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VANISHING OF HOCHSCHILD'S COHOMOLOGIES

H'iA^A) AND GRADABILITY OF A LOCAL

COMMUTATIVE ALGEBRA A

By

Qiang Zeng

0. Introduction.

In [8] Nakayama conjectured that a finite dimensional algebra R with an

infinitedominant dimension is selfinjective. As such an algebra R is isomorphic

to an endomorphism ring of a generator-cogenerator over an algebra A, Tachi-

kawa [10] has shown that the Nakayama's conjecture is reduced to the follow-

ing conjectures (i) and (ii): For a finitedimensional algebra A over a fieldK,

( i ) A is selfinjectiveif Hochschild's cohomological groups Hl(A(g)KA)=

ExVA(D(A), A)=0 for i^l, where D(A)=HomK(A,K).

(ii) An A-module X is projective if A is selfinjectiveand if ExtKZ, X)―0

for z^l.

It is to be noted here that the Nakayama's conjecture is true if and only

if both the conjectures (i) and (ii)are true.

For the conjecture (ii) there have been already several interesting results

by Hoshino [6] and Schulz [9]. In [7] Hoshino applied Wilson's therem to

settle the conjecture (i) for algebras A's with cube zero radicals, because in

this case both A's and the corresponding endomorphism rings R's are positively

Z-graded.

This paper concerns with the conjecture (i) for local commutative algebras.

In §1 we provide a theorem that for a local (not necessarily commutative)

algebra A, R=EndA(A@D(A)) is positively Z-graded if and only if so is A. It

is proved in §2 that local algebras with quartic zero radicals such that they

are homomorphic images of polynomial ring K[x,y^＼ over an algebraically

closed fieldK are positively Z-graded, and applying Wilson's theorem we can

prove that conjecture (i) is true for such algebras. In §3 we shall give,

however, a not positively Z-graded commutative local algebra, which is a homo-

morphic image of the polynomial ring K[_x,y,z^＼with quartic zero radical.
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1. Preliminary

Let R be an finitedimensional algebra over a fieldK. Let

0 ―> R ―> Ei ―> E2 ―> ･■■―> En ―> ･･･ (1)

be a minimal injective resolution of the right i?-module R.

In [2] Auslander and Reiten introduced the generalized Nakayama conjecture:

Everj. simple i?-module appears as a submodule of some En in (1). We shall

say dom dim Rr^u (resp.= oo) if Ej are projective i?-modules for all /<n + l

(resp. all j>Q) in (1).

In [8] Nakayama conjectured that R is selfinjectiveif dom dim RR=oo.

The Nakayama conjecture is true if the generalized Nakayama conjecture is

true, because the injective envelope of any simple right i?-module S is projective,

if dom dim RR―co.

In [11] Wilson proved that the generalized Nakayama conjecture is true

for positively Z-graded algebras.

Suppose dom dim Rr^2. It is well known that there exists a minimal

faithful left i?-module which is a projective and injective left ideal Re for an

idempotent e. Further R = EndeReRe and Re is a generator-cogenerator as a

right ei?g-module. Cf. [10]. Conversely for any algebra A and for a generator-

cogenrator XA, dom dim End4Z;>2. This connection between A and End^Z

plays an important role in this paper. In our context End^Z is selfinjectiveiff

A is selfinjective.

A graded algebra is an algebra A together with a vector space decomposi-

tion i4=0ftez^4* such that AiAjCZAi+j.

Since A is a finitedimensional algebra, Ak=0 for |&|>0. We will consider

positively Z-graded algebras, that is, graded algebras with Ak=0 if k<0. We

will further assume rad A=Q)kilAk. Thus we will write A=Q)ki<)Ak.

A graded right A-module is a module M together with a vector space de-

composition M=0AezM* such that Mi4cMi+i. Notice that we are allowing

negative gradings on our modules. If L=Q)k(EzLk is another graded ^-module,

we define a degree i morphism to be an
^4-homomorphism

/: M―>L such that

f(Mk)dLi+k. It is to be noted that for a graded yl-module M the degrees of

morphisms make End^M be a (not necessarily positively) Z-graded algebra (see

[4, §2]).

The z-th shift a{i){M) of M―Rk^zMk is defined to be a graded ^-module

L
―@k^.zLk such that Lk=Mk-t

Theorem 1.1. Let A be a local algebra, D(A)=HomK(A, K) the injective
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cogenerator as a right A-module and R the endomorphism ring of ARD(A).

Then R is positivelyZ-graded iff so is A, Here it is to be noted that the grad-

ing of A is one induced from the grading of R and the grading of R is one

induced by the degrees of morphisms in EncU(^40.D(^4)).

Proof. "Only if" part.Let #=c£=, Rk and e a projection: ARD(A)-+A. Since

rad i?=0"=ii?*, there is an idempotent f of R such that f=e and we have

that A = eRe is isomorphic to a positively Z-graded algebra fRf―@k=o(fRf)k

with (fRf)k=fRkf.

"If" part. Let 4=c2L0A Then D(A) is gradable such that D(A).k=D(Ak)

for n^k>0. If .4 is selfinjective, i.e. A = D(A), then R =

has a grading with Rk =
＼Au aJ

(A A)
A)

and R

So we may assume that A is not selfinjective.

By using the n-th shifto(ri)we obtain a new grading of D(A) such that

D(A)=(D(A))0R(D(A))1R-R(D(A))n, where {D{A)＼= D(An-t), O^i^n.

Nnw

/ HomA(A, A) HomA(D(A), A) ＼
R = EndA( ARD(A)) = [

＼Hom^(^, D(A)) HomA(D(A), D(A)) )

and it is clear that HomA(A, A)^HomA(D(A), D(A))=A, HomA(A, D(A))^D(A)

and degrees of morphisms define naturally non-negative Z-gradings of HomA(A, A),

HomA(D(A), D{A)) and Horru^, D{A)) which are respectively identical with A,

A and D(A).

Next for the Z-grading HomA(D(A), A) = RiezHomgrA(D(A),o(―i)A), we

want to notice here that the degree of any morphism from D(A) to A is at

least one. This fact will be proved by induction on n as follows: If n ―1,

then A=A0RAt and (Z>(,4))o= D(^i), (Z?(-A))i= £(^o). Hence it is clear that

―l^degree of tfi£lfor $&HomA(D(A), A). But since D(Ao) is the socle of

D(A) and A is not selfinjective,<j>is not a monomorphism and the degree <p

must be 1. Assume that for any grading B^B^B^ ･･･c£r, r<n, the degree

of (p^l for (p(EHomB{D(B), B) and suppose the degree of <fi=i<LQ for 0e

llomA(D(A), A). In the case z=0, Q^0(D(A)o)ClAo and AO is considered to be a

division algebra. Hence <j>(D(A)n)~D(j){D(A)QAn)=zA0An―An and $ must be a

monomorphism. Then similarly as in n ―1 this contradicts to that A is not

selfinjective. Next assume it^―1. Then O=0(.D(rl)o)=0(-D(y4re)).Hence <f>is

considered to be a homomorphism of DiAn-^An^^R ･･･@A0) to A and An-^

^4n-20 ■･･cA can be cosidered as a grading of A/An. Let p : D(A/An)-+A/An

be the composition of <j)and the canonical homomorphism from A to
^4/^4n.

Then we know that the degree of p< ―1 but this contradicts to the assumption
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of induction.

Let us denote the gradings of HomA(A, A), HomA(D(A), D{A)), YiomA{A, D{A))

and YiomA{D{A), A) by

HomA(A, A)=^ni=0El1-1＼ UomA(D(A), D(A))=Rni=0E?-2>,

HomA(A,D(A))=Rni=0E?-≫ and EomA(D(A),A)=R^0El1-2＼

Now we can introduce a positive Z-grading of R by

Rzk=＼

EL1-" 0

0

Because

(EM1.2) EM2

0

£f>2)

) / 0 E&?＼

Rlk
+l ―l

＼E?-l> 0 /

o ＼ (Emu o ＼ _

Cf I―-n-2C*+/+≪
>/?(2,1)pa,2) / ＼ 0 /?(2.2) /

and

(0 pa.i)/?(1,2) ＼ / n F(1-2) ＼

^(2,2)^(2,1) A / ＼ 17(2.1) 0 /

(A p(l,2) p(2,2) ＼ / (] Z?(l,2) ＼

}C( I ―-f?2C *+;) +1 ･
Ei^Ef^ 0 / VW 0 /

Since a commutative algebra is a direct sum of local algebras we have

immediately

Corollary 1.2. Let A be a commutative algebra. Then EndA(A(BD(A)) is

positively Z-graded if and only if so is A.

Theorem 1.3. Let Abe a positivelyZ-graded local algebra. If ExVA(D(A), A)

=0 for all 2^1, then A is selfinjective.

Proof. Suppose that AA is not selfinjectiveand ExtA(D(A), A)=0 for all

?^1. Let

0 ―> ARD(A) ―> Eo ―> E, ―> > En ―> -

be a minimal injective resolution of ARD(A) as a right ^4-module. Denote

EndA(A(BD(A)) by R. Since Ei^Add-D(A), D(A) is a direct summand of

ARD(A) and since ExVA(D(A), A)―0 for all i^l, we have the following in-

jective resolution of RR:

0 ―> R ―> Ho ―*■Hi ―> ･･･ ―> Hn ―> ･･■,

where Hi = HomA(R(A(§)D(A))A> Et) and Ht are projective and injective right

i?-modules.
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On the other hand, by Theorem 1.1 R is positively Z-graded. Hence by

Wilson's theorem R is selflnjective. However this implies that A is selfinjective

nnrl a rnnfrnHirHnn

Proposition 1.4. Let A be a positivelyZ-graded local algebra and R the

endomorphism ring of right A-module A($D(A). Then Nakayama conjectureis

true,fnr /?.

§2. Local Commutative Graded Algebras

Throughout this section K is assumed to be an algebraically closes field of

characteristic zero. The following Lemma 2.1 and Proposition 2.2 are well

known, cf. [1] and [4, V. 3.9.5],but for the sake of reader's convenience, we

shall write elementary proofs.

Lemma 2.1. A commutative K-algebra A is local if and only if A is a

homomorphic image of K＼_xlt x2, ■･■, xm~]/In, where I is the ideal of the polynomial

ring K＼_xi, x%, ･■■, xm~] of variables xx, x2, ･･･, xm, which is generated by xu x2,

X TTL'

Proof. Let / be the radical of a local commutative algebra A and /n=0.

Then there are ring-homomorphisms a: K[_Xlf X2, ･■■, Zm]―>A and /3: A―>A/J

s*K. Put pa(Xt)=ai. Then pa(Xi ―at)=0 and hence aiXi-a^J. Therefore

a((Xi ―ai)n)―(a(Xi―at))n=0 and hence (Xt ―Gi)neKer≪. Now we can take

For f(x, y)^K＼_x, y~＼we shall denote by ft(x, y) the homogeneous term

of fix. v) of degree t.

Proposition 2.2. Let f(x, y) be a polynomial in K＼x, y＼ such that f(x, y)=

^2itizft(x,y) with the non-zero homogeneous term f2{x,y)―ax2jrbxy+cy2 of degree

2,I=(x, y) and A=K[_x, y~]/(In,f{x, y)),n^3. Then A is isomorphic to a local

algebra K＼_X, F]/(Lre, g(X, Y)) such that L=(X, Y) and g{X, Y)=XY or X2-

Yp. fi>2.

Proof. Assume a^O. Then ax2+bxy-＼-cy2=a(x―ay)(x―fiy) for some a, fl

Case (1): a=£fi. As we can consider x―ay and x―fty as new parametess

of K＼_x,y] we can take /2(x,y)=xy. On the other hand, in the case (2): a ―

ft,by replacing x―ay with x we can take f2(x,y)―x2. Further it is easily

seen that the above context for f2(x,y) are valid even if a=0.
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At firstwe shall proceed the proof for the Case (1) by induction on n: we

can replace xy with f(x, y)―xy modi and after repetitions of such rearrange-

ments we obtain an expression of /(x, 3;)which excludes terms xiy},i,;^1 and

ij>l. So if n―A we may assume that f(x, y)=xy+axs+by3. Put X=x+by

and Y=y+ax2. Then XY=xy+ax*+by* mod I4. Since X and FeradA＼rad2A

we can take X and Y as new parameters and we have A = K＼_X, Y"]/

{{X, Y)＼ XY).

Assume n>4. Applying the assumption of induction to K[_x, y~]/(In~＼f(x,y)]

we can take f(x, y)=xy-＼-axn~x+ byn~lmod/n. Similarly as in the case n―4,

putting X=x+byn~2 and Y―y+axn~2 we can take X an Y as new parameters

and we conclude A^K[X, Y~＼/(Ln,XY).

Now we shall begin the proof of the Case (2). First we can replace x1

with f{x, y)―x2 mod In, which is a sum of homogeneous terms of degrees >2.

And by repetitions of such rearrangements we may assume that terms xiyj,

z>l, />0 do not appear in f(x, y). Hence if n=4, f(x, y)=x2-iray:i+bxyz mod/4.

Then f(x, y)= (x+(l/2)byz)2+ay* mod/4. So replacing parameters x and y with

X=x+(l/2)by* and Y=-allzy respectively, we have A^K[X, F]/((Z, Y)＼

X2~Y3).

Assume n>4. Applying the assumption of induction to K＼_x,y~＼/(In~l,

f(x, y)) we can take f(x, y) = x2-yp+ayn-1+bxyn-2, 3^p<n. Then f(x, y)=

(x+(l/2)byn"2)2―(y―(l/p)ayn'p)p mod/" and we can replace parameters x and

y with X=x+(l/2)byn-* and Y=y―(l/p)ayn~p respectively. Therefore A~

K＼_X, YV(Ln, Xz-Y*). This completes the proof.

It should be noted that K＼_x,y~＼/{(x,y)n, xy), n^3, is biserialin the sense

of Fuller [3]. On the other hand, K＼_x,y~＼/((x,y)＼x2―y3) has a unique maximal

serialideal, i.e., a serial ideal which contains every non-simple serialideal.

Proposition 2.3. Let A be a local commutative algebra as in Proposition

2.2. Then A is positively Z-graded.

Proof. Denote by u the residue class of K[_x, y]/{(x, y)n,xy) (resp.

K[x, y]/{{x,y)n, x2―yp) which contains u^K[x, y]. It is easily seen that

K＼_x,;y]/((x,y)n, xy^QtzlAt, where AQ=K and Ai=Kxi-{-Kyi, i>0, gives a

positive Z-grading. On the other hand, according to p(p<n) is odd or even

we have the following positive Z-gradings of K＼_x,y~＼/((x,y)n, x2―yp)) res-

pectively:

K＼_x,yV((x, y)＼ x2-yV))=BoRRnizlBp+2iRRUB2j,

where B0=K, Bp+n―Kxy1 and B2j―Kyj, and
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Klx, ?]/((*,y)＼%2-3>p))=5oR cU5;R RptlBq+jR@?=*-<lBk,

where p=2g, B0=K, Bi='KyT, Bq+j=Kxyj+Kyq+'j and Bk=~Ky~k.

If p^n, Klx, ;y]/((x,y)n,^2)=R?-JCi where C0=R and Ci=^c3Fr+^y^

/>0, gives a positivelyZ-grading.

Corollary 2.4. A homomorphic image of K＼_x,y~]/(x,y)A is positively Z-

graded.

Proof. K＼_x,y~＼/{x,yy=KR(Kx+Ky)R(Kx-＼-Ky)2R(Kx+Kyf is a posi-

tive Z-grading of K＼_x,y[/(x, y)＼ If g(x, y)=*El=1gt(x, y) with gl{x, y)i=Q,

then K＼_x,y~＼/((x,yY, g(x, y)) is uniserial and clearly its homomorphic image

is positively Z-graded. Therefore by Proposition 2.3 it is enough to consider

homomorphic images of K[_x, y~]/((x,y)＼f{x, y)), where fo(x, y)=fi(x, y)=0

and f2(x, y)+fs(x, y)=xy, x%―yz or x2. However if b^O in the below, the

ideal of K[x, y~＼/((x,y)＼x2―ys) (resp. K＼_x,y~]/((x,y)＼x2)) generated by

(axy+by2+cxy2jrdy3) contains (x, ;y)3= rad3(/f[x, y~＼/(ix,y)＼x2 ―y3))(resp.

rad3(/C[x? y~＼/({x,y)＼x2))). Hence K＼x, y＼l((x,y)＼x2-y＼ axy + by2 + cxy2+

dy3) (resp. K＼_x,y~＼/((x,yf, x2, axy-irby'2+cxy2+dy3)) with bi=0 has a cube

zero radical and consequently is positively Z-graded. Similarly, if ab^O, the

ideal generated by ax2+by2+cx3jrdy3 contains (x, ;y)3=rad3(/f[x, y~＼/{x,yf, xy)).

Hence K＼_x,y~＼/({x,yf, xy, ax2jrby2-＼-cxz+ dy3), with ab^O, has a cube zero

radical and consequently positively Z-graded. Further positive Z-gradings of

K[_x, y~]/({x,yY, xy, axiJrbyi), 3^z^2, 3^/^2, are induced by one of

K[_x, 3']/((x,yY, xy), if ab=0. Also a positive Z-grading of K＼_x,y~]/({x,y)1,

xv, ax 3-＼-by3),ab^O, is induced by one of K[x, y~]/((x,y)＼ xy). Since both

K[x, ?]/((*, y)＼xy, ax2+cx3+dy3) and K[x, y~]/{{x,y)＼xy, by2 + cx3 + dy3)

are isomorphic to K＼_x,j>]/((x,yY, x2―y3, a'xy), a'z^K, we return to check

the positive Z-gradability of K＼_x,y~]/((x,y)4, x2―y3, axyi―by3), 2^z^l. But

in the case i=l and ab^O, it is isomorphic to K[x, y~＼/((x,yf, b'xy, xz―y?J)

with ^'(^0)^^ because axy―byz―{ax ―by%)y and we can take ax―by2 and y

as new parameters. So the grading is induced by one of K＼_x,y~＼/({x,y)＼

x2―y3). Further in the case i―2 and ab―Q, the grading is induced by

Kix, yV((x, y)＼x2-y3). For K＼_x,yVdx, y)＼ x2-y＼ axy2-by3) with ab^O,

by taking X ―x―(a/2b)y2 and Y―y as new parameters we have K＼_x,y~]/

{{x, y)＼x2-y3, axy2-by3) = K[_X, F]/((X, Y)＼ X2, aXY*-bYs) and so the

grading of A is induced by K＼_X, Y^/{{X, Y)＼ X2)=KCBKX+KYRKXY+KY2

Q)KXY2+KY3. For homomorphic images of K＼_x,y'j/dx, y)＼x2) it remains to

check the positively Z-gradability of K[x, v]/((x, v)4,axy―by3) with b^O, but
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it is isomorphic to a positively Z-graded algebra K[_x, y~]/((x,y)＼x1, axy).

Now by the analogous discussion we know that the grading of any homomor-

phic image of all local algebra considered above is induced by one of K＼_x,y＼l

((*, y)＼xy), K{_x, y~＼/(£x,y)＼x2-j>3) or K＼x, yV((x, y)＼x2). This completes

the proof.

By Theorem 1.3 we have immediately

Theorem 2.5. The conjecture (i) is true for homomorphic images of

K＼_x,y~＼with quartic zero radicals.

Similarly we know that the conjecture (i) is true for local algebras

K＼_x,y~＼/((x,y)n, f(x, y)), where n^4 and f(x, y)=ax2+bxy+cy2+dxSji―,

provided at least one of a, b, c is nonzero. It seems to be of interest that

those local algebras correspond to Arnol'd's normal forms At, t<Cn, of functions

in the neighborhood of a simple criticalpoint. We are indebted to Drs. K.

Watanabe and M. Tomari for drawing our attention to these facts,(cf. [1]).

§3. Example of Local Commutative Algebra Which Is Not Gradable

As our proof in §2 is effective for positively Z-graded local algebras it is

important to assure the existence of a local commutative algebra which is not

positively Z-graded. The following Proposition provides the example.

Proposition 3.1. Let A=K[_xlf x2) x3]/((x!, x2,x3y, xxx%―x＼,x2x3―xl, x^x^―xX).

Then A is not positively Ti-eraded.

Proof. Suppose that A=A0Q)A1Q)A2Q) ･･･(&Aq is a positive Z-grading such

that rad^4 = ^!0^420 ･･･@Aq. Let us denote by f(x, y, z) an element of A

which is the residue class containing f{x, y, z)^K＼_x, y, z＼. Then A=KT=

Kx1+Kx2+Kxs+Kx!+Kxi+Kxt+Kx31+KxlJ＼-Kxl,radA=Kx1+Kx2+Kxs+Kxz1

+Kxl+Kxi+Kxl+Kxl+Kxl radM = Kxl + Kxl + Kxl + Kxf + Kxl + Kxl and

radsA=socA=KxlfBKxl(BKxl Since dimjr(rad^＼rad2^)-3, there exists a^e

rad^4＼rad2yl,i=l, 2, 3 and positive integers nlf n2, n3 such that a^An^ a2e

An2, as(EAns with n^£n2^n3 and ait i―＼,2, 3, are /C-linearlyindependent. For

the simplicity we shall abbreviate from now xt to xit i~＼,2, 3.

TThpn ＼＼T(±Iijivp

#1 ＼ xA

#2 =(fl<>) x2
＼+(bii)

a31 x31

x＼

･v-2

r2A3

+ (cj

r3

x＼ , CLij, bij, Cij(EK

r3Xo
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i, /=1, 2, 3 and J-det (atJ)^0.

At first we shall notice that n1 = n2=ns is impossible. Let n = rii and

＼a'J

Then a[^An, i=l, 2, 3, and a[=Xi+a" with a'!(^rad2A,

i=l, 2, 3. Therefore Q=£a[a2=XiXz+cxl+dxl with c, d^K. However a[a'2G

A2n but x1x2+cx＼-irdx＼=x＼-＼-cx＼-＼-dxl^ASnbecause a'x―x＼,i=l, 2, 3, this is a

contradiction.

Now assume that n1<n2<ris. It is clear that 0=£a*e/l|ic:soc./l,*=1, 2, 3.

Since dim* soc,4=3 and A^CZA3ni, i-1, 2, 3, A^A^A^socA. By the

assumption it holds that 3n1<n1+2n3<n2+2n3<3n3 and 3ni<3n2<n2+2ns<3ns.

Further we make an assumption (a): n!+2n3^3n2. Since AniAl3ClAni+2nzr＼

socA and An2Al3(Z.An2+2n3r＼$ocA, aiaS=Si-iaiiflli^i^^n1-4n2=0 and a2a3=

S?=ia2ifl3i^i-^re2^4I3=0. It follows that aliafi=a2ia3i=0, 2=1,2,3. Further

from 3ni<2n!+n2<3n2 we similarly obtain afa2^^I1^n2=0 and consequently

alia2i=Q, i=l, 2, 3. Therefore da^O implies a2i=a3i=0. Also a2i=£Qimplies

G3i^=0. Then (a^) must be a monomial matrix because J=det (a^-)^O. So we

have 0^≪ia2 = c≪|esoc yl for some ceif. But this implies 0^AniAn2r＼A^3d

Ani+n2r＼Asn3. But n1Jrn2=3n3 contradicts to n!<n2<n3.

Now we make another assumption (b): ni+2n3=3?22. In this case it holds

that 3ni<2ni + rc2<2n1+n3<tt2+2n3<3n3, 2rc1+rc2<3n2<n2+2rc3<3n3 anci 2nx+

n3^3n2 because ni+2n3=3n2 and ni<n2<≪3. Then A^An^dAzn^^KJsocA,

AniAn3CA2ni+n3r＼socA, and ^4n2^4^3Ci4n2+2re3nsoc^4 and they induce a＼a2=a＼az

-―ata3―a2al=0. Hence we have aliau ―o-liCLu―aziati―Q,i=l, 2, 3, and we

arrive at the same contradiction as in the case (a).

Assume now that nx<n2=n3. And at firstassume further a＼ and a＼are

Zf-linearlyindependent. Then it holds that 3ni<2n1+n1Jr2n2<3n2 and n%(&

A^An^An^l^A^dsocA. So it follows that A2niAn2=AniA2n3=Q and hence

atia2i―aiiaii―O,i―1, 2, 3. If an^0, then a2l=azl―Q.

Further suppose one of a^ or alz is nonzero. Then J=0. Therefore a2l=

a<n=ai2=a1s=0 and

So we have

and

022 #23

#32 #33

=£0.

ai = anXi + bnxl+biaxl+biaxl+{Zi,

<x2-―a22x2+a<lzxz+b2lxlJrbnxl+bzZxlJr fi'2

where /3-erad3^, i=l, 2, 3



272 Qiang Zeng

Then we have x^dizOLz+dizOLs+Xz and x3-=dzia2+dssas+xfs with x'2,ite

rad2^ and (dtJ)= (
a ais)~＼

i,j=2,3 and hence O^A^nA* and 3nx=2n2

because aJal^XiX^Al^ and {dziazJrd2zai){dnaz+d3Zaz)'E:Al2 and x'2{d22az+dMas)

Jr(dS2a2JrdB3a3)x'3^Kxl@Kxl=A*r

However either aia2―a11b2iXz1Jr(b12az2ana2S)xl~lr(ana22+bnazS)xl or ataz=

anbzlx＼+{b12an+auazz)xl-＼-(allaZ2+blzazz)x＼ is nonzero, for otherwise au=0 and it

contradicts to our assumption. As they belong to both AniAnz and soc A=

Al^Al^, we have Mi+n2=3≪i, i.e. n2=2n1. But this is also impossible because

3ni=2n2. As in the case where a12=£0 or a^O we arrive at a similar con-

tradiction. We can proceed our proof to the next case where a＼and <x＼are K-

linearly dependent. Then since a＼xi'a＼x=a＼＼i'al2―als/'al3,we have asl=o)1a2i, as2=

G>2a22 and a33―m3a23, where Wi, i=l, 2, 3, are cube roots of unit. (It is to be

noted that this case does not occur if the characteristic of K is 3).

Now the inequality 3n1<2n1+n2<n1+2n2<3n2 induces either An^n^O or

AniA%2=Q. Then according to them we have either alia2i=ana22=atsa23=0 and

socA=AniA*i<RA*1RA*2, or a11al1=altah=alaala=O and socA=A2niAn2@A^RA^2.

Assume flu^O. Then a2i=0. And both a12 and au=0; otherwise, G12^0

or flis^O implies J=0. Therefore we have a1=anx1+y'u a2=a22X2+a23X3+T3

and a,=a>2a22^2+<W3flz3^3+?'2, where rieradM, f=l, 2, 3. Then similarly as in

the preceding case, from the assumption an^0 and 22 23 ^0 we have

2n2=3ni, and either a^a^O or a^a^O. The later fact induces that AniAn<iT＼

(An^l^Al^Al^V or AniAn2r＼(A^An2RA3niRA^)^0, and it follows that

Wi+n2=3ni, but this contradicts to 2rc2=3n1. In the case where <212=^0or <213^0,

we also arrive at a similar contradiction.

Now it remains to prove thae n1~n2<nz does not occur. In this case

Al^Al^―socA and a＼ and a＼are if-linearlyindependent, and the inequality

3ni<2n1+ns<n1+2ns<3n3 implies A^An^O and AniA^s―0. Thus we have

ana3r-=a?2fls2―ai3O33=0 and a11ai1=ai2ai2―a13ali=0. Then similarly as in the

case where nx<ni ―nz and a＼ and a＼ are /{"-linearlyindependent, we arrive at

a similar contradiction.

It is to be noted that for this example our conjecture (i) is true.
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