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ON A FAMILY OF QUOTIENTS OF FERMAT CURVES

By

Susuniu Irokawa and Ryuji Sasaki

Introduction

Let FjV be the N-th Fermat curve defined by the equation:

For a pair (r, s) of positive integers such that r+s^N―1 and g. c.d. (r, s, N)

=1, we denote by F(r, s) the quotient of FN defined by the equation:

yN = Xr(l-x)s

where the projection FN->F(r, s) is defined by

(%> y)1―> {uN, urvs).

We denote by a{r, s) the automorphism of F(r, s) defined by o(r,s)*:(x, y)^

(x, Z,nJ) where C,N is a primitive iV-th root of unity. The order N of a(r, s)

is quite large for the genus gir, s) of F{r, s). Between them we have a rela-

t-inn･

(#)
N'^2g(r, s)+l .

Conversely the inequality (#) characterize the quotients F(r, s). In fact we

have the following (cf. Theorem 2.2):

Theorem. Let X be a complete non-singular curve of genus g over an alge-

braically closed field k of characteristic0, and let a be an automorphism of X

of order N with N^2g+1^5. Let Hx be a hyperellipticcurve of genus g de-

fined by the equation y2=(xg+1―l)(x8+1―X) with 2.^k＼{R,1}, and let rx be an

automorphism of Hx defined by rj: (x, y)^^g+＼X, ―y). Assume that the pair

(X, a) is not isomorphic to {Hx, <Jx>) for any X with N=2g+2 and g even. Then

the pair (X, a) is isomorphic to (Fir, s),air, s)),for some (r, s).

In this paper we are mainly concerned with the curves F(r, s) in which the

equality N=2g(r, s)+l holds in (#). In a family of these curves there are some

interesting curves. For example we have a curve whose group of automor-
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phisms is a cyclic group of maximal order and a Hurwitz curve (for the defini-

tion see the section 3.3). The main topics of this paper is to determine iso-

morphy classes of such curves and their groups of automorphisms completely.

When N=2g(r, s)+l is a prime number, these results are obtained by

Seyama [9]. In order to conquer difficultieswhich arise from the cause that

N is not prime, we make use of a technique established by Koblitz-Rohrlich [6].

Let N is very large, then a curve with an automorphism of order N is

uniquely determined. In his paper [8], Nakagawa determines curves of genus

g with automorphisms of order N^3g.

1. Quotients of Fermat curves

Throughout this paper we fix an algebraically closed fieldk of characteristic

0. Let FNdP2 denote the Fermat curve of degree N (N^>3) defined by the

equation

U≫+vN+WN=Q.

Let u and v be the rational functions on FN induced by U/W and V/W. For

integers r, s such that l<r, s we define the differentialon FN by

(Dr.s ―
VN

Let

AN={(r, s)eZ2|l^r, s and r+s^N-1}.

Then the set {o)TiS＼{r,s)^AN) forms a basis for the space of differentials of

the firstkind of FN.

From now on we assume that (r, s)^AN satisfiesg.c.d. (r, s, N)=l. We

call such (r, s) a primitive pair. We put

x ―uN and y ―urvs.

Then the equation uN+vN=l yields

(1.1) yN=xr(l-x)s.

Let F(r, s) denote the "non-singular model" of the function field k(x, y), so

that we have the map FN-+F{r, s) induced by the inclusion k(x, y)(Zk(u, v).

For a^Z/NZ or Z, we let <c> be the integer such that

0^<a>^iV-l and <a> = a mod N.

Let

Air, s)={a(EZ/NZ＼≪ar), {as})eAN＼.
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If a<=Z/NZ, then we can regard a><ar>,<as>as a differentialon Fir, s) canonically.

Then the set {ft><ar>,<as>|a^A{r, s)} forms a basis for the differentialsof the

firstkind of F(r, s). In particular the genus g{r, s) of F(r, s) is equal to the

cardinality of A(r, s). For details, we refer to [7].

Let air, s) denote the automorphism of Fir, s) defined by

(1.2) air, s)*x = x and o(r, s)*y=C,Ny ･

We denote by

(1.3) 7z= 7tir,s): Fir, s)―> P1

the morphism induced by k(x)ck{x, y).

Theorem 1.1. // (r, s)<bAn is a primitive pair, then we have

N^2gir, s)+l .

Equality holds if and only if (JV,r)=(N, s)=(Ar, r+s)=l.

Proof. We put eo=N/(N, r),e1=N/(N, s) and eoo=N/(N, r+s). Applying

the Riemann-Hurwitz relationto the morphism (1.3),we get

2g(r, s)-2 /I

ei

Hence we have

N=2g(r, s)-2+{(N, r)+(N, s)+(N, r+s)} ^2g{r, s)+l .

Q.E.D.

For later use we shall discuss gap sequences of points where the morphism

x '･F(rjS)-*Pl ramifies. We fix three points Po, Px and P^ such that n(Po)=0,

7t(P])=l and ^(^00)=°°. We denote by Gap(Pi) the gap sequence of Pi (i=

0, 1, oo),i.e., a positive integer n is contained in Gap(Pi) means that there

exists a differentiala) of the firstkind with ordPico=n ―1.

If a(=Z/NZ, then we have

ordp0G><ar>,<as>=<ar>-(iV,r),

ordp1(o<aryi<as>^<as)-(N, s)

and

OrdpK)ft><ar>,<aS>= <-a(?' + s)>-(Ar7 T + s).

Proposition 1.2. Let (r, s) be a pair in AN with (N, r)=l (resp.(N, s)=l).

Then the map

Air, s) ―h*.Gap (Po) (resp. Gap (P1))
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a i ><ar> (resp.(as})

Proof. Since both of Air, s) and Gap (P*) have the same cardinality,it

suffices to show the injectivily. It is easy to show it Q.E.D.

2. A characterization of quotients of Fermat curves

Let X be a complete non-singular algebraic curve of genus g^2 defined

over k. Such a curve is simply called a curve of genus g. Let a be an auto-

morphism of X of order N. We denote by X/(a} the quotient of X by the

cyclic group <<?> generated by a and {Xu X2, ･･･, Xn) the set of points in X/(a)

over which the projection iz: X^X/^a} ramifies. The automorphism said to be

of type (gQ; eu e2, ■■■, en) if the genus of X/(a) is g0 and the ramification index

at Pt is g*, where Pi is any point in X such that n(Pi)=Xi. Then we have the

following fact which is proved by Harvey [3] using a topological method.

Lemma 2.1. Let M be the 1.cm. of {eu e%, ■■■, en). Then the following are

satisfied:

(1) I.cm. ＼eu■･･, et, ･■･, en) =M for all i, where et denotes the omission of ei;

(2) M divides N, and if go=O, M=N;

(3) n=5fcl,and if go―O, n^3;

(4) // 2r＼＼M,i.e., 2r divides M and 2r+1 does not divide M, then the number

of e/s with 2r＼＼eiis even.

Proof. Suppose n = l. If p is a prime divisor of N, then the covering

X/(ap)―>X/(o) has the only one ramification point. This contradicts a theorem

of Lewittes (cf. [2]) which says that the number of the fixed points 2^2 for an

automorphism of prime order. If go=0, then we have n^3 by the Riemann-

Hurwitz formula. Thus we have (3). (2) follows immediately since all the et

divide N. If go―0, we have an unramified covering X/<,aN/My~^X/(,a}, hence

N=M.

We put l.c.m. {eu ･･･, ei}■･■, en}-=Mi. Consider the covering tc: X/(t} ―*

X/ioy where z=aN/Mi. If etK Mif 7ttramifies only over lt. This contradicts

(3). Thus we have et＼Mi and M―Mt.

For (4) we consider the covering X/{aN/2)-^X/(ay of degree 2. It ramifies

only over X/s such that 2r|ei. The number of ramification points of a cover-

ing of degree 2 is even. Q. E.D.

Let Ex be a hyperelliptic curve of genus g defined by the equation
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and let Xi be an automorphism of Hx defined by

rf: (x, y)i >(£g+1x,-y)

where C≪+iis primitive (^+l)-th root of unity.

Two pairs (X, <<r≫and (Y, <r≫ of algebraic curves and cyclic groups gene-

rated by a, z are said to be isomorphic, if there exists an isomorphism /: X―*Y

such that r1 ･<?->･/"=<ff>.

Theorem 2.2. Let (X, <<r≫be a pair of an algebraic curve X of genus

g^2 and a cyclic group generated by an automorphism a of X of order N.

Assume N^2g+1. Then (X, <<?≫is isomorphic to either (F(r, s), <<r(r,s)≫for

some primitive pair (r, s)^A^, or (Hx, (.t*)) for some A<=k＼{Q,1} with N=

2e-+2 and s even.

Proof. Let (g0; eu e2,■■■, en) denote the type of the automorphism a, i.e.,

go is the genus of X/(a} and {eu e2,■■■, en) is the set of ramification indices

for the projection X-^X/(a}.

We may assume ei^e2< ■■■<en- In this case the Riemann-Hurwitz formula

(2.1)
2^-2

N
11/

1 ＼
=2j?0-2+2(l--)

Then we have the following:

(i) £o=0;

(ii) If N is odd, then n=3;

(iii) If N is even, then either n―3, or the type of a is (0; 2, 2, g+1, g+l)

and g is even.

By the assumption the left hand side of the equation (2.1) is small than 1.

Suppose go^l. Since n2g2 by Lemma 2.1(3),it follows that the right hand side

of (2.1)>1. This is a contradiction. Thus we have (i). Now we prove (ii).

Obviously we have n^3 and that et is odd for any i. We consider the follow-

ing four cases: (a) n^5, (b) n=A, e^b, (c) n=4, ei=3, e2^5, (d) n―A, ex=

62=3, es^7. Then the right hand side of (2.1)>1 for any case. If n―4, ex=

02=03=3, then e4=3 and N=3 by Lemma 2.1(1,2). If n=4, Qx―e2―3, e3=5,

then e4=5 or 15 and N=15 by Lemma 2.1 (1, 2). By (2.1), we have ^=8 or 9;

hence we have N<2^+1. Thus we have (ii). By arguments similar to these,

we have (iii).It is easy and tiresome to pursue it, so we shall omit it.

If n―3, then X-^>X/<ay is a cyclic covering of degree ./Vhaving three
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branch points. Therefore (X, (a}) is isomorphic to (F(r, s),(o{r, s)≫ for some

primitive (r, s)^AN.

Assume that N=2g+2 with g even and the type of a is (0; 2, 2, g+1,

g+1). Then we may assume that the set of the branch points for rt:X~^X/(a)

is a, 0, 1, oo with ≪<=&＼{0,1} and that

ir-＼a)= {P, <J{P),- , <r'(P)}, ^-1(D= {Q, o(Q), ■■■, ag(Q)},

^-X(0)= {Po, 0(P0)}, 7C~l(oo)={Px, a(P^)} .

We put as+1=t. Then the set of points invariant under r is {P, o(P), ■■■,

og(P), Q, g(Q), ■･･, os(Q)}. Applying the Riemann-Hurwitz formula for X―>

X/iry, we have the genus of X/<r>=0; hence I is a hyperelliptic curve. We

denote by X = X{Px+(j(Poa)) the vector space of rational functions / such that

div(/)+Poc+<?(-Pc≫)is a positive divisor. Then there is a function lei1 such

that div (x)=P() + a(P0)―POo―(j(Pcx,).Moreover we have a function y such that

div(;y)=P+ ■･■+ae(P) + Q+ ■■■+ag(Q)-(g+l)(Pao+a(Poo)).

Therefore we have div (v2)=div (IIf=o(x ―ai)(x―bi))where x(ai~＼P))~aiand

x{ai~＼Q))=bi. Since ^ig! and (og+1)*x = x, it follows that a*x=Zg+1x for

some primitive (g+l)-th root C,g+lof unity. Moreover we have div (c*(x ―at))

―a{&＼v{x―Ot))=div(% ―ai+{). Arranging the constants we have

ya=(;c*+1-lXx* +1-;D, ^g^＼{0, 1}

and a is induced by a*: (x, y)*->(£g+ix,―y). This completes the proof. Q.E.D.

Remark 2.1. The exceptional curve Hx has the following interesting pro-

party: Let at (i=l, 2) be the automorphism of Hx defined by

<r*(jt,y) = (fi＼x-＼(-lYft^Kx-^^y),

where p. satisfies/j.2ie+1)=/l.Then we have

Jac (//^sjac (//,/<^≫X Jac (Hi/<aiy)

as abelian varieties(cf. [1]).

3. Algebraic curves of genus g with automorphisms of order 2g-＼-l

In this section we shall be concerned with a pair (X, <#≫ of an algebraic

curve X of genus g>2 and a cyclic group generated by an automorphism a of

order N=2g + 1. By Theorem 2.2 and Theorem 1.1, we know that it is iso-

morphic to a pair (Fir, s), <a(r, s≫:
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Fix, s): y2g+1= xr(l-x)s,

o(r, s)*:{x, y)＼―>{x, C,Ny),

where (r, s)^AN is primitive pair and (N, r)=(N, s)=(N, r+s)=l, and where

Cw is a primitive iV-th root of unity. If rc~1]is an integer such that r-rc~1]= l

modiV, then we have l^<s-r[-1]>^AT-2 and a.c.d.iN, <st[-1]≫=1.

Lemma 3.1. (F(r, s),<<r(r,s)≫^(F(l, <wc~1]≫, <er(l,<s-rc-1]≫≫.

Proof. Define a and b by r-rL'u=l+Na and s-rc"1]= <s-r["1]>+Ar/?. We

put

l' ― ~~^~7i or and X=x
xa(l ― x)b

Then we have Ylf=X(l-X)<-rL-i:i＼
Q.E.D

Now we shall treat only pairs of the form (F(l, <a>), <c(l, <c≫≫ where

a^(Z/NZy (i.e., g.c.d. ≪a>, N)=l) and g.c.d. ≪a>+l, iV)=l. For simplicity

we put F(l, <a≫, <r(l,<a≫ and A(l, <a≫ to F(a), o(a) and A(a), respectively.

So we shall study the following set:

C(N)= {a<=(Z/NZy＼g. c.d.≪fl>+l, N)=l}.

Then C(N) always contains 1, g and 2g―l ―N―2. In the following for a finite

set S we denote by ISI the cardinality of S.

Lemma 3.2. Let N=p＼l ■■･p%n be the decomposition into prime factors.

C(N)＼ = ILPV-Kpt

t=i
2)

Proof. If N = NXN2 and g. c.d.(Nu N2) = 1, then the map (r mod N) >-≫

(r mod Nu r mod N2) gives a bijection C(AT)s C(N,)xC(iV2). Since |C(£e)|=

pe-＼p-2), we get the result. Q.E.D.

As in (1.3), let n = 7t(a):F{a)-*F(a)/(o(a))^Pl denote the projection in-

duced by the inclusion k(x)ak(x, y). We denote by Fix (<r(a))the set of points

fixed under a{a), which consists of three points:

1t~＼Q)= Pia＼ 7l-＼l)=P<ia＼ 7T-1(oo)= P^.

Sometimes we omit the superscript (a) from the notation.
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3.1. Automorphisms <pand <pof C(N).

We define <pand <p by

^)(a)=-a(l + a)-1 and ^a)=a~1, aeC(N).

We denote by G the group of automorphisms of C(N) generated by <pand <p

Then we have

G= {1,CO,0, 0(0,C^C5^,(0≪)2}

and an isomorphism p of G to the

such that
/O 1 oo＼

＼oo 1 0/

symmetric group of three letters {0, 1, 00}

and p((p)=

c

Let Ga denote the stabilizer subgroup of G at aeC(iV). Then we have the

following:

(1) |GJ=1, 2 or 3;

(2) |Ga| =2 if and only if ae{l, g, 2g-l) ;

(3) Ga|=3 if and only it Q2+a+l=0.

Lemma 3.3. For any #eG and a^C(N), there is an isomorphism:

6a :(F(a), <a(fl)≫―> (F(0(a)), <<r(0(a))≫

such that

ea{P＼a))=Pplonuuna)) , i=0, 1, oo.

Proof. It suffices to prove the lemma for ^=^> and 0. We denote by

k(x, y) (resp. ^(m, y)) the rational function field of F(a) (resp. F(l, /9(a)))such

that

v^ = A;(l-x)<a> (resp. viV=M(l-M)<tf(a)>).

For 0―ip,let

(?)a)*(M)=X-1 and (^J^zr:―-^-^-

where a, /3 and C are defined by the equations a=iV―<^>(a)> ―1, {N―≪a>+l)}≪

= l+/3iV and £tf=(_i)<＼≪≪≫.Then ^a is a required one. On the other hand,

for 0=<J>, let

(^tt)*(≪)=l-* and (0a)*(v)=-^z-)S

where a is defined by <<2>-<</<a)>=l+iVa. Then d>a is a required one. Q.E.D.
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3.2. Hyperelliptic curves.

The following gives a characterization of hyperellipticcurves of genus g^2

with an automorphism of order N=2s+1.

Theorem 3.4. F(l), F(g) and F(2g―1) are hyperelliptic curves isomorphic

to each ether and if F(a), a^C(N), is a hyperellipticcurve then qig II,g, 2#―1}.

Proof. Obviously F(l) is hyperelliptic. Since (p(l)=g and <p(2g―l)=g, it

follows that the orbit of 1<=C(AO under the action of G is the set {l,g,2g―l}.

By Lemma 3.3, we have F(l)9±F(g)=F(2g-~l).

Assume F(a) is hyperelliptic. Since ((p(p(p)(a)=―a ―l and <―a―1> =

AT―<a> ―1, we may assume a^g, i.e., a^g―1. The defining equation of

F{a) is ^^^xCl-x)0. We put Fix (<r(a))={Po, Pu PJ,. Since the rational func-

tion y is contained in £((a+l)Poo), the gap sequence of PM is not equal to

{1,2, ■■･, g), that is, Pec is a Weierstrass point (cf. section 1). Since F(a) is

hvnprRiiinfir we have

Gap (/>≫)={1,3, 5, ■■■,2g-l}.

Let z^X(2Poo) be a rational function such that

d＼v(z)=P0+Pf0-2Peo,

where "'" means the hyperelliptic involution. Then the set {1, z, ■･･, ^(a+1)/2}

forms a linear basis for £({a+l)PJ). Since y(P0)=:z(Po)=0, we can put

(3.2) y=zF(z),

where

F{z)=a1+aaz+ ■■■+aia+1)/2z<a-1><2.

Comparing the divisorsof both sidesof (3.2),we have

P0+aP1-(a+l)PBO=P0+P/o-2Pa>+div {F{z)).

It follows that we have P'^P, and div(F(z))=(a-l)(P1-Poo).

F(z)(P1)=a1=0. Hence we have y―z＼a%-{-･■･).Then we have

is a ronfTfldir.Hon.

If a>l, then

P0=Pl This

Q.E.D.

In general we have the following:

Theorem 3.5. Let (r, s) be a primitive pair in AN for N^5. If F(r, s)

is a hyperellipticcurve, then the pair (F(r, s),<<r(r,s)≫is isomorphic to one of

the following:
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N=2g+1 and (F(l, 1), <a(l, 1)≫;

N=2g+2 with g even and (Hit (r{>), ^k＼{0, 1} (cf. section 2)

N=ig and (H(4g), <a)4g)≫ which are defined by

y*=x(x*g-l) and o{tg)*(x,y)=&i8%x,^gy).

(4) N=4g+2 and (H(4g+2), <ff(4g+2)≫ which are defined by

y^=xl'^-l and <t(4g+2)*(x, y)^(Q2g+1x, -y).

Proof. We denote by ""' the hyperellipticinvolution, which is contained

in the center of the group of all automorphisms. For simplicity's sake we put

F(r, s)―F and a{r, s)=a. If P is a Weierstrass point of F, i.e., P=P', then

so is a{P). If there is a Weierstrass point which is not a ramification point

for tt:F->F/<<t>sPx, it follows that

{P, o(P), ･■･, aN~＼P)}dthe set of Weierstrass points;

hence we have AT^;2g-+2. Assume that any Weierstrass point is a ramification

point. Then we have

- + - + -^2^+2,

where eo=N/(N, r), e1=N/(AT, s) and eo0=N/(N, r+s). By the Riemann-Hurwitz

formula:

(3.3)

we have N^4g.

By Lemma 2.1,we have

＼e0 e, ej

2g-2
=
2g+2

4g Ag

N=4g,

N=4g+2 .

2g-2

N

The case N^2g+2 comes from Theorem 2.2 and Theorem 3.4. Now we

assume N^Ag. Then by (3.3)we have

i+i + isa-

e0 ex eoo

f (2,4*,4ff),

I (2,2^+1,4^+2),

If N=4g, then we may assume that F(r, s)is definedby

yN = Xr(l~-x)2e,

where l^r<2g and (2g, r)=l. We put x-＼O)=Po, r'(oo)rrPM. Take a point

Pi such that 7c(P1)=l. Then we have

div(x)=N-Pn-N-Pm
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and

div(y)=P1 + om+ - + <J2g-＼Pl)+rPQ-{2g+r)Paa.

Since the projection Fir, 2g)->F{r, 2g)/(o2g> ramifies at Po, P^ and a＼Pi),i―

0, 1,■･■, 2g-l, it follows that the genus of F(r, 2g)/<a2g) is 0 (hence Fir, 2g)

is necessarily hyperelliptic). Take a function u on F(r, 2g) such that

div (m)=2P0-2Poo , div (u-l)=2P1-2Px .

Then we have

v2=(u2g-l)u

where v=y-u~(r~1)/2. By the same way as above we can prove the case Af=

4g+2, so we shall omit its proof. Q.E.D.

Remark 3.1. In this proof, we have proved that if N^4g, then (F(r, s),

a(r, s)) is isomorphic to (H(4g), o(4g)) or (#(4g+2), o{4g-＼-2)).This fact is,

alreadv. Droved bv Nakaeawa (T81 Theorem 1. Theorem 2).

Remark 3.2. We have (F(l, 1), <a(l,l)≫=(//(4#+2), <<7(4g+2)2≫.

3.3. Hurwitz curves.

Let (a, b) be a pair of relatively prime positive integers. The Hurwitz

curve, which we denote by H(a, b), of index (a, b) is a non-singular model of

the plane curve defined by the equation:

xbya^bjryl>za+b^_zbxa+b= Q _

In particular H(2, 1) is the Klein curve, i.e., the algebraic curve of genus g―3

whose group of automorphisms has the order 168=84(5-―1). Let

N=a*+ab+b*.

Then we have (N, a)=(N, b)=l. If we regard a and b as elements of(Z/NZY,

then we have ab~l^C(N), i.e., g. c.d.(N, l+<a6-1≫=l and (afr"1)I!+(a&-1)+l

Lemma 3.6. Let N be a positive integer. Then the following are equivalent:

(1) There exists r^C(N) such that r2+r+l=Omod N;

(2) // N=3e<)p1eip2e2 ■･･pn n is the decomposition into prime factors, then

0n~ti nr 1 and ft..-= 1 mod 3 for all i.

Proof. (1)=H2) If the equation
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has a solution in (Z/NZT, then it has a solution r in each (Z/piZ)x for i=

0, 1, ･･･, n, where pa―"i. Since the subgroup <r> generated by r is of order ＼

or 1, it follows that pt=3 or 3 divides the order pt―1 of {Z/piZY. Thus w≪

have />i=lmod3. On the other hand the equation (3.3) has no solution ir

(Z/9Z)X. Therefore we have eo=O or 1.

(2)=X1) For each /, we have a solution of (3.4)in (Z/PtZ)* where Pt=pie*

By the isomorphism

(3.5) (z/Nzy^(z/pozrx ･･･x(z/pnzy

we get a required solution. Q.E.D.

From now on we fix a positive integer

N=3e<>pi*i...pn≪n

satisfying the condition (2) in Lemma 3.6. Then we have

Lemma 3.7. Let

0(JV)= {r(EC(N)＼r2+r+l=Q}

and

H(N)={(a, b) ENxN＼N=a*+ab-＼-b＼ g.c.d. (AT,a)=g.c.d. (N, b)=l＼.

Then the map of H(N) to Q(N) defined by (a, b)-^abl~11is bijectiveand ＼Q(N)＼

= ＼H(N)＼=2n, bl~12is an integer such that 66[-1]=l modN.

Proof. We shall show that the injectivityof the map (a, b)->ab[~11.There

are two uniquely determined integers s and r satisfying

and the integer

satisfies

(3.6)

xs ―yr=l

l(x,y)=(2x+y)r+(x+2y)s

Hx, y)2= -3 mod4N, O^/(jc, y)<2N .

(cf.[4] Chapter 11 Theorem 4.1). Then we have

(Z(x, y)-l) __
2 = (x+y)r+ys

and

hence we have

x-(l(x,y)-l)
2 =Nr+y ,
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(/(*,y)-D
2

If cri] = aW)['1], then we have

= xl'12y modN.
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(/(a, b)-l)^(Ka',b')-l)

2 "" 2 '

By (3.6), we have

l(a, b)=l(a', b').

It follows that there exists a unit u in the ring of the integers in Q(V―3)

satisfying

a+foy=(fi'+ft'tt>)M

where a>=(l + V:=3)/2 (cf.ibid, Chapter 11 Theorem 4.2). Since a, b, a' and ft'

are positive, we have (a, 6)=(g/, ft').This completes the proof. Q.E.D.

Lemma 3.8. //(a,ft)s//(ft,a)^F(a, ft)=F(L <aft*-i:i≫.

Proof. The definingequation of the JV-thFermat curve is

We put

X=Ua+bVb, Y~Va+bWb, Z=Wa+bUb.

Then we have the definingequatiinof the Hurwitz curve of index (a, b):

XbYa+b+YbZa+b+ZbXa+b=O .

Moreover we have k(x,y)=k{x, uN) where x―X/Z, y = Y/Z and u―U/W. In

fact we have x ―uavb,y―va+bu-b,uN=xa+b/yb and vN ―xbya where v=V/W.

Therefore ya and y"^k(x, nN), because rv=― {uN+l)<^k(x, uN). Since {a, b)

= 1, y<=k(x, uN).

Now let r=―uN and s―£xwhere $x=(―l)a+b. Then we have

sN=ra(l-r)b;

hence we have H(a, b)=*F(a,b). Q.E.D.

Combining Lemma 3.7 and 3.8,we get

Lemma 3.9. Let c^C(N). Then F(c) is a Hurwitz curve, i.e., there exists

a pair (a, b) of relativelyprime integers such that N―a2jrab-＼-bz and abl~ll=c

mo&N if and only if c2+c+l―0.

Let a EQ(N), i.e.,a2+a+l=O. Then we have <p<p(a)=a, hence we have
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the automorphism (<p(p)a:F(a)-+F(a), which we denote z{a). By an easy cal

culatiin(cf. Lemma 3.3), we have

Lemma 3.10. v(a)-a(a)=a(a)a-via), where a=N― (a"1) ―1^2.

Example 3.1. Let N=39. Then we have

C(N)= {1, 4, 7, 10, 16, 19, 22, 28, 31, 34, 37}.

We have three orbits of the action of G:

( i ) {1, 19, 37}, F(l, 1) is a hyperelliptic curve;

(ii) {4,7,10,28,31,34};

(iii) {16, 22}=Q(N), F(l, 16) is a Hurwitz curve of index (2, 5).

3.4. Isomorphism theorem.

Now we shallprove the main theorem in thispaper

Theorem 3.11. Let a and b be elements in C{N). Then F{a) and F(b) are

isomorphic if and only if there exists an element 6 in the group G (cf. the sec-

tion 3.1) such that O(a)=b.

Proof, "if'-part comes from Lemma 3.3. When F(a) is the Klein curve,

then the proof is obvious. So we shall exclude this case. Assume there is an

isomorphism

/:F(a)―>F(≪.

Then we have </-1ff(/?)yc>=<<r(a)>and /(Fix (<r(a)))=Fix (a(b)) by Lemma 3.13

in the section 3.5. Now, put f{P＼a))―Pfl(i―0, 1, oo), so we can take the ele-

ment in G corresponding to the permutation (/,, /i, /oJ'-KO,1, oo). It means

we may assume

f(P^) = P^ , 2=0, 1, oo .

by Lemma 3.3 And we have Gap(^a))=Gap(^6)); hence we have A(a)=A(b)

by Proposition 1.2. We put

A(c)x=A(c)r＼(Z/NZ)x for c=a, b.

Then the theorem comes from the following:

Lemma 3.12. A(a)*-=A(b)* if and only if a=b or ―b―1.

Proof of Lemma. Since we have A(―b―l)=A(b), it follows the proof of

"if'-part. We shall now follow a technique of the proof of Theorem 1 in [6]
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to prove "only if'-part. For any r^(Z/NZ)x, we define an element G(r) in

the group algebra Q|Gal(Q(C*)/Q)], (where C>N=e2*i<N):

where 5i(s)=<s>/iV ―1/2 and aftis the automorphism of Q(Cat) over Q defined

by Civ^Ck. If /iG^(a)x (resp. h£A(a)x), then </i>+</ia>+</i(-a-l)> = iV

(resp. </i>+</ia> + </z(-a-l)>=2iV). Hence we have

G(l)+G(a)+G(-a-l) S
4^~

S
i^
.

It follows that

(3.7) G(a)+G(-a-l)=G(fc)+G(-&-l).

Applying a character

Z:Gal(Q(U)/Q)―^ Cx

to both sides of (2.7), we get

B1,tZ(a)+B1.xZ(-a-l)=B1.zX(b)+B1.xZ(-b-l)

where BljX is the generalized Bernoulli number

ft

We fix an odd character l0. Then we have

(3.8) Zo(a)^(a)+Zo(-fl-l)0(-fl-l)=2oW(W+2o(-6-l)^(-6-l)

for all even character 0 with B^x^^O. Now we shall use the following results

proved by Koblitz-Rohrlich (cf.ibid,section 2 Proposition, Remark 2 and Lemma):

Sublemma A. Suppose N is odd. Let S(N) be the set of odd characters of

(Z/NZT, and let

S0(AO={ZeS(iV)|fl1>z=0}.

Then |S0(iV)|^(l/4)|S(A0| and equality holds if and only if JV=39.

Sublemma B. Let A be a finiteaheliangroup, S a subsetof the group A

of characters,T a subsetof A. If

then the rows of the matrix

are linearly independent.

＼s＼>
[Tj-1

＼T＼
＼A

(<P(g))(g,<b)^TxS
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Suppose N^39. Let A=(Z/NZ)*/{ + l, -1}. Then A can be naturally

identified with the set of even characters of (Z/NZ)X. We put

S={<p<=A＼BliXof*0}

and

where (c) denotes the

have

T={(a)

element

(-a-1), (b),(-h-1)}

of A determined by c. By sublemma A, we

1^1 4

Considering the relations (3.8), we have a=b or ―b―1 by sublemma B.

When ^=39, A(＼),/4(4)and A(Vo) are distinctfrom each other (cf. Example

3.1.)- This completes the proof of Lemma. Q.E.D.

3.5. The group Aut(F(a)) of automorphisms.

As usuallet X be a curve of genus g^2 and let a be an automorphism

of order N=2g-＼-l. We denote by Aut(Z) the group of automorphisms of X.

Lemma 3.13. Let X be a non-hyper ellipticcurve of genus g^3 and let H be

a cyclic subgroup of Aut(X) of order 2g-＼-＼.Assume X is not isomorphic to the

Klein curve: Ml, 2). Then H is a normal subgroup of Aut (X) of index ^3.

Proof. Let it: X^X/Aut (X) be the projection. The genus of X/H is

zero, so is X/Aut(Z). Let {XltA2,■･■,^n) be the set of branch points. Take

a point Pi such that n(Pi)=li and put

G^iaeAutC*) |*(/>,)=/>*},

which is a cyclic subgroup of Aut(if). We denote by ef the order of G< and

assume 2^e!^e2^ ････ ^ is a subgroup of some G*. Then ei=m(2^+l) for

some positive integer m. Moreover we have m=l or 2 by Theorem 3.5. If

m=2, then lsF(l) which is a hyperelliptic curve. By the Riemann-Hurwitz

formula for rt:

(3.9)

we easilyhave n

(3.10)

＼Aut(X)＼~ *±iV ej

=3. Then we have

＼ut(*)| l^ e2^2ff+l/
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By this relation we have lAut(X): H＼tH=3except (eu e2)=(2, 3). In the excep-

tional case C3.MV)becomes

2^-1
=

2g-5

|Aut(Z): H＼
6
>1

hence we have |Aut (X): H＼£12 and =0 mod4 for g^L If |Aut (X): H＼=8

then g=l and 2g+l=15. If |Aut(Z): //|=12, then ^=4 and 2^ + 1=9. Since

C(15)| = |C(9)|=3 by Lemma 3.2, such curves are hyperelliptic. When g=3,

we have |Aut(^): H＼=24. Then X is the Klein curve. Thus we have shown

that |Aut(X): H＼^3. Since the order of H is odd, H is a normal subgroup of

Aut (X). Q.E.D.

As we saw in the section 3.2, the hyperelliptic curve F(l) is defined by

the equation:

The automorphism a of F(l) defined by a*(x, y)=( ―x, C2g+iy) has the order

4g+2 and d2=a(l). Then the following fact is well-known and it is proved by

arguments similar to the proof of the preceding lemma, so we shall omit its

nrnnf.

Lemma 3.14. Aut(F(l))=<ar>.

Lemma 3.15. Let a and b be elements in C(N). Assume F(a) is not the

Klein curve. If

f:F(a)-^F(b)

is an isomorphism, then <s<j(ay)= (f~lo(b)f). In particular we have

f(Fix(a(a)))=Fix(a(b)).

Proof. We put H=<a(a)y and H'=(f-l<j{b)f}. By Lemma 3.13 and 3.14,

we have ＼HH': H＼^3 unless F(a) is the Klein curve. Since the order of H is

N=2g + l^, we have |HHf: H＼=1 or 3. If F{a) is hyperellipticthen ＼HH': H＼

= 1 and H-H'. Otherwise (f-*a(b)f)*^H. Therefore we have Fix (a(a))=

Fix (f-^ib)/). Since the stabilizer group at F0(a)is H, we have H―H'. Q.E.D.

Let o,<bC(N). By the precedinglemma, we see that each automorphism of

F(a) induces a permutation of the three points in Fix(a(a))= {Po>Pi,P }.

Therefore we get a homomorphism:

p{a):Aut (F(a))―> Per(Fix(o(a))),

where Per(Fix(a(a)))is the group of permutations.



138 Susumu Irokawa and Ryuji Sasaki

Theorem 3.16. Assume F(a) is not the Klein curve. Then we have an exact

sequence:

1 ―> <<r(a)>―> Aut (F(a)) ―>Ga.

where Ga is the stabilizersubgroup of G at a.

Proof. Since the kernel of p(a) is <c(a)> (cf. Lemma 3.1 in [9]), it is

enough to show Im (p(a)) = Ga. If ＼Ga＼=2, i.e., F(a) is hyperelliptic, then

there is only one Weierstrass point in Fix (a(a)). Hence we have |Im (/)(≪))|

―2. If ＼Ga＼=3,i.e., F(a) is a Hurwitz curve, then the automorphism z(a)

induces a permutation of order 3. Assume |Ga|=l. Let

f:F(a)-^F(a)

be an automorphism. Then by Lemma 3.3 we have an element #eG such that

(f-0a)(P(ia))=Pl9(a)) for i=0, 1, oo .

Then by Lemma 3.12 we have d(a)=a or ―a ―I. If o(a)=a, we have d ―1

by Ga―{1}) hence /e<<r(c)>. Suppose 6{a)= ―a ―＼. Then the composite

morphism

f' = (<l)-<p-<l>)a-l-da-f: F{a) ―-> F(-a-l) ―> F(a)

satisfies

Therefore (/')2e<<7(a)>, i.e., the order of /' is 2N=2(2^ + 1). Then F(a) is

hyperelliptic by Theorem 3.5; hence |GO|=2. This is a contradiction. Q.E.D.

Remark 3.3. If F{a) is a Hurwitz curve then the exact sequence in the

theorem does not split(cf. Lemma 3.11).
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