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ON A FAMILY OF QUOTIENTS OF FERMAT CURVES
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Introduction
Let Fy be the N-th Fermat curve defined by the equation:
u¥ V=1,

For a pair (v, s) of positive integers such that »+s<N-—1 and g.c.d. (r, s, N)
=1, we denote by F(r, s) the quotient of Fy defined by the equation:

yV=x"(1—x)°
where the projection Fy—F(r, s) is defined by
(x, y)— (u?, iﬂvs).

We denote by (7, s) the automorphism of F(r, s) defined by a(r, s)*: (x, y)—
(x, Evy) where {5 is a primitive N-th root of unity. The order N of a(r, s)
is quite large for the genus g(r, s) of F(r, s). Between them we have a rela-
tion :

% Nz=2g4(r, s)+1.

Conversely the inequality (%) characterize the quotients F(r, s). In fact we
have the following (cf. Theorem 2.2):

THEOREM. Let X be a complete non-singular curve of genus g over an alge-
braically closed field k of characteristic 0, and let ¢ be an automorphism of X
of order N with N=22g-+1=5. Let H; be a hyperelliptic curve of genus g de-
Jfined by the equation y*=(xf*'—1)(x¢*'—2) with A=k\{0, 1}, and let 7; be an
automorphism of H; defined by t¥: (x, y)—=(, %, —y). Assume that the pair
(X, o) is not isomorphic to (H;, <t;>) for any A with N=2g+2 and g even. Then
the pair (X, o) is isomorphic to (F(r, s), o(r, s)), for some (r, s).

In this paper we are mainly concerned with the curves F(r, s) in which the
equality N=2g(r, s)+1 holds in (4). In a family of these curves there are some
interesting curves. For example we have a curve whose group of automor-
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phisms is a cyclic group of maximal order and a Hurwitz curve (for the defini-
tion see the section 3.3). The main topics of this paper is to determine iso-
morphy classes of such curves and their groups of automorphisms completely.

When N=2g(r, s)+1 is a prime number, these results are obtained by
Seyama [9]. In order to conquer difficulties which arise from the cause that
N is not prime, we make use of a technique established by Koblitz-Rohrlich [6].

Let N is very large, then a curve with an automorphism of order N is
uniquely determined. In his paper [8], Nakagawa determines curves of genus
g with automorphisms of order N=3g.

1. Quotients of Fermat curves

Throughout this paper we fix an algebraically closed field % of characteristic
0. Let FyCP? denote the Fermat curve of degree N (N=3) defined by the
equation
U¥Y+VVNW¥=0.

Let u and v be the rational functions on Fy induced by U/W and V/W. For
integers 7, s such that 1<r, s we define the differential on Fy by

du

w,s:ur—lvsﬂ” S
T UN 1

Let
Ay={(r, s)€Z?1<r, s and r+s<N—1}.

Then the set {w,:|(r, s)\&Ay} forms a basis for the space of differentials of
the first kind of Fy.

From now on we assume that (r, s)& Ay satisfies g.c.d.(r, s, N)=1. We
call such (7, s) a primitive pair. We put

x=u¥ and y=u"v°.
Then the equation u¥+vV=1 yields
(1.1) y¥=x"(1—x)".

Let F(r, s) denote the “non-singular model” of the function field &(x, y), so
that we have the map Fy—F(r, s) induced by the inclusion k(x, y)Ck(u, v).
For a=Z/NZ or Z, we let {a) be the integer such that
0<<a>EN—1 and <a)=amodN.
Let
A(r, s)={acsZ/NZ|(Kar), {as))e Ay}.
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If a€Z/NZ, then we can regard @ qr, a5, as a differential on F(r, s) canonically.
Then the set {®(ur. asy| aEA(, s)} forms a basis for the differentials of the
first kind of F(r, s). In particular the genus g(», s) of F(r, s) is equal to the
cardinality of A(r, s). For details, we refer to [7].

Let a(r, s) denote the automorphism of F(r, s) defined by

(1.2) a(r, s)*x=x and o(r, s)*y=Cyy .
We denote by
(1.3) z=n(r, s): F(r, s) — P'

the morphism induced by k(x)Ck(x, y).

THEOREM 1.1. If (r, s)€ Ay is a primitive pair, then we have
N=2g(r, s)+1.
Equality holds if and only if (N, r)=(N, s)=(N, r+s)=1.

PrROOF. We put ¢,=N/(N, r), e,=N/(N, s) and e¢.=N/(N, r+s). Applying
the Riemann-Hurwitz relation to the morphism (1.3), we get

2g(r,—2 (1 1 1
N =1 (e0+e1+em>'

Hence we have

N=2g(r, s)—2+{(N, r)+(N, s)+(N, r+s)} =22g(r, s)+1.
Q.E.D.

For later use we shall discuss gap sequences of points where the morphism
7: Fe 5— P' ramifies. We fix three points P, P, and P, such that =(P,)=0,
#(P)=1 and zn(P.)=o. We denote by Gap(F;) the gap sequence of P, (i=
0, 1, ), i.e., a positive integer n is contained in Gap (P;) means that there
exists a differential @ of the first kind with ordp,w=n—1.

If aeZ/NZ, then we have

ordp@cary, cas;=<ary—(N, 7),

ordp, @ ars, casy=<asy—(N, s)
and

0rd po®ary, casy=C—a(r+s)>—(N, r+s).

PROPOSITION 1.2. Let (r, s) be a pair in Ay with (N, r)=1 (resp. (N, s)=1).
Then the map

Ar, s) —> Gap (P) (resp. Gap (P))
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av—><{ary (resp. {as))
is bijective.

PROOF. Since both of A(r, s) and Gap (P;) have the same cardinality, it
suffices to show the injectivily. It is easy to show it. Q.E.D.

2. A characterization of quotients of Fermat curves

Let X be a complete non-singular algebraic curve of genus g=2 defined
over k. Such a curve is simply called a curve of genus g. Let ¢ be an auto-
morphism of X of order N. We denote by X/{¢) the quotient of X by the
cyclic group {¢) generated by ¢ and {4,, A, ---, 4,} the set of points in X/{o)
over which the projection = : X—X/<{¢) ramifies. The automorphism said to be
of type (go; ey, @5, -+, ¢,) if the genus of X/<{¢) is g, and the ramification index
at P; is ¢;, where P; is any point in X such that z(P;)=A4;. Then we have the
following fact which is proved by Harvey [3] using a topological method.

LEMMA 2.1. Let M be the l.c.om. of {ey, e, -+, es}. Then the following are
satisfied :

1) liem. {ey, -+, & -+, en} =M for all 1, where é; denotes the omission of e;;

(2) M divides N, and if g,=0, M=N;

(3) n+#l, and if g,=0, n=3;

4) If 27|M, i.e., 27 divides M and 27 does not divide M, then the number

of es with 27| e; is even.

PROOF. Suppose n=1. If p is a prime divisor of N, then the covering
X/{a?»—X/<{a) has the only one ramification point. This contradicts a theorem
of Lewittes (cf. [2]) which says that the number of the fixed points =2 for an
automorphism of prime order. If g,=0, then we have n=3 by the Riemann-
Hurwitz formula. Thus we have (3). (2) follows immediately since all the e¢;
divide N. If g,=0, we have an unramified covering X/{c¥/*>— X/{a), hence
N=M.

We put l.c.m. {e,, -+, &;, -+, e,} =M,;. Consider the covering = : X/{t)—
X/{oy where t=a¥'¥i, If ¢, } M;, =n; ramifies only over ;. This contradicts
(3). Thus we have e¢;|M; and M=M,.

For (4) we consider the covering X/<{o¥/*>—X/{o) of degree 2. It ramifies
only over 4;’s such that 2"|e¢;. The number of ramification points of a cover-
ing of degree 2 is even. Q.E.D.

Let H; be a hyperelliptic curve of genus g defined by the equation
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YE=(x 1) (28 =2),  A=kR\{0, 1}
and let 7; be an automorphism of H; defined by
T (x, y)'_") (Cgﬂxy —y>

where {,.; is primitive (g+1)-th root of unity.

Two pairs (X, {o>) and (Y, {z}) of algebraic curves and cyclic groups gene-
rated by o,  are said to be isomorphic, if there exists an isomorphism f: X—Y
such that f*-{t>-f={o).

THEOREM 2.2. Let (X, o)) be a pair of an algebraic curve X of genus
222 and a cyclic group generated by an automorphism o of X of order N.
Assume Nz2g+1. Then (X, {6)) is isomorphic to either (F(r, s), {a(r, $)>) for
some primitive pair (v, s)E Ay, or (Hy, {t1>) for some Ac=k\{0, 1} with N=
2g+2 and g even.

PROOF. Let (go; ei, e, -+, ¢,) denote the type of the automorphism o, i.e.,
go is the genus of X/{¢> and {ey, e,, -, e,} is the set of ramification indices
for the projection X—X/{a>.

We may assume ¢;<e¢,< --- <¢,. In this case the Riemann-Hurwitz formula

asserts

@.1) 82 o2+ 3 (1- ;1>

Then we have the following :

(i) £o=0;

(ii) If N is odd, then n=3;

(iii) If N is even, then either n=3, or the type of ¢ is (0; 2, 2, g+1, g+
and g is even.

By the assumption the left hand side of the equation (2.1) is small than 1.
Suppose g,=1. Since n=2 by Lemma 2.1(3), it follows that the right hand side
of (2.1)>1. This is a contradiction. Thus we have (i). Now we prove (ii).
Obviously we have n=3 and that e; is odd for anyi. We consider the follow-
ing four cases: (a) n=5, (b) n=4, ¢,=5, (c) n=4, ¢,=3, ¢,=5, ) n=4, ¢;—
e;=3, e;=7. Then the right hand side of (2.1)>1 for any case. If n=4, ¢,—
e;=e;=3, then e,=3 and N=3 by Lemma 2.1(1, 2). If n=4, e,=e,=3, ¢,=5,
then e,=5 or 15 and N=15 by Lemma 2.1 (1, 2). By (2.1), we have g=8 or 9;
hence we have N<2g-+1. Thus we have (ii). By arguments similar to these,
we have (iii). It is easy and tiresome to pursue it, so we shall omit it.

If n=3, then X—X/{s) is a cyclic covering of degree N having three
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branch points. Therefore (X, {(¢)) is isomorphic to (F(r, s), <o(r, s)>) for some
primitive (r, s)€Ay.

Assume that N=2g+2 with g even and the type of ¢ is (0;2, 2, g+1,
g+1). Then we may assume that the set of the branch points for = : X—X/{a)
is @, 0, 1, o with a=£\{0, 1} and that

m {a)={P, a(P), -, a¥(P)}, 7' (=({Q, 6(Q), -, ¢¥(Q)},
" 0)={P, o(P)}, 7 (0)={P., a(F.)}.

We put ¢¢"'=7z. Then the set of points invariant under = 1s {P, o(P), ---,
a?(P), Q, (@), -, 64(@)}. Applying the Riemann-Hurwitz formula for X—
X/{z>, we have the genus of X/{z)=0; hence X is a hyperelliptic curve. We
denote by £L=.(P.+0(P.)) the vector space of rational functions f such that
div (f)+P.+0(P.) is a positive divisor. Then there is a function x&.L such
that div (x)=P,+¢a(P,)— P.—ad(P.). Moreover we have a function y such that

div (y)= P -+ +05(P)+Q+ + +04Q)~(g+1(Purt o(P.)).

Therefore we have div (y*)=div (], (x—a)(x—b;)) where x(¢*"'(P))=a; and
(a7 Q)=b;. Since s¥x&.L and (of*')*x=x, it follows that o*x={,,,x for
some primitive (g-+1)-th root {,,, of unity. Moreover we have div (¢*(x—a,))
=0g(div (x—a;))=div (x—a;,,). Arranging the constants we have

yi=(xfT —1)(x8*'-2), Aek\{0, 1}
and ¢ is induced by *: (x, ¥)—( 1%, —v). This completes the proof. Q.E.D.
REMARK 2.1. The exceptional curve H, has the following interesting pro-
party: Let o; (=1, 2) be the automorphism of H, defined by
oF(x, M=(a™, (1t E ),
where p satisfies p*¢*2=4A. Then we have
Jac (Hy)=Jac (H;/<ay)XJac (H;/<02))

as abelian varieties (cf. [1]).

3. Algebraic curves of genus g with automorphisms of order 2g-+1

In this section we shall be concerned with a pair (X, {¢)) of an algebraic
curve X of genus g=2 and a cyclic group generated by an automorphism ¢ of
order N=2g+1. By Theorem 2.2 and Theorem 1.1, we know that it is iso-
morphic to a pair (F(r, s), {a(r, s)):
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F(r, s): y*¢'l=x"(1—x)*,
(7(7’, S)*: (x; y)*————>(x, CNy);

where (7, s)e Ay is primitive pair and (N, r)=(N, s)=(N, r+s)=1, and where
{x is a primitive N-th root of unity. If »{"17 is an integer such that ».»{"17=1
mod N, then we have 1=<{s-7F"*»<N—2 and g.c.d. (N, {s-#t71D)=1.

LEMMA 3.1. (F(r, s), <o(r, s))=(F (1, {s-r"11), <a(l, s+t H)).

PrROOF. Define a and b by r-»'"2=1+Na and s-r' 7=(s-#" 1D+ Nbp. We

put
+[-11
sy —
) B and X=ux.
Then we have V¥=X(1—-X)® 771, Q.E.D.

Now we shall treat only pairs of the form (F(1, <a)), <a(1, <a)>)>) where
as(Z/NZ)* (i.e., g.c.d.(a>, N)=1)and g.c.d. ({ad>+1, N)=1. For simplicity
we put F(1, <a>), o(1, <a>) and A(l, <a>) to F(a), o(a) and A(a), respectively.
So we shall study the following set:

CN)={a=(Z/NZ)*|g.c.d. Ka>+1, N)=1}.

Then C(N) always contains 1, g and 2¢g—1=N-2. In the following for a finite
set S we denote by |S| the cardinality of S.

LEMMA 3.2. Let N=psi--- ptr be the decomposition into prime factors.
Then we have

‘CWN:QM”@WE-

PrROOF. If N= NN, and g.c.d.(N,, N,)=1, then the map (» mod N)—
(rmod N,, » mod N,) gives a bijection C(N)= C(N;)XC(N,). Since |C(p°)|=
P H(p—2), we get the result. Q.E.D.

As in (1.3), let z=n(a): F(a)—F(a)/{s(a)y=P* denote the projection in-
duced by the inclusion 2(x)Ck(x, y). We denote by Fix (6(a)) the set of points
fixed under ¢(a), which consists of three points:

AO=P®,  TD=P®, 7 (e)=PW,

Sometimes we omit the superscript (a) from the notation.
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3.1. Automorphisms ¢ and ¢ of C(N).
We define ¢ and ¢ by
pla)=—a(l+a)™ and ¢la)=a}, asC(N).

We denote by G the group of automorphisms of C(N) generated by ¢ and ¢.
Then we have

G=A11, ¢, ¢, do, do¢, (Pp)*}

and an isomorphism p of G to the symmetric group of three letters {0, 1, oo}

such that
@) (0 1 o q @ (0 1 oo
= n = .
ole . 0) and  o(¢ ) )

[oe) 0 o
Let G, denote the stabilizer subgroup of G at a=C(N). Then we have the
following :
(1) |G.l=1, 2 or 3;
(2) |G.|=2if and only if a={l, g, 2g—-1} ;
(3) [1G.|=3 if and only it a®*+a-+1=0.

LEMMA 3.3. For any 6=G and a=C(N), there is an isomorphism :

0q:(F(a), <a(a)y) — (F(0(a)), {a(B(a)))
such that

_ 0 -
0a(P1§a))—Pp(0)(i>( @ i=0, 1, oo,

Proor. It suffices to prove the lemma for #=¢ and ¢. We denote by
k(x, v) (resp. k(u, v)) the rational function field of F(a) (resp. F(1, 6(a))) such
that

PV =x(1—x)* (resp. vV=u(l—u)? @),
For 0=¢, let

- _ Ey
(?a)*(u):x ' and (‘/)a)*(v)—m:x)d’:ﬁ:f
where «, 8 and g are defined by the equations a=N—<¢p(a)>—1, {N—(a>+D}a
=1+8N and {¥=(—1)*”. Then ¢, is a required one. On the other hand,
for =¢, let
V<</)(a)>
ES —T1__ v * —_
@orw=1—x and (o) 0)=7
where a is defined by <a>-<{¢(a)y=1+Na. Then ¢, is a required one. Q.E.D.
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3.2. Hyperelliptic curves.

The following gives a characterization of hyperelliptic curves of genus g=2
with an automorphism of order N=2g+1.

THEOREM 3.4. F(1), F(g) and F(2g—1) are hyperelliptic curves isomorphic
to each ether and if F(a), a€C(N), is a hyperelliptic curve then a {1,g,2¢—1}.

PrOOF. Obviously F(1) is hyperelliptic. Since o(l)=g and ¢(2g—1)=g, it
follows that the orbit of 1&C(N) under the action of G is the set {1,g,2g—1}.
By Lemma 3.3, we have F(L)2XF(g)=F(2g—1).

Assume F(a) is hyperelliptic. Since (Yod)a)= —a—1 and {(—a—1>=
N—<{ay—1, we may assume a<g, i.e., a<g—1. The defining equation of
F(a) is y¥=x(1—x)*. We put Fix (¢(a))={P,, P, P.}. Since the rational func-
tion y is contained in .L((a+1)P.), the gap sequence of P. is not equal to
{1, 2, -, g}, that is, P. is a Weierstrass point (cf. section 1). Since F(a) is
hyperelliptic, we have

Gap (POO): {1- 37 5; T Zg_l} .
Let ze.L(2P.) be a rational function such that
div (z2)=P,+P;—2P.,,

where “’” means the hyperelliptic involution. Then the set {1, z, ---, z@*bs2}
forms a linear basis for .£((a+1)P.). Since y(£))=2z(P)=0, we can put

(3.2) y=zF(z),

where

F(z)=a,+tasz+ - +@gi1y2@ 002,
Comparing the divisors of both sides of (3.2), we have
PytaP,—(a+1)P.=Py+ P;—2P.+div (F(2)).

It follows that we have Pi=P, and div (F(2)=(e—1)(P,—P.). If a>1, then
F(z)(P)=a;=0. Hence we have y=z%a,+ ---). Then we have P,=P,. This
is a contradiction. Q.E.D.

In general we have the following :

THEOREM 3.5. Let (r, s) be a primitive pair in Ay for N=5. If F(r,s)
i1s a hyperelliptic curve, then the pair (F(r, s), {a(r, s))) is isomorphic to one of
the following :
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(1) N=2g+1 and (F(1, 1), <e(l, 1)});
(2) N=2g-+2 with g even and (H;, <t;»), A&k\{0, 1} (¢f. section 2);
(38) N=4g and (H(4g), <a)4g)>) which are defined by

yi=x(x*—1) and o(dg)*(x, y)=Cusx, Lugd).
(4) N=4g+2 and (H(4g+2), <a(4g+2)>) which are defined by

yr=x%"—1 and o(4g+2)*(x, y)=oprx, —V).

PrOOF. We denote by “/” the hyperelliptic involution, which is contained
in the center of the group of all automorphisms. For simplicity’s sake we put
F(r, s)=F and o(r, s)=0c. If Pis a Weierstrass point of F, i.e., P=P’, then
so is a(P). If there is a Welierstrass point which is not a ramification point
for = : F—F/{(o>=P?, it follows that

{P, 6(P), ---, 6V (P)}Cthe set of Weierstrass points ;

hence we have N<2g+2. Assume that any Weierstrass point is a ramification
point. Then we have
N N N
S 22042,
e @ e
where ¢,=N/(N, r), e;=N/(N, s) and e.=N/(N, r+s). By the Riemann-Hurwitz
formula :
262 1 1 1
3.3) N =1 (Z+Z+Ze)J
we have N=4g.
The case N<2g+2 comes from Theorem 2.2 and Theorem 3.4. Now we
assume N=4g. Then by (3.3) we have

1,1, 1, 22 2g42
e, € @ 4g 4g
By Lemma 2.1, we have
(2, 4g, 42), N=4g,

(o, €1, ew)Z{
(2, 2g+1, 4g+2), N=4g+2.

If N=4g, then we may assume that F(r, s) is defined by
yV=x"(1—x)*,

where 1<r<2g and (2g, r)=1. We put z7'(0)=PF,, "' (0)=~F.. Take a point
P, such that m(P))=1. Then we have

div (x)=N-P,—N-P.
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and
div (y)=Pi+a(P)+ - +0* " (P)+rP,—(2g+7)P...
Since the projection F(r, 2g)—F(r, 2g)/<a%*¢) ramifies at P, P. and oi(P)), i=
0,1, -, 2g—1, it follows that the genus of F(r, 2g)/<a?¢> is 0 (hence F(r, 2g)
is necessarily hyperelliptic). Take a function x on F(r, 2g) such that
div (u)=2P,—2P,,, div (u—1)=2P,—2P., .
Then we have

vE=(u?f—1)u

where v=y-u~""V/% By the same way as above we can prove the case N=
4g42, so we shall omit its proof. Q.E.D.

REMARK 3.1. In this proof, we have proved that if N>4g, then (F(r, s),
o(r, s)) is isomorphic to (H(4g), o(4g)) or (H(4g-+2), ¢(4g+2)). This fact is,
already, proved by Nakagawa ([8] Theorem 1, Theorem 2).

REMARK 3.2. We have (F(1, 1), <a(1, 1)))=(H(4g+2), <o(4g+2)*>).

3.3. Hurwitz curves.

Let (a, b)) be a pair of relatively prime positive integers. The Hurwitz
curve, which we denote by H(a, b), of index (a, b) is a non-singular model of
the plane curve defined by the equation:

xbya+b+ybza+b+sza+b:() .
In particular H(2, 1) is the Klein curve, i.e., the algebraic curve of genus g=3
whose group of automorphisms has the order 168=84(g—1). Let
N=a*+ab+b?.

Then we have (N, a)=(N, b)=1. If we regard a and b as elements of (Z/NZ)*,
then we have ab™*=C(N), i.e., g.c.d. (N, 1+<ab">)=1 and (ab )2 +(ab ") +1
=0 mod N.

LEMMA 3.6. Let N be a positive integer. Then the following are equivalent :

(1) There exists reC(N) such that r*+r+1=0mod N ;

2) If N=3%p“1p,°2- p,fn is the decomposition into prime factors, then
e,=0 or 1 and p;=1mod3 for all i.

PROOF. (1)=(2) If the equation
(3.4) X+ X4+1=0
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has a solution in (Z/NZ)*, then it has a solution r in each (Z/p.Z)* for i=
0,1, -, n, where p,=3. Since the subgroup {r> generated by r is of order 3
or 1, it follows that p,=3 or 3 divides the order p;—1 of (Z/p:Z)*. Thus we
have p;=1mod3. On the other hand the equation (3.3) has no solution in
(Z/9Z)*. Therefore we have 2,=0 or 1.

(2)=(1) For each 7, we have a solution of (3.4) in (Z/ P, Z)* where P;=p;°t.
By the isomorphism
(3.5) (ZINZY=(Z/PyZ) X - X(Z]| P Z)*

we get a required solution. Q.E.D.

From now on we fix a positive integer
N=3%p,%1 ... ptn

satisfying the condition (2) in Lemma 3.6. Then we have

LEMMA 3.7. Let
QN)Y={re C(N)|r*+r+1=0}
and
H(N)={(a, b)e NX N|N=a*+ab+b?, g.c.d. (N, a)=g.c.d. (N, b)=1}.

Then the map of H(N) to Q(N) defined by (a, b)—abt1? is bijective and |Q(N)|
=|H(N)|=2", b1 {s an integer such that bb"1*=1 mod N.

PrOOF. We shall show that the injectivity of the map (a, b)—ab"". There
are two uniquely determined integers s and r satisfying

xs—yr=1
and the integer

I(x, )=Qx+y)r+(x+2y)s
satisfies '

(3.6) (%, y)*=—3 mod 4N, 0<i(x, y)<2N .
(cf. [4] Chapter 11 Theorem 4.1). Then we have

@ﬁi%’?ﬂ =(x+y)r+ys

and

hence we have
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(lﬁ%ljl =x1""y modN.

If abt""=a’(b’)'"", then we have

((a, 0)—1) _ (a’, b')—1)

5 = 7 mod N .

By (3.6), we have
l(a, b)=l(a’, b).

It follows that there exists a unit u in the ring of the integers in Q(+/<3)

satisfying
a+bw=(a’+b'w)u

where @=(1++/—3)/2 (cf. ibid, Chapter 11 Theorem 4.2). Since a, b, a’ and b’
are positive, we have (a, b)=(a’, b’). This completes the proof. Q.E.D.

LEMMA 3.8. H(a, by=H(b, a)=F(a, b)=F (1, {ab™13}).

PrROOF. The defining equation of the N-th Fermat curve is
UN4+VV¥4WY=0.
We put
X:Ua.+be, Y:Va+bWb, Z:Wa.+bUb .
Then we have the defining equatiin of the Hurwitz curve of index (a, b):
Xb)fa+b+YbZa+b+Zqu+b:0 .

Moreover we have k(x, y)=4k(x, u¥) where x=X/Z, y=Y/Z and u=U/W. In
fact we have x=u®’, y=v***u~" u¥=x%**/y> and v¥=x’y* where v=V/W.
Therefore y* and y*ek(x, u¥), because v¥=-—(uV+1)ek(x, u"). Since (a, b)
=1, yek(x, u").

Now let r=—u¥ and s=£&x where £Y=(—1)%**. Then we have

s¥V=r*(1—r);

hence we have H(a, b)=F(a, b). Q.E.D.
Combining Lemma 3.7 and 3.8, we get

LEMMA 3.9. Let ceC(N). Then F(c) is a Hurwitz curve, i.e., there exists
a pair (a, b) of relatively prime integers such that N=a*+ab+b* and abl"V=¢
mod N if and only if c*+c-+1=0.

Let a=R(N), i.e., a®+a+1=0. Then we have ¢p(a)=a, hence we have
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the automorphism (¢@).: F(a)—F(a), which we denote 7(a). By an easy cal-
culatiin (cf. Lemma 3.3), we have

LEMMA 3.10. z(a)-g(a)=a(a)* -7(a), where a=N—<a"H>—1=z2.

ExaMPLE 3.1. Let N=39. Then we have
C(N)=11, 4, 7, 10, 16, 19, 22, 28, 31, 34, 37}.
We have three orbits of the action of G:
(i) {1, 19, 37}, F(, 1) is a hyperelliptic curve;

(ii) {4, 7, 10, 28, 31, 34} ;
(iii) {16, 22} =R(N), F(l, 16) is a Hurwitz curve of index (2, 5).

3.4. Isomorphism theorem.

Now we shall prove the main theorem in this paper.

THEOREM 3.11. Let a and b be elements in C(N). Then F(a) and F(b) are
isomorphic if and only if there exists an element 0 in the group G (cf. the sec-
tion 3.1) such that 6(a)=b>.

PROOF. “if”-part comes from Lemma 3.3. When F(a) is the Klein curve,
then the proof is obvious. So we shall exclude this case. Assume there is an
isomorphism

f:F(a)—> F().

Then we have (f'e(b)f>=<0(a)) and f(Fix (¢(a)))=Fix (a(b)) by Lemma 3.13
in the section 3.5. Now, put f(P{*)=P¥ (=0, 1, ), so we can take the ele-
ment in G corresponding to the permutation (fo, fi, fw)—(0, 1, o). It means
we may assume

F(P{)=P® i=0, 1, .

by Lemma 3.3 And we have Gap (P{*)=Gap (P®); hence we have A(a)=A(b)
by Proposition 1.2. We put

Al =A(c)(Z/NZ)* for ¢c=a, b.

Then the theorem comes from the following:
LEMMA 3.12. A(a)*=AMb)* if and only if a=b or —b—1.

PROOF OF LEMMA. Since we have A(—b—1)=A(b), it follows the proof of
“if”_part. We shall now follow a technique of the proof of Theorem 1 in [6]
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to prove “only if”-part. For any re(Z/NZ)*, we define an element G(r) in
the group algebra Q|Gal (Q(x)/Q)], (where {y=e?*"¥):

Gr)= 2 Byhr)e,

hE(Z|NZ)*

where B,(s)=<{s>/N—1/2 and ¢, is the automorphism of Q(y) over @ defined
by {yv—C%. If heA(a)* (resp. he&A(a)*), then <ad+<hay+<{h(—a—1>=N
(resp. <h>+<had+<{h(—a—1))=2N). Hence we have

COHC@+G(—a-D) T+ 5 Lo

hgd(a)* 2 ned)*

It follows that
3.7 G(a)+G(—a—1)=Gb)+G(—b-1).
Applying a character
X: Gal (Q(¢w)/Q) —> C~
to both sides of (2.7), we get
By y%(a)+ B, yi(—a—1)=B,, 3 1(b)+ B, yA(—b—1)
where B, ; is the generalized Bernoulli number

By =2 Bi(h)X(h).

We fix an odd character X,. Then we have
3.8)  Z(@)F(@) o —a—DF—a—1)=Zy(b)F(b)+ Lo —b—1)(—b—1)

for all even character ¢ with B, ;,#0. Now we shall use the following results
proved by Koblitz-Rohrlich (cf. ibid. section 2 Proposition, Remark 2 and LLemma):

SUBLEMMA A. Suppose N is odd. Let S(N) be the set of odd characters of
(Z/NZ)*, and let
So(N)={XeS(N)| By, x=0}.

Then |So(N)IZ(1/4)|S(N)| and equality holds if and only if N=39.

SUBLEMMA B. Let A be a finite abelian group, S a subset of the group A
of characters, T a subset of A. If

JITi=1,
1S1> 14
then the rows of the matrix
(Sb(g))(g,¢)esz
are linearly independent.
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Suppose N#39. Let A=(Z/NZ)*/{+1, —1}. Then A can be naturally
identified with the set of even characters of (Z/NZ)*. We put

S={peA|By,5,4%#0)

and
T={(a), (—a—1), (b), (—b—1)}

where (¢) denotes the element of A determined by ¢. By sublemma A, we
have
IS| .3

T

Considering the relations (3.8), we have a=b or —b—1 by sublemma B.
When N=39, A(1), A4) and A(16) are distinct from each other (cf. Example
3.1.). This completes the proof of Lemma. Q.E.D.

3.5. The group Aut(F(a)) of automorphisms.

As usual let X be a curve of genus g=2 and let ¢ be an automorphism
of order N=2g+1. We denote by Aut(X) the group of automorphisms of X.

LEMMA 3.13. Let X be a non-hyperelliptic curve of genus g=3 and let H be
a cyclic subgroup of Aut(X) of order 2g+1. Assume X is not isomorphic to the
Klein curve: H(1, 2). Then H is a normal subgroup of Aut(X) of index <3.

PROOF. Let m: X—X/Aut(X) be the projection. The genus of X/H is
zero, so is X/Aut(X). Let {4, 4, -, 4,} be the set of branch points. Take
a point P; such that =m(FP;)=A4; and put

Gi={ocAut (X)|o(P)=F},

which is a cyclic subgroup of Aut(X). We denote by e, the order of G; and
assume 2<e,<e¢,<---. H is a subgroup of some G;. Then e;=m(2g+1) for
some positive integer m. Moreover we have m=1 or 2 by Theorem 3.5. If
m=2, then X=F(1) which is a hyperelliptic curve. By the Riemann-Hurwitz
formula for »:

2g—2

e AuE )]

—2+§}1 (1_i) ’

é;

we easily have n=3. Then we have

2¢-2 41,1 1
(3.10) ;'—Aut(xﬂ"l*(zﬁf 2g+1) .
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By this relation we have |Aut(X): H|<3 except (e, e,)=(2, 3). In the excep-
tional case (3.10) becomes

2g—1 JAuwt(X): H| _,

25—7‘5*:“”776 oo
hence we have |Aut(X): H|<12 and =0mod 4 for gz4. If |Aut(X): H|=8
then g=7 and 2g+1=15. If |Aut(X): H|=12, then g=4and 2¢g+1=9. Since
IC(15)|=|C(9)|=3 by Lemma 3.2, such curves are hyperelliptic. When g=3,
we have |Aut(X): H{=24. Then X is the Klein curve. Thus we have shown
that |Aut (X): H|=<3. Since the order of H is odd, H is a normal subgroup of
Aut (X). Q.E.D.

As we saw in the section 3.2, the hyperelliptic curve F(1) is defined by
the equation:

xiP=yreri_1

The automorphism ¢ of F(1) defined by &*(x, y)=(—=x, {sz.1y) has the order
4g+2 and §*=o(1). Then the following fact is well-known and it is proved by
arguments similar to the proof of the preceding lemma, so we shall omit its
proof.

LEMMA 3.14. Aut (F(1))=<&).

LEMMA 3.15. Let a and b be clements in C(N). Assume F(a) is not the
Klein curve. If
f:F(a)— F(b)
is an isomorphism, then {a(a))=<f"'o(b)fy. In particular we have

[(Fix (a(a)))=Fix (a(h)).

Proor. We put H={¢(a)) and H'=<{f"te(b)f>. By Lemma 3.13 and 3.14,
we have |HH': H| <3 unless F(a) is the Klein curve. Since the order of H is
N=2g-+1=5, we have |HH': H|=1or 3. If F(a) is hyperelliptic then |HH’' : H|
=1 and H=H’'. Otherwise (f 'o(b)f)*cH. Therefore we have Fix (¢g(a))=
Fix (f~'e(b)f). Since the stabilizer group at F,** is H, we have H=H’. Q.E.D.

Let a=C(N). By the preceding lemma, we see that each automorphism of
F(a) induces a permutation of the three points in Fix (¢(a)) = {P,, P, P.}.
Therefore we get a homomorphism :

p(a): Aut (F(a)) —> Per (Fix (a(a))),

where Per (Fix (g(a))) is the group of permutations.
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THEOREM 3.16. Assume F(a) is not the Klein curve. Then we have an exact
sequence :
1 —s><o(a)y —> Aut (F(a)) — G, .

where G, is the stabilizer subgroup of G at a.

PrROOF. Since the kernel of p(a) is <(o(a)) (cf. Lemma 3.1 in [9]), it is
enough to show Im(p(a)=G,. If |G,|=2, i.e., F(a) is hyperelliptic, then
there is only one Weierstrass point in Fix (¢(a)). Hence we have |Im (p(a))l
=2, If |G,|=3, i.e., F(a) is a Hurwitz curve, then the automorphism z(a)
induces a permutation of order 3. Assume |G,|=1. Let

f:F(a)—> F(a)
be an automorphism. Then by Lemma 3.3 we have an _element f =G such that
(f+0)P)=P{"@»  for =0, 1, o

Then by Lemma 3.12 we have 6(a)=a or —a—1. If o(a)=a, we have =1
by G.={l}; hence f&<{o(a)y. Suppose #(a)=—a—1. Then the composite
morphism

/=0 P)t-0s f: Fla)—> F(—a—1)—> F(a)
satisfies
FP)=P® ,  f(P)=Pa®

Therefore (f/)*e<{a(a)y, i.e., the order of f’ is 2N=2(2g+1). Then F(a) is
hyperelliptic by Theorem 3.5; hence |G.|=2. This is a contradiction. Q.E.D.

REMARK 3.3. If F(a) is a Hurwitz curve then the exact sequence in the
theorem does not split (cf. Lemma 3.11).
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