabe, H., Equations of evolutions, Iwanami-Shoten, Tokyo, 1975 (Japanese); English translation: Pitman, London, 1979.

Institute of Mathematics
University of Tsukuba
Tsukuba, Ibaraki 305
Japan

