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1. Introduction.

In this paper we mean by a space a topological space with no separation

axiom unless otherwise specified,and we denote by R and / the real line and

the closed unit interval respectively.

Given two spaces X and Y, let F(X, Y) denote the set of all maps from X

into Y, C(X, Y) the set of all continuous maps from X into Y. In case Y is the

real line R, C{X, R) is denoted more simply by C{X). The map p: F(XxY, T)

-*F(Y, F{X, T)) defined by the formula Lp(f)(y)l(x)=f(x, y) for f^F(XxY, T)

is bijective; this correspondence is called the exponential map.

A topology on C{X, T) is called proper if for every space Y and any

f<=C(XxY, T) the map p(f) belongs to C(Y, C(X, T)). Similarly, a topology on

C(X, T) is called admissible if for every space Y and any g<=C(Y, C(X, T)) the

map p~＼g)belongs to C(XxY, T). A topology on C(X, T) that is both proper

and admissible is called an acceptable topology (see [1], [2] and [3]).

As is well known, the compact-open topology on C(X, T) is acceptable for

any space T when X is locally compact Hausdorff (see [4]). Furthermore, the

following theorem was proved by R. Arens [11.

Theorem 1.1. Let X be a Tychonoff space. Then the following conditions

are equivalent.

(1) X is locally compact.

(2) There exists an acceptable topology on C(X).

In the case that X is not necessarily Tychonoff, Professor T. Ishiiraised the

following problem: Characterize a space X such that there exists an acceptable

topology on C{X).

The main purpose of this paper is to give the solution for this problem by

proving the following theorem.
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Theorem 1.2. For a space X, the following conditions are equivalent.

(1) X is locally relativelyiv-compact {that is, every point of X has a relatively

w-cornpact nbd (=neighbor hood)).

(2) There exists an acceptable topology on C{X, T) for any Tychonoff space T.

(3) There exists an acceptable topology on C(X).

The definitionof relatively ^-compact subsets is given in section 2. Section

3 is devoted to a study of a new topology on C(X, T) which is acceptable when

X is locally relatively u;-compact. Theorem 1.2 is proved in section 4.

The authors wish to thank Professor T. Ishii for his valuable comments.

2. Properties of relatively w-compaet subsets.

A subset P of a space X is called z-open if P is a union of cozero-setsof X

(see [6]). For any subset A of X, we call the intersection of all zero-setsof X

containing A the z-closure of A, and we denote it by ~K'.A subset A of X is

said to be z--closedif A=AT holds.

Definition 2.1. A subset A of a space X is relatively w-compact if for any-

family {Px＼AeA} of r-open sets of X such that {Ar＼Px＼Xe.A} has the f.i.p.

(―finiteintersection property), we have r＼{dPx＼^^A) 4^6.

T. Ishiiintroduced the notion of w/-compact spaces, in connection with the

problem concerning a product formula for the Tychonoff functor ([6]). A space

X is called w-compact if for any family {PX＼A^A＼ of r-open sets of X with the

f.i.p., we have r＼{clPj.＼X^A}̂ <fc. Clearly every i^-compact subset of a space

X is relatively u;-compact.

Proposition 2.2. Let A be a subset of a space X. Then the following con-

ditions are equivalent.

(1) A is relatively w-compact.

(2) For any collection {Aa＼a^.Q} of closed sets of X such that it is closed

under the finite intersection and each Aa contains a cozero-set of X which meets

A, we have (~＼{Aa＼a^Q}i^0.

(3) For every open cover {Ua＼(x^Q} of X there exists a finite set {ail), ■･■,

a(n)}dQ such that A(ZV{Ura(i)＼i=l, ■■■,n}.

(4) For every family {Ua I≪ei?} of open sets of X such that AT<Z＼J {Ua |≪ei2}

there exists a finite set {a(l), ･･･, a(rij＼(ZQ such that Ac＼J{UTaW |z= l, ･■･, n).

Proof. The equivalences of (1) and (2) and of (1) and (3) are clear. And
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the implication(4)=}(3)is obvious. We prove only (3)=X4).

Let {Ua＼a^Q} be a family of open setsof X with A*CW{Ua＼a^Q). For

each xg!-/ we can take a zero-setnbd of x which misses A* sinceX― AT is

a union of cozero-setsof X. Thus we obtain an open nbd Vx of x with

VTxr＼AT--=0.Then {Ua＼a^Q}V{Vx＼x<bX― A*} is an open cover of X. From

thisfact(4) followsfrom (3).

As is easily seen, a relatively ^-compact subset of a Tychonoff space is

relatively compact. Hence, if a Tychonoff space is locally relatively ^-compact,

then it is locally compact. However, there exists a regular 7＼-space on which

every continuous real-valued function is constant (for instance, see [5]). This

example shows that there exists a locally relativelyif-compact regular TYspace

that is not locally compact. Hence, Theorem 1.2 shows that in case X is not

Tychonoff, the local compactness of X is unessentialin Theorem 1.1.

Let X and Y be two spaces and A a subset of X. The projection %Y'･AxY

―>Y is called a relativeZ-map if itY{{AxY)r＼Z) is closed in Y for any zero-set

Z of XxY (see [10]).

The following proposition is a generalization of [6, Proposition 2.71.

Proposition 2.3. Let A be a subset of a space X. Then the following con-

ditionsare equivalent.

(1) A is relatively w-compact.

(2) For any space Y the set tvy((A xY)r＼F) is closed in Y for every t-closed

subset F of XxY, where izY is the projection: A XY―>Y.

(3) The projection nY: A X Y―>Y is a relative Z-map for any space Y.

(4) The projection rrY".A XF―>F is a relative Z-map for any paracompact

Hausdorff space Y.

Proof. (1)=X2). Let A be a relatively ^-compact subset of X and F a

r-closed set of XxY. Take a point y^Y―7cY{{ATxY)r＼F). Since (Xx {yo})r＼F

= 0 and XxY―F is r-open, for each xe/ the point (x, y0) has an open nbd

of the form UXXVx such that (UTxxVx)r＼F=0. Clearly T(ZV{Ux＼xeAT}, so

that by Proposition 2.2, there exists a finiteset {x(l), ･■･,x(n)}dAT such that

Ad^J {UTxW＼i=l, ■■■,n}. Put V = r＼{Vxli)＼i=l,･･･, n}. Then F is an open nbd

of y0 and Fn?ry(UTxr)n^)=0. It follows that tzy{(A~txY)r＼F)is closed in Y.

(2)=K3) and (3)^4(4)are obvious and (4)=}(1)is easily verifiedby making use

of the method of [6, Proposition 2.6]. Thus the proof is completed.

Let A be a relativelyif-compact subset of a space X. Then, by Proposition
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2.2,we clearlyhave the followingfacts:

(1) A is alsorelativelyw-compact.

(2) If Be A, then B is alsorelativelyw-compact.

Let X and Y be two spaces. Then ~AxBT=7ixBT holds for AdX and

BczY. Thus, the followingpropositionis easy to prove.

Proposition 2.4. Let X and Y be two spaces. If A and B are relatively

w-compact subsets of X and Y respectively,then AxB is also a relativelyw-com-

pact subset of XxY.

The following propositionis also clear.

Proposition 2.5. Let X and Y be two spaces and f a map in C{X, Y). If

A is a relativelyw-compact subset of X, then f(A) is a relativelyw-compact subset

of Y.

3. A topology on function spaces.

In this section,we consider a new topology on function spaces. Let I be a

space and T a Tychonoff space. For AdX and BcTwe denote by M(A, B)

the totalityof maps / in C(X, T) for which f(A)(ZB. We consider the topology

on C(X, T) generated by the base consisting of all sets f＼{M{ATu Ui)＼i=l, ■-■,n},

where At is a relatively w-compact subset of X and £/*is an open subset of T

for i―＼,---,n. Throughout this section, a topology on function spaces is

assumed to be the topology defined above.

The following proposition easily follows from Proposition 2.3.

Proposition 3.1. Let X be a space and T a Tychonoff space. Then the topo-

logy on C(X, T) is proper.

The following lemma is also clear.

Lemma 3.2. Let X be a locally relatively w-compact space. Then for each

point x of X and for any z-open nbd G of x there existsa relatively w-compact

nbd U of x such that ffcG.

Proposition 3.3. Let X he a locally relatively w-compact space and T a

Tychonoff space. Then the topology on C{X, T) is acceptable.

Proof. By Proposition 3.1,it sufficesto prove that the topology on C(X, T)
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is admissible. Let Y be a space and g a map in C(Y, C{X, T)). We shall show

that p~1{g)is continuous. Take a point (x0) y0) in XxY and an open nbd U of

p-＼g)(x0,y0) in T. Here, notice p'HgXxo, yo)=lg(yo)l(xo). Since T is a

Tychonoff space and g(y0) is continuous, g(yo)'＼U) is a r-open nbd of x0.

By Lemma 3.2, there exists a relatively u;-compact nbd V of x0 such that

VTdg(y0)~1(U). Hence we have g(yo)^M(V＼ U). Because of the continuity of

g there exists a nbd W of y0 such that g(W)(ZM(VT, U). Therefore we obtain

a nbd VxW of (x0, y0) such that ^"K^XVx^Ct/. Hence p~＼g)is continuous.

This completes the proof.

Let X be a space, T a Tychonoff space, and / a map in C(X, T). Then it

is easily shown that f(AT) is compact for any relatively incompact subset A of

X. From this fact, one can easily prove the following lemma and proposition

(see [3, 3.4.14 and 3.4.151).

Lemma 3.4. Let X be a space and A a relativelyw-compact

Assigning to each /eC(l, /) the number £(/)―sup{/(x)|xeA)

tinuousfunction$: C{X, /)->/.

subset of X.

defines a con-

Proposition 3.5 Let X be a space and T a Tychonoff space. Then C(X, T)

is also a Tychonoff space.

Lemma 3.6. Let X be a space, T a Tychonoff space,and £Ba subbase for T.

Then the setsM(A , U), where A is a relatively w-compact subset of X and U&^B,

form a subbase for the space C(X, T).

Proof. Let A be a relatively uz-compact subset of X, U an open set of T,

and / a map In M{AT, U). For each x^Av we can take sets Uf, ･■■,£/£(x)e.0

with x^Wx = r＼{f~1(Uf)＼j=l,■-, n(x)} and n{Uf＼j=l, ■■■,n(x)}dU. Since

Wx is a r-open nbd of x, we can take an open nbd Vx of x such that VTxdWx.

By Proposition 2.2, there exists a finite set {x(l), ･■･,x(^)}c/ such that

ATd[J{VlU)＼i=l, ･■･,k). Put
^4i=^4rn^x(i).

Clearly, At is relatively u;-com-

pact, and we have Ar=W{^|≪ = l, ･■･,£} and ^Icni/^^jOI/^l, ･･■,≪(≪)},

where Ulj=Ufw and w(z)= n(x(f)).Therefore, /GnlnlM^, f/5)l;= l, - , Mi)} ＼

i= l ... ^}dM(^4T, t/). Thus the proof is completed.

Theorem 3.7. Let X and Y be two spaces and T a Tychonoff space. Then

the exponential map p: C(XxY, T)-^C{Y, C{X, T)) is a homeomorphic embedding.

Proof. We firstnotice that p(C(XxY, T))dC(Y, C{X, T)) by Proposition 3.1.
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Let A and B be relatively w;-compact subsets of X and Y respectively, and

U an open set of T. Then we clearlyhave p-x[M(B~r,M(A＼ £/))]= M(A~"x B%',U).

Since A xB is relatively ^-compact by Proposition 2.4, the last lemma

implies that p is continuous.

The above equality implies that

p(M(ATxBT, U)) = M(B＼ M(AT, U))r＼p(C(XxY, T));

hence―p being a one-to-one map―it sufficesto show that the sets M{A X B , U),

where A and B are relatively ^-compact subsets of X and Y respectively and U

is open in T, form a subbase for C{XxY, T).

Take a relatively ^-compact subset C of XxY, an open set U of T and a

map f^M(C＼ U). Since C is relatively ^-compact and f~＼U) is r-open, there

exist open sets Vu ■■■,VncX and Wu ■■■,WncY with cTdWlFIx H^|z = l,

n}(Zf-＼U). let Ai=KX(CT)r＼Viand Bi=KY(CT)r＼W＼ for i=l, ･･･,n, where

itx '■XxY->X and xY: XxY-^Y are the projections. Then At and Bt are rela-

tively if-compact subsets of X and Y respectively for 2= 1, ･･･,n. Moreover,

we have A^dVl, BldWl and C'cW{AlxB＼＼2 = 1, ･･-,n}. Hence, we have

/£n{M(^xB-, J7)|≪= l, ･･･, n}cM(Cr, t/),and this completes the proof.

Proposition 3.3 and Theorem 3.7 imply

Theorem 3.8. Let X be a locally relatively w-compact space, Y a space and

T a Tychonoff space. Then the exponential map p: C(XxY, T)―>C(Y, C(X, T)) is

a homeomorphism.

4. Proof of Theorem 1.2.

The followingtwo lemmas are due to R. Arens and J. Dugundji [2].

Lemma 4.1. For spaces X and T, a topology on C(X, T) is admissibleif and

only if the evaluation mapping (o(f, x)―f(x) of C(X, T)xX into T is continuous.

Lemma 4.2. Let X and T be spaces and let 2"i and 12 be topologies on

C(X, T). If 3"iis proper and £T2is admissible,then ETidSV

We are now in a position to prove the main theorem. We modify the proof

by R. Arens ([~1,Theorem 31).

Proof of Theorem 1.2. Since the implication (1)=}(2)is a direct consequence

of Proposition 3.3 and (2)=K3) is obvious, we prove only (3)=X1).
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Suppose that there exists an acceptable topology on C(X) and denote it by

2"ac- Let g be the element of C(X) such that g(x)=0 for each xel Since

a): C(X) X X->R is continuous with respect to the topology <Sac on C(X) by

Lemma 4.1, for any iogI there exist an open nbd V of x0 and an element W

of 1ae such that ^eW and WxVda)-＼(~-l, 1)).

Now we shall prove that V is relatively w-compact. Let {G^l^e/i} be a

family of open sets of X such that VTdV {Gx＼A^A} and 2" the topology on

C(Z) with its subbase consisting of the sets of the form M(AT, U), where A is

a subset of X such that A is contained in some element of {Gx＼A^A} or

A%'r＼VT―0, and U is open in R. Then 2" is admissible. To see this,it suffices

to show that a>: C(X)xX―>R is continuous with respect to 3* by Lemma 4.1.

Let U be an open set of R, and take a point (/, x)^a)~1(U). Then f"＼U) is a

cozero-set nbd of x in X Consequently, there exists an open nbd Fx of x such

that f{V＼)dU.

Case (a). If xg Fr, then there existsl^A such that xeG;. Put A=V1r＼Gx,

then A is an open nbd of x such that AdGx-

Case (b). If xC VT, then there is an open nbd V2 of x such that V＼r＼VT―0.

Put .4=7^,, then TnVr=0.

Hence each of the two cases above implies that there exists an open nbd A

of x such that f(AT)c:U and M(A＼ C/)e2＼ Furthermore (/, x)eM(T, t/)x

AdQ}~＼U). Thus ft>is continuous.

This implies 2"acc:3'by Lemma 4.2, so that there exist subsets Au ■■･, An

of X and open subsets Uu ■■･,Un of R such that geniM^I, £/i)|/=l,･･･, n}

C.W. Here, notice 0e£7* for each f.

Finally, we shall show that FcW{y4i|/=l, ･■･,n). Assume that there exists

a point XjSF such that x^^J{A＼＼i=l, ■■■,n). Then there exists a continuous

map h : X->I such that /z(xi)―1 and h(x)―0 for xeW{4|;=l, ･-･,n}, and so

h<Er＼{M(Ai Ui)＼i=l, ■■■,n}. Hence ht=W. Since x^F and Wx Vdaj~K(-l, 1)),

we have /z(xi)ei(―1,1). This is a contradiction. This implies Vci^J{ATi＼i=l,

■･■,n}. Thus F is contained in the union of finitelymany members of {Gx＼X^A}.

Hence F is relatively w-compact by Proposition 2.2, and this completes the proof

of Theorem 1.2.

5. An example.

A space X is called locally cozero-set w-compact if for each point x of X

there exists a cozero-set nbd G of x such that clG is w-compact ([6] and [7]).

The following theorem, where we denote by r the Tychonoff functor,was proved
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by T. IshiiIn [6].

Theorem 5.1. A space X is locally cozero-set w-compact if and only ij

t(XxY)=z(X)Xz(Y) for any space Y.

Clearly every locally cozero-set w-compact space is locally relatively w-corn-

pact. But the converse is false. We construct such an example. A space X is

called r-compact if r{X) is compact ([7]). The following lemma is easy to prove,

Lemma 5.2 Every z-compact locallycozero-setw-compact space is w-compact.

Example 5.3. Let o)1 be the first uncountable ordinal and let us put S=

W((!)!+1)XW((OX +1)― {(cou a>i)},where W(a>i+ 1) Is the space of all ordinals less

than a>i+l with the usual interval topology. Now let X be a space obtained by

adding a new point £ to S and introducing the topology in X as follows: the

base at £ is given by the totality of the sets U${!･)■={{a, a)＼a is a non-limit

ordinal and /3<a:}W{£}, /3<a>! and the base at x^£ is the same as in S. Then

X has the following properties:

(1) X is Hausdorff but not regular.

(2) X is r-compact.

(3) X is not w-compact.

(4) X is locally relatively w-compact.

Indeed (1) is obvious and (2) follows from the fact that any cozero-set of X

containing £ has to contain a set of the form {£}WT≪ for some a<o)lf where

Ta={U, fi)＼X,[i>a}(ZS, and (3) follows from the fact that {Tff-[/≪(£)|a<ft>i}is

a family of closed sets of X such that Ta―Ua(g) contains isolated points of X

and r＼{Ta―Ua(^)＼a<a)1}=0 (see [6, p. 175]). Furthermore, each point %eS

has a compact nbd, and Ap= {{a, ≪)|/3<a}W{£} for /3<<Wiis a relativelyw-com-

pact nbd of £. To show this,take an open cover {G^e/f} of X and a d^A

such that £<=GV Then there exists a j<(Di such that Ur($)dGe. It is easily

seen that clUr(^) contains the set AT and Ap ―Ar is compact. Hence, A°,is

contained in the union of finitelymany members of {clGi＼1<ElA＼,which implies

that A$ is relatively w-compact. Thus, (4) is proved.

Lemma 5.2 and properties (2) and (3) imply that X is not locally cozero-set

w-compact.

Remark. Recently, T. Ishii has obtained the following result ([8]): Let X

be a space. Then x{XxY) ―z{X)Xz{Y) holds for any Tychonoff space Y if and

only if X satisfiesthe following property (*):
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(*) Let {PX＼X^A} be a family of r-open sets of X such that there exists a

point x0 of X such that {Px＼X^A}＼J{U} has the f.i.p. for any cozero-set nbd

U of x0. Then we have r＼{clPx＼X<E.A}=£0.

He also showed in [8] that if a space X satisfiesthe property (*) and r(X)

is locally compact, then X is locally cozero-set u;-compact.

From this fact and Example 5.3,it follows that there exists a locally rela-

tivelyif-compact space which does not satisfy the property (*).

After submitting this paper, the authors observed the following fact: If a

space X is locally relatively ^-compact and the equality t(XxY)=t(X)Xz(Y)

holds for any Tychonoff space Y, then X is locally cozero-set if-compact. See

the proof of Lemma 1.4 in: K. Morita, Cech cohomology and covering dimension

for topological spaces, Fund. Math. 87 (1975), 31-52.
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