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SHAPE VIA MULTI-NETS

By

Zvonko Cerin

Abstract. We give in this paper a description of a new category

related to shape category. We consider families of multi-valued

functions between topological spaces which we call multi-nets. In

a well-controlled way functions of a multi-net more and more re-

semble single-valued functions. We introduce a notion of homotopy

for multi-nets and a composition of homotopy classes. The resultant

homotopy category of multi-nets MM is naturally equivalent to the

shape category provided we restrict to spaces which have ANR-

resolutions with onto projections. However, the homotopy category

of multi-nets is interesting because it provides an intrinsic method

of studying global properties of spaces. Our idea is to extend

Borsuk's approach based on fundamental sequences to arbitrary

topological spaces in analogy with Sanjurjo's description of shape

category of compact metric spaces in terms of upper semi-continuous

multi-valued functions.

Introduction

The subject of this paper belongs to the part of geometric topology which is

known under the name shape theory. The method of our investigations is through

the use of multi-valued functions. Our motivation is a desire to get a new des-

cription of the shape category which willbe an extension to arbitrary topological

spaces of Sanjurjo's approach to shape theory of compact metric spaces via

upper semi-continuous multi-valued functions [10].

The classicalhomotopy theory studies the equivalence relation of homotopy

for maps. Recall that maps (i.e., continuous single-valued functions) / and g

between topologicai spaces X and Y are called homotopic provided there is a

map h from the product Xxl of X with the unit closed segment /=[0, 1] into
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Y such that h(x, 0)=f(x) and h(x, l)=g(x) for every x<=X. The homotopy

category M has as objects topological spaces and as morphisms homotopy classes

of maps. The homotopy classes are composed by composing representatives

and the identity morphisms are homotopy classes of the identity maps.

The equivalence relation of homotopy for maps leads to a useful and rich

theory only when we restrict to spaces with nice local properties like polyhedra

and absolute neighbourhood retracts. The problems arise in the definition above

when the space Y is such that there are not many maps from Xxl into Y so

that the properties of Y are preventing identification of maps which ought to

be identified. In other words, the definition of homotopy is too rigid because

the function h must be continuous and single-valued and because it must take

values in the space Y.

This has led K. Borsuk to modify homotopy theory so that the new theory

which he calls shape theory agrees with the old on absolute neighbourhood

retracts and that it gives much better results for spaces with complicated local

structure where the old theory is inadequate. The modification of Borsuk relies

on the idea to relinquish the insistence in the definition of homotopy that the

map h goes precisely into the space Y. The obvious alternative method which

was undertaken by Sanjurjo in [9] and [10] and further followed in this paper

is to give up with the requirement that the function h is continuous and/or

single-valued while retaining the desirable condition that it takes values in the

space Y. In order to properly honour these two diverse methods we shall call

them the Borsuk approach and the Sanjurjo approach to shape theory. We use

names outer shape theory and inner shape theory.

In the original Borsuk's description [2] of shape category ShB of compact

metric spaces, the spaces X and Y are considered as closed subsets of the Hil-

bert cube Q and maps from X into Y are replaced with fundamental sequences.

Recall that a fundamental seguence <p from X into Y is a sequence {<pt}T=i of

maps <pt: Q-+Q such that for every neighbourhood U of Y in Q there is a

neighbourhood V of X in Q and an index i with the property that the restrictions

<Pi＼vand <pj＼vare homotopic in U for every j>i. The role of the homotopy

relation plays the following notion. Fundamental sequences <p and <p from X

into Y are called homotopic provided for every neighbourhood U of Y in Q

there is a neighbourhood V of X in Q and an index i with the property that

the restrictions <pj＼vand <pj＼vare homotopic in U for every j7>i. This is an

equivalence relation ＼jp]denotes the homotopy class of a fundamental sequence

ip, and homotopy classes are composed by the rule ＼j])~＼°[(p]= [<J>°<p],where <p°ip

is a fundamental sequence formed by compositions <pi°<Pi.The category Shn has
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compact metric spaces as objects and homotopy classes of fundamental sequences

as morphisms.

In spite of its simplicity and clear geometric flavour, Borsuk's theory relies

too much on the Hilbert cube and the use of open neighbourhoods of subsets

so that the extension of it to wider classes of spaces proved to be a formidable

problem. This was accomplished by many authors so that now we have dif-

ferent descriptions of shape category Sh. Its objects are topological spaces

while its morphisms are rather awkward constructions involving things such as

Morita's ANR-expansions, Grothendick's pro-categories, and intricate concepts

of category theory (see [7]). All these effortsbelong to the outer shape theory

because they use some outside objects in order to study global properties of

spaces. In particular, these approaches all require the use of absolute neigh-

bourhood retracts. In this paper we propose to follow for arbitrary topological

spaces Borsuk's geometric method based on fundamental sequences as closely

as possible without any reference to absolute neighbourhood retracts.

Instead of fundamental sequences we consider multi-nets. The other steps

are identical. We define a notion of homotopy for multi-nets and the morphisms

are simply homotopy classes of multi-nets. This idea has previously been used

by Sanjurjo in [9] and [10] to get an analogou description of ShB. The crux

of this approach is to use functions which are not continuous and/or single-

valued. Our investigation started with attempts to extend Sanjurjo's method to

arbitray topological spaces.

The difference in approach is that we do not require multi-valued functions

to be upper semi-continuous though it is possible with only minor modifications

to build up the appropriate category where this requirement is fulfilled.

The key tools are given as Lemmas 2 and 3 which provide replacement of

a small multi-valued functions (as defined in Definition 2) by a close (see Defini-

tion 3) continuous single-valued function and necessary transitivityof the notion

of small homotopy (from Definition 4).

The multi-nets and their homotopy is given in Definitions 5 and 6. The

most difficultpart is to find the correct notion of composition for homotopy

classses of multi-nets. This is accomplished in the first three claims and sum-

marized in Theorem 2.

With the description of the new category MM thus completed, the rest of

the paper deals with setting up a functor 8 from our homotopy category of

multi-nets into the shape category (see Theorem 3 and Claims 4-6).

Finally, in Theorem 4 and Claims 7-10, we show that the homotopy cate-

gory of multi-nets is naturally equivalent to the shape category on spaces hav-
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Ing ANR-resolutions with onto projections. This is done by describing the in-

verse C of the functor d.

The present paper is only the firstin a series where we shall attempt to

do large portions of inner shape theory using small multi-valued functions. This

approach is particularly suitable for some problems. It's obvious merit is that

it does not need any outside objects (like a nice ambient space or an inverse

limit expansion into nice spaces). In conclusion, this paper lies foundations

for the study of the homotopy category MM of multi-nets and establishes some

connections between MM and the shape category. In the paper "Shape theory

intrinsically"we shall prove by far more complicated arguments that the cate-

gories MM and Sh are equivalent.

Small Multi-valued functions

In this section we shall introduce notions that are required for our theory

and prove two useful technical results.

Let Y denote the collection of all normal covers of a topological space Y

[1]. With respect to the refinement relation > the set Y is a directed set.

Two normal covers a and r of Y are equivalent provided a>r and t<a. In

order to simplify our notation we denote a normal cover and it's equivalence

class by the same symbol. Consequently, Y also stands for the associated

quotient set.

Let Y denote the collection of all finitesubsets c of Y which have a unique

(with respect to the refinement relation) maximal element ceF. We consider

Y ordered by the inclusion relation and regard Y as a subset of single-element

subsets of Y. Notice that Y is a cofinitedirected set [7, p. 11].

We shall repeatedly use the following lemma (see [7, p. 9]).

Lemma 1. Let {fu ■■■,/,} be a finitecollectionof functions from a cofinite

directed set (M, <) into a directedset(L, <). Then there is an increasing func-

tion g: M-+L such that g(x)>fx(x), ■･･,fn(x) for every xeM.

The next two definitions introduce precisely a type of multi-valued func-

tions that we shall use.

Definition 1. Let X and Y be topologicalspaces. By a multi-valuedfunc-

tionor an M-function F: X―>Y we mean a rule which associatesa non-empty

subset F(x) of Y to every point x of X. Let M(Z, Y) denote all M-functions

from X into Y.
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Definition 2. Let F:X-+Y be a multi-valuedfunction and let ael and

j-gF. We shallsay that F is an (a, y)-map provided for every A^a there is

a CA<=y with F{A)dCA. On the other hand, F is y-smallprovided thereis an

ael such that F is an (a, r)-map.

The following is a notion of closeness for multi-valued functions that is

needed in this approach to shape theory.

Definition 3. Let F, G;X-*Y be multi-valued functions and let y&Y.

We shall say that F and G are y-closeand we write F = G provided for every

x^X there is a Cx<=y with F(x)＼jG{x)cCx.

The following lemma is not needed in the description of the category MM

but only in setting up a functor 6 from the category MM into the shape cate-

gory Sh. This is a very useful approximation result which shows that a suf-

ficiently small multi-valued functions into an approximate polyhedron can be

replaced by a continuous single-valued function.

Recall [7] that an approximate polyhedron is a topological space Y with the

property that for every <;e7 there is a polyhedron P and maps u : Y―>P and

d: P-+Y with idY= d°u.

Lemma 2. For every normal cover a of an approximate polyhedron Y there

is a normal cover r of Ysuch that every r-small multi-valued function F: X^>Y

from a topologicalspace X into Y there is a normal cover p of X with the pro-

perty that for every canonical map p: X-^N(p) from X into the nerve N(p) of

p there is a single-valued continuous function f: N(p)-*Y with F= f°p.

Proof of Lemma 2. Let ieu* and vg2*, where <?*denotes the set of all

normal covers t of Y such that the star stir)of r refines a. Choose a simplicial

polytope P with the metric topology and maps u: Y^-P and d: P-*Y with

v

(1) idy = d°u .

Let e―d~＼v)^P. Let ^es*. Since P is an ANR [6, p. 106], there is a

refinement tz of -q with the property that every partial realizationin P of a

simplicial polytope K with the Whitehead topology relative to tc defined on a

subpolytype L of K which contains all vertices of K extends to a full realiza-

tion of K in P relative to v [6, p. 122J. Let£e7r* and let reF be a common

refinement of v and u~HE).
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Consider a r-small multi-valued function F:X-*Y. Choose a /3eX such

that F is a (/3,r)-map. Let {AB＼B&p＼ be a partition of unity subordinated to

to |S, and let {^|jBe/3} be its locally finiteimprovement [4, p. 354]. Let p =

{^b＼(0,l])|5e^}. Hence, for every .ftep there is a Tfler, an NR(Ev, a

A* =£,:y≪eF and a zssP with F(R)aTR, TRaNR, u(TR)c:KR, yR^TR, zR^KR

and zR=u(yR). Let />:X-*N(p) be a canonical map of X into the nerve N(p)

of /o(see [4]).

Define a function <p: N(p)°-*P by the rule <p(R)=zR for every R<=p. This

function is continuous and it provides a partialrealization of N(p) in P relative

to the cover %.

Indeed, let d=(A, B, ■■■,Z> be a simplex of N(p). We shall find a mem-

ber of it which contains the set <p(N(p)°r＼d),i.e.,the set {zA, ■･･,2^}. Suppose

x<=lA(~＼---P＼Z.Since F(x) is non-empty, the sets TA, ･■･,Tz and therefore

also the sets KA, ■■･,Kz have non-empty intersection. Since $ is a star-refine-

ment of x, it is clear that some member P$ of x contains their union.

Let <p:N(p)^Y be a full realizationin P of N(p) relative to r]. Let /

denote the composition d°(p. Then / is the required continuous single-valuec

function.

Let xel and suppose that A, ･■■,Z are all members of p which contaii

the point x. Then p(x) lies in the simplex d of N(p) determined by these sets

It follows that a member Ex of -q contains both <p°p(x)and points zA, ■■■, zz

Since $ refines 7] and -qis a star-refinement of e, there is a member Nx of i

with d{Ex＼jKA＼J■■■＼JKZ)C1NX. On the other hand, from (1) we get the exist

ence of members NA> ･･･,Nz of v such that Nc contains both yc and d{zc) foi

every C―A, ■･■,Z. It follows that

f°p(x)tENx d(zA)^NxnNA> yAeNAnTA> F(x)dTA.

Hence, some member of a contains both f°t{x) and Fix). □

The following definitionis the most important for this paper and our ap-

proach to inner shape theory.

Definition 4. Let F, G: X-*Y be multi-valued functions between topo-

logical spaces and let j be a normal cover of the space Y. We shall say that

F and G are j-homotopic and write F = G provided there is a f-small multi-

valued function H from the product Xxl of X and the unit segment 7=[0, 1]

into Y such that F(x)cH(x, 0) and G(x)dH(x, 1) for every xg! We shall

say that H is a r-homotopy that /ozrcsF and G or that it realizes the relation



(or homotopy) F G

Shape via multi-nets 251

The following lemma gives an adequate substitute for transitivity of the

homotopy relation for maps. It will be used later many times.

Lemma 3. Let F, G, H: X-+Y be multi-valued functions. Let a^Y and

retf*. If F £ G and G k H, then F k H.

Proof of Lemma 3. Let K, L:XxI->Y be r-smallmulti-valuedfunctions

(2) F(x)dK(x, 0), G(x)(ZK(x, l)r＼L{x, 0), H(x)dL(x, 1)

for every x<=X. Define M: XxI-*Y by

M(x, t)=

K(x, 20,

K(x, 1)＼JL(x, 0)

L(x, 2t-l),

x(bX, 0£t<l/2

ieZ, t=l/2

x<=eX, l/2<t£l.

Clearly, by (2), F(i)cM(x, 0) and H(x)dM(x, 1) for every lei Hence,

it remains to see that M is tf-small.

Since both K and L are r-small, there are normal covers a and /3 of Xxl

so that for every A<=a there is a Tf er with AT(,4)cTf and for every 5ge/3

there is a T^sr with L(B)dT%. Let a normal cover j-be a common refine-

ment of a and /3. Then for every Cej we can find T(C), W(C)er with

(3) K(C)(ZT(C) and L(C)cW(C).

We now use [4, p. 358], to get a normal cover eg! together with the

function r: s―>{2,3, 4, ･･･}such that every set £x[t2j, Au+J is contained in a

member CE%% of ^, where E<=e, i―Q, 1, 2, ･･･, rE―2, and tj=j/4rE for every

/=0, 1, ･･-,4r£.

We define for each E<ElS an open over |£| of / as follows:

where Fx = [0, U), V^{U, t3) V3=(t2, U), ･■･, VirE^=(firE-t, 1].

Since {{.ExFi Fg |£|}|£gs} is a normal cover of Xxl, our proof will be

completed provided we show that for every E<=e and every V<b＼E＼ there is a

member of a containing M(ExV).

If V = VU for *>2r£, this follows from (3).

Let V=V2rE. Then M(ExV)=K(Ex(t4rE-2> l])uL(Ex£0, ?,))･ But, /^(£x

(tirE-2,11)C1T(Ce zte-i) and i(£X[O,4))cMC£o). As E is a non-empty set,
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there is an xe£. The relation (2) shows that the non-empty set G(x) lies in

the intersection of sets T(CE.zrE-i) and W(CE, <>)･Hence, a member of a con-

tains M(ExV). D

Multi-nets

The following two definitionscorrespond to Borsuk's definitions of funda-

mental sequences and homotopy for fundamental sequences.

Definition 5. Let X and Y be topological spaces. By a multi-net or an

M-net from X into Y we shall mean a collection <p={Fc|ceF} of multi-valued

functions Fc: Z-^F such that for every y^Y there is a cgF with Fd = Fc for

every d>c. We use functional notation <p:X-+Y to indicate that <pis a multi-

net from Z into F. Let MN(X, Y) denote all multi-nets co:X-*F.

Definition 6. Two multi-nets <p={Fc} and (p―{Gc) between topological

spaces X and Y are homotopic provided for every j-gF there is a esf such

that Fd = Gd for every d>c.

It follows from Lemma 3 that the relation of homotopy is an equivalence

relation on the set MN(X, Y). The homotopy class of a multi-net <pis denoted

by ＼_(p]and the set of all homotopy classes by MM(X, Y).

Our firstgoal is to define a composition for homotopy classes of multi-nets

and to establish its associativity.

Let <p={Fc＼: X-*Y be a multi-net. For every ceF there is an /(c)eF

such that for all d, e>f(c) there is a normal cover f(c, d, e) of Xxl and an

(/(c, d, e),c)-map joining Fd and Fe.

Let C={(c, d, e)|cef, d, e>f(c)}. Then C is a subset of YXYXY that

becomes a cofinite directed set when we define that (c, d, e)>{c', d', e')iff

c>c', d>df and e>e'.

Now, let /: Y^Y be an increasing function such that f(c)>f(c), c for

every cef. We shall use the same notation / for an increasing function

/: C-^XxI such that/(c, d, e)>f(c, d, e) for every (c, d, e)(=C. Let (c, d, e)

<=C. For the normal cover f(c, d, e) of Xxl, by [4, p. 358], there is a normal

cover £=/(c, d, e) of X and a function r―f{c, d, e): s-*{2, 3, 4, ･･･}such that

every set Ex[(i―l)/rE, (z'+l)/rE], where E<=e and i=l, 2, ･･･,rE―1, is con-

tained in a member of /(c, <i,e).

Let /: C-*Z be an increasing function with f(c, d, e)>f(c, d, e) for every
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(c, d, e)<=C. We shall use the shorter notation f(c) and f(c) for the covers

f(c, f(c), /(c))and /(c,f{c), f{c)).

Claim 1. There is an increasing function f*: Y^X such that

(1) /*(c)>/(c) /or eyer^ cgF, anJ

(2) /* is cofinalin f, i.e.,for every (c, d, e)eC there is an m^Y with

/*(w)>/(c d, e).

Proof of Claim 1. Let 3)={f(c, d, e)＼(c,d, e)<=C}.

If Y is a finite set, then 3) is a finitecollection of elements of X. Let

ffsl be a common refinement of all members of 3). Let /*: Y^X be a con-

stant function into a.

If Y is an infinite set, then the cardinality of 3) does not exceed the car-

dinality of Y. Hence, there is a surjection g: Y―*Q. Let /*: Y-^X be an

increasing function such that f*(c)>g(c), f(c) for every ceF. □

The above discussion shows that every multi-net <p: X-^Y determines eight

functions denoted by /, /, /, / and /*. With the help of these functions we

shall define the composition of homotopy classes of multi-nets as follows.

Let <p={Fc} : X~*Y and (p―{Gs) : Y^Z be multi-nets. Let X={HS}, where

Hs=Gs(s)°Ff(l,*is))for every s(eZ.

(13)

Claim 2. The collectionX is a multi-net from X into Z.

Proof of Claim 2. Let creZ. We must find an sgZ such that

a
Ht = Hs for every t>s.

Let reff*2, where a*n denotes the set of all normal covers r of Z such

that the n-th star stn(t)of r refinesa. Let s={r}eZ.

Consider an index t>s. We shallfindan index cef so that

r
(14) Ht = G*°Fc,

T
(15) GX°FC―Gy°Fc,

and

(16) Gy°Fc= Hs,

where x=g(t) and y=g(s). Repeated use of Lemma 3 will give (13) from the

relations(14)-(16).
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Invoking the property (2) of Claim 1, choose a u>t so that r>g(s, p, q),

where r=g*(u), p―g{s), and q=g(t). Let c=f(r). Since q>p>g(s) and s=t,

there is a (g(s, p, q),r)-map L: Yx I-+Z joining Gp and Gq. But, Fc is joined

to itself by an r-small homotopy. It follows that L°(FcXidj) is a r-small homo-

topy realizing the relation(15).

On the other hand, Gx is a (g(t),r)-map while Ffig*u)) and Fc are joined

by a g*(£)-smallhomotopy /C. The property (1) of Claim 1 implies that Gga)°K

is a r-small homotopy which realizesthe relation(14). In an analogous fashion

one can show that (16) is also true. □

We now define the composition of homotopy classes of multi-nets by the

rule [{G,}]o[{Fe}] = [{Gif(,)oF/(^c.≫}].

Claim 3. The composition of homotopy classesof multi-netsis well-defined.

Proof of Claim 3. Let k={Kc} and X={LS) be multi-nets homotopic to

<p and (p, respectively, and let fi―{Ms＼, where Ms=LUs)°Kku*(s)) for every

seZ. We must show that multi-nets 1 and pt are homotopic. In other words,

that for every <?gZ there is an sgZ such that

(17) Ht = Mt for every t>s.

Let <jgZ. Let reff*4. Let s={r}eZ. In order to prove (17), we shall argue

that for every t>s we can find indices ceF and mgZ such that

(18)

(19)

(20)

(21)

(22)

(23)

Ht = Gx<

T
GX°FC =

T
GU°FC -

LU°FC
k

T

L

where we put x―g(t)and y=l(t)

of Lemma 3 we shallget (17).

Fe,

T
op

■L^U r C >

LU°KC,

Ly

y

Kc,

°KC
i
Mt,

From the relations (18)-(23) with the help

We shall now describe how big c and u must be chosen for relations (18),

(19),(20) and (21) to hold separately. The relations(22) and (23) are analogous

to relations (19) and (18), respectively. We leave to the reader the task of

making a cumulative choice for c and u which accomplishes our goal. It is
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important to notice that u is selected first while c is selected only once u is

already known.

Add (18). Since Gx is a (g(t),r)-map and g*{t) refines the cover g{t),by

the property (1) of Claim 1, it sufficesto take c>f(g*(t)).

Add (19). If u>x, then Gx and Gu are joined by a (g(u), r)-map P:Yx

I-^Z. Let c>f(g*(t)). Then Fc is g*(K)-small. Since g*(u)>g(u), it follows

that P°{FcXidi) is a r-small homotopy joining the left and the right side of the

relation (19).

Add (20). Since <p=X, there is a ugZ, a normal cover rj of Yxl, and an

{yj,r)-map S: YxI^Z joining Gu and Lu. Let f be a normal cover of Y ob-

tained by the application of [4, p. 358] to the cover -q. If c>/(?), then Fa is

£-small so that So(FcXidI) is a r-small homotopy joining compositions which

appear in (20).

Add (21). Let u>y. Then Lu is an (l(u),r)-map. Since <p and k are

homotopic, there is an index cgC so that Fc and /fc are joined by an l(u)-

small homotopy T:lx/->F. The composition LU°T realizes the relation (21).

n

Theorem 1. The composition of homotopy classesof multi-netsis associative.

Proof of Theorem 1. Let <p={Fc}, (p={Gs} and 1―{HP} be multi-nets

from X into Y, from Y into Z, and from Z into W, respectively. Let fi={Ms},

v={A^p}, k={Kp} and A={LP}, where Ms=Gg(S)°Ff<.g*is))for every s^Z and

Np=Hh(P)<>Gg(ti*(p)), Kp=Hh(Lp)°MmailHp))> and Lp = Nn(P)°Ff(n*(p)),for every

jdelT. We must show that k and 1 are homotopic, i.e., that for every tz^W

there is a p^W such that

(24) Kq^ Lq for every q>p.

Let tz^W. Let p(=x*＼ Let p―{p}^W. In order to prove (24), we shall show

that for every a>t> we can find indices ceF and ssZ such that

(25)

(26)

(27)

(28)

and

Kq

p

HX°Gy°FC ,

Hx°Gy°Fc = HX°GS°FC,

Hx°Gs°Fc = Hz°Gg°Fc,

HZ°GS°FC = NVJ°FC,
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NW°FC
L Lq

where x=h(q), y=g(m(h*(q))), z=h{n{q)) and w = n{q). Repeated use of Lemma

3 will give (24) from the relations (25)-(29).

The method of proof is similar to the proof of Claim 3. We shall only

describe for each of the relations (25)-(29) how large the indices u and c must

be in order that this homotopy holds. An easy exercise of putting together all

these selections is once again left to the reader. Since relations(28) and (29)

are analogous with relations(26) and (25), respectively, it suffices to consider

only relations(25)-(27).

Add (25). Observe that Hx is an (a, p)-map while Gy is a (/3,a)-map, where

a=h(q), p=h*(q), and r=g(m(/3)). Let d=g*(m(p)). If Of(d), then Ffm and

Fc are joined by a 5-small homotopy P: XxI-*Y. But, d refines y by the pro-

perty (1) of Claim 1. Hence, Hx°Gy°P is a p-small homotopy between Kq and

Hx°Gy°Fc.

Add (26). As above, Hx is an (a, p)-map. Since m(s)>s for every seZ,

we get y>g(fi). Therefore, if we take s>y, then Gy and Gs are joined by an

(s, /3)-map Q: YxI-*Z, where e=g(p). However, /3 refines a so that HX°Q is

an (e,
io)-map.

Let rj be a normal cover of Y associated to e by [4, p. 358].

Finally, for c>f{yf) we see that Hx°Q°(FcXidI) realizes the relation (26).

Add (27). Since n(r)>r for every r(=W, we get z>x so that Hx and Hz

are joined by an (77,(o)-map T: ZXI-+W, where rj denotes the normal cover

h{z) of ZXI. Let £=h*(z) and let s>g&. Then Gs is a (£(s),̂)-map. Let

£=g*(s) and take c>/(0- The composition T°((Gs°Fc)xidi)realizes the rela-

tion (27). □

The category MM

For a topologicalspace X, let cx={Ia] : X->X be the identitymulti-net

defined by Ia=idx for every flGl. It is easy to show that for every multi-

net <p:X-+Y the followingrelationshold.

We can summarize the above with the following:theorem.

Theorem 2. The topological spaces as objects together with the homotopy

classesof multi-nets as morphisms and the composition of homotopy classes form

the category MM.



Sfaepe via multi-nets 257

There is an obvious functor / from the category 3 op of topological spaces

and continuous maps into the category MM. On objects the functor / is the

identity while on morphisms it associates to a map /: X―>Y the homotopy

class of a multi-net f={Fc} : X-^-Y, where Fc=f for every c<bY.

Our firstmain result can be stated as follows. Let Sh be the shape cate-

gory of arbitrary topological spaces and let S: 3op^Sh be the shape functor

m.

Theorem 3. There is a functor 6 from the category MM into the shape

catesorv Sh such that S=d°I.

Description of the functor 6

The functor 6 willleave the objectsunchanged. In order to explain how

0 effectsthe morphisms we must work much harder. First we encounter the

dilemma of selectingthe right descriptionof shape morphisms among the many

that existin the literature.

In the rest of thispaper, let X, Y and Z be topologicalspaces and let

p={p*}:X^Z={Xa, e≪,pi, A),

q={<f}:Y―>Qf={Ye, %c,qca,C),

and

r= ＼rm＼: Z ―* Z= {Zm, vm, r M)

be uniform commutative approximate resolutions of X, Y and Z where each

Xa, Yc and Zm is a polyhedron, sf(sa)-close maps into Xa, s£3(£c)-closemaps

into Yc and s£3(ym)-closemaps into Zm are homotopic, and A―{A, >), C=(C, ≫,

and M=(M, >) are infinite cofinite directed sets with cardinalitiesgreater or

equal to cardinalities of X, Y and Z, respectively. The existence of such

approximate resolutions follows from [8] and [11].

We can associate with the approximate resolutionsp, q and r the underly-

ing expansions in the sense of Morita [7]

＼p＼= {p≪}:X^ m = {Xa, pi, A),

＼q＼= {qc};Y^＼cq＼ = ＼Yc,q%,C),

and

|r| = {rm} :Z―* ＼Z＼= {Zm, r , M).

It is well-known that shape morphisms from X into Y could be considered

as equivalence classes of morphisms of inverse systems ＼2£＼and |<y| (see [7]

and fill). More precisely, the set Sh(X, Y) of all shape morphisms between
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spaces X and Y can be identified with the set pro-MPol(＼3C＼,|<y|) of all mor-

phisms in the Grothendick's pro-category pro-MPol of the homotopy of poly-

hedra MPol between the objects |3?| and |<y|. In our description of what 6

does on morphisms of the category MM we shall view shape morphisms in

this way.

Let <p= {Fs}s<=?'■X^Y be a multi-net. By Lemma 2, we can find a refine-

ment f]c of £c so that for every si2(^c)-smallmulti-valued function K:W-*YC

there is a normal cover p of W with the property that for every canonical map

r: W~>N(p) there is a map k : N(p)-*YC with K= k°r. Let rc^teT1^).

Choose an index Lef so that

(31) Fs
i
Ft for all s, t>lc

Let X: C―>Y be an increasing function such that X{c)>lc, {itc),v(c) for every

c<=C, where v: C-^Y is a surjection. We shall need later the fact that the

function X is cofinal,i.e., that for every sgF there is a rfeC with X(d)>s.

Observe that F*M is 7rc-small. Hence, qc°Fx(C)is 7?c-small. Let p be a

normal cover of X such that qc°Fuo is a (p, 77c)-map. Let r: X―*N(p) be a

canonical map. The way in which we selected the cover -qcgives a map k

which satisfies

(32) kor = (foFlM.

Let C^&^dc). By the property (Rl) for the approximate resolution p, there is

an index /(c)gA and a map g: XfM-*N(p) with r = g°pnn. Hence,

(33) k°r= k°g°pf^ .

Let fc = kog: Xf{c)-^YC. The relations(32) and (33) together imply

(34) fopf^ = qc°FUc).

Claim 4. The pair f=(f, {fc＼c<=C}) is a morphism between inverse systems

＼D£＼and ＼<u＼.

Proof of Claim 4. We must show that for every pair c, d of elements

of C with d>c it is passible to find an a>f{c), f(d) so that

(35) fc°pSa^= qCa°fd°Pfa'd)■

Since X(d)>X(c)>lc, by (31), the functions Fxm and Fz<.d)can be joined by tzc-

smali homotopy H: XxI->Y. Hence, qc°Fuo and qc°FUd) are joined by the r/c-
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small homotopy qc°H. It follows that there is a single-valued continuous func-

tion K: XxI^Y with

(36) K=qc°H.

The way in which we constructed fd, the relation qc=qcd°q<i,and the uniformity

property of q give

st(ic)
(37) <foFxw = &of*.pfi*>.

We know that

(38) qcoFUc)(x)CZq^H(x, 0) and qcoFXid)(x)dqcoH(x, 1)

for every igI. Combining relations (36), (34) and (38) we obtain

(39) Ko = f<oPficit

while (36),(37) and (38) imply

stXic)
(40) K, = qcd°fd°pf<d>,

where K0) Kx: X-+Y are defined by K0(x)=K(x, 0) and K1(x)=K(x, 1) for every

xel. But, the assumption aabout £c gives that the maps appearing in (39)

and (40) are homotopic. Hence,

(41) fc°pl'c)°pb= q%°fd<>pl^°pb,

where b>f(c), f(d). However, the system ＼2C＼satisfiesthe condition (E2) from

the reference [7, p. 48], so that an a>b for which (35) holds surely exists. □

Now we can define that 0 acts on morphisms of the category MM (i.e.,on

homotopy classes of multi-nets) by the rule 0{＼jp~＼)=[f~＼,where [f] denotes the

equivalence class of f with respeot to the equivalence relation ~ (see [7, p. 61).

Claim 5. The function d is well-defined i.e., it does not depend on the

choices of <p,X, and fc in our description of f.

Proof of Claim 5. Suppose that <p={Gc＼ : X^Y is multi-net homotopic to

<p and let the morphism g=(g, {gc＼c^C}) of inverse systems ＼3C＼and |<V| be

constructed from <p by the above procedure using in it ft instead of X. We

must show that f and g are equivalent, i.e., that for every c^C there is an

a> f(c), g(c) with

(42) fe*pi =*geop> .

Let a cgC be given. Since <p and <p are homotopic multi-nets, there is an
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index sc^Y such that

(43)
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Ft = Gu for all t,u>sc

Since the functions X and ft are increasing and cofinal, there is a d>c such

that X(d),u(d)>sc. From (43), we get

(44) Fxld>sGpld>

Let H: XxI-*Y be a 7rc-smallmulti-valued function with FX(d)(x)C.H(x, 0) and

G/A(d-,(x)(ZH(x,1) for every igI. Hence, qc°His an ^-small multi-valued func-

tion and

(45) ?c'FW)Wcf^,0) and qeoG/tU)(x)<Zqe°H(x,1)

for every xgX. Just as in the proof of Claim 4 there is a single-valued con-

tinuous function N: Xxl-+Yc with

(46) N^qc°H.

On the other hand, since X(d)>X(c)>lc the functions F^o and Fxod are joined

by a 7rc-smal!homotopy L: XXI-+Y. It follows that qc°Lis an ^c-small homo-

topy which satisfies

(47) qc°FXM{x)(Zqc°L{x, 0) and 9coF,(d,(x)C^oLU, 1)

for every x<=X. Pick a single-valued continuous function M: Xxl-≫YC with

(48) M=qc°L.

Similarly, there is a single-valued continuous function P: XxI->Yc together

with a 7rc-smallhomotopy R: XxI->Y such that

(49) qc°G(tic)(x)clqc<>R(x,0) and qc°F,u){x)aqc°R{x,1)

for every x<=X, and

(50) p = qc°R

In analogy with (35), we also have

St($c)
(51) ge-p≫ = (f-Gple).

Let Mo, Mi, No, iVi, Pa and Px be maps defined from maps M, N and P as we

defined Ko and /i^ from K in the proof of Claim 4.

The relations (34) and (48) imply that /c°/>/(c)and Mo are s£2(£c)-closemaps
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into Yc. It follows that they are homotopic. Similarly, the maps gcopa^ and

Pi are homotopic.

The maps Mx and No are also homotopic because from relations (45)-(48)

we see that both are £c-closeto the function qc°F^(d). The maps Nx and Po are

homotopic because of a similar reason.

We conclude from the last two paragraphs that maps fc°gf(c)and gc°pe<-c)

are homotopic. Just as in the proof of Claim 4, with the help of the condition

(E2), we can conclude that there exists an a>f(c), g(c) so that (42) holds. □

Claim 6.

(1) Let c={(idx)z(Bx be the identity multi-net on a space X. Then the mor-

phism i: ＼3£＼―*＼2C＼associated to c by our description of 6 is the identity

morphism (idA, {{idx)a＼a^A}).

(2) Let <p={Fi{: X-+Y and (p={Gu＼ : Y^Z be multi-nets. Then

WM?])=W])°0(fy])-

(3) 6 is a functor and the relation S=d°J holds.

Proof of Claim 6 (2). Let 7]= {HU} : X-+Z, where Hu=Gglui°Ffig*lu)) for

every weZ. Let f=(f, {fc}c^c), g=(g, te"1} ^), and h=(h, {hm}m&M) be ob-

tained from (p,(j) and t] by the above procedure. We must show that h and

g°f are homotopic. Since g°f=(f°g, {gm°f8im)}), this amounts to show that

for every m^M there is an a>t, x such that

(52) hmop%^gmof>optat

where t=f°g(m), x=h(m) and v=g(m).

Once again, our method is to show that

(53) hmop*~g*opoptt

and then use the condition (E2) to get the required index.

In order to establish (53), we shall argue that there are large enough indices

&eC and neM such that

st{vm)
(54) hm°px = rmoHy,

(55)

(56)

(57)

rm≪Hv
P-m.

rm°G>F,

rm°G °F

y-m.

r °Lrn°rc,

r °＼jn *c == < u≪ ft)
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(58)

(59)
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St＼vm)

i "to °"e ― s H
rc>

gm°qv°Fc^gm°qv°Fu,

and

St(fim)
(60) gm°qv°Fu = gm°fv°pl,

where y=j{m), z=g(y(m)), iv=ie(m), u=X(g(m)), /im is analogous to t]cand j, k

and X are functions used in constructing h, g and f, respectively.

Suppose for a moment that the relations (54)-(57) hold. From (55)-(57) it

follows that there is a s^2(^m)-small multi-valued function K: XxI-*Z such that

(61) rm°Hy(x)CLK(x, 0) and rm°Gw°Fc(x)aK(x, 1)

for every x^X. Similarly, from (59),it follows that there is a ^m-small multi

valued function L : Xxl^-Z with

(62) gm°qv°Fc(x)(ZL(x,0) and gm°qv°Fu{x)aL{x,1)

for every xel. Let B and D be single-valuedcontinuous functionssuch that

Vm I'm
(63) B = K and D = L

From (54),(61) and (63), we get that maps hm°px and Bo are sf(vm)-close.

Hence,

(64) hm°px = B0.

Similarly, from (58) and (61)-(63),it follows that the two maps Bx and DQ

are sf(vm)-close. Hence,

(65) Bi^Do.

Finally, from (60),(62) and (63), we obtain that maps A and gm°fv°plare

s*s(ym)-close. Hence,

(66) D1=gmof-Op^

The relations (64)-(66) together imply the relation(53). Thus it remains to

explain why (54)-(60) hold. We shall describe what choice of c and n make

each of these relations true and leave to the reader to put together all choices

to pick them so that all are true simultaneously.

Add (54). This follows from the way in which h was constructed (it cor-

responds to the relation (34)).

Add (55). Observe that Hy = Gz°Fs, where s = f(g*(y)). Since Gz is a
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(g(y, z, z),jy)-map (and therefore also a (g*(y), j/)-map because g*(y) refines

g(y, z, z)) and y refines pm―{rmYl(nm), it sufficesto take c>s because then Fs

and Fc are joined by a g*(3>)-smallhomotopy QiXxI^Y so that rm°Gz°Q is

a //m-small homotopy joining rm°Hy and rm°G2°Fc.

Add (56). Let n>2. Then Gz and Gn are joined by a (g(3>,z> n)> }0-map

R: YxI-*Z. Hence, if c>g*(n), then rm°i?°(-FcXzd/)is a j≪m-smallhomotopy

joining rm°Gz°Fcand rm°Gn°Fc.

Add (57). Let n>u＼ Then Gre and Gw are joined by a pm-small homotopy

T: Fx/-≫Z. Let to be a normal cover of Yxl such that T is an {to,pm)-map

and let C be a normal cover of Y obtained from o> by application of [4, p. 358].

Let c>/"({£}). Then Fc is a C-small multi-valued function so that rm°T°(FcXidj)

is a ^m-small homotopy joining rm°Gn°Fc and rm°Gw°Fc.

Add (58). First we observe that

st{vm)
(67) rm°G≪, = gm°qv.

The relation(67) is just the version of the relation(34) for <p. Choose a normal

cover % of Y such that Gw is a (rc,|Om)-map. Let c>/({^}). Then Fc is re-

small and the composition rm°Gw°Fc is ^m-small. Let p=(gm°qvy1(fJim)- Let

c>/({/3}). Then Fc is ^-small and the composition gm°qv°Fcis also ^m-small.

With this information on the size of both sides appearing in (58), from (67), we

can get (58).

Add (59). We can assume that $v>(gmy1({im) for every m^M. It might

be necessary to pass from a given set of £c'sto the new ones by an inductive

argument on number of predecessors in order to accomplish this. Let c>m.

Then Fc and Fu are joined by a jvsmall homotopy U: XxI^Y and gm°qv°U

is a ^OT-small homotopy between gm°qv°Fcand gm°qv°Fu.

Add (60). The relation(34) for c=v reads

st(Sv)
qv°Fu - /"･/>'.

Since £v>(gm)~1(fim),we get from this the relation (60). □

Proof of Claim 6 (3). That 6 is a functor follows fram the previous dis-

cussion. It remains to see that S ―d°J. Let f'.X―*Y be a map, i.e., a mor-

phism of the category Sop. For each c<=C, there is a /ice|?2 such that q is

also a commutative uniform approximate resolution of Y into the approximate

inverse system oj'={Yc, ptc,qcd,C}. By Theorem (6.3)in [8], there is an appro-

ximate map f: 2C-+QJ' such that (p, q, f) is an approximate resolution of /.

By Lemma (5.6) in [8], we get
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(68) f*oPf =<fof.

Let (pf―{Fi＼: X-*Y be a multi-net, where Ft=f for every zeF. Then ＼_<pf~＼

=/(/). In applying the procedure from the description of d to the multi-net

y>z we can take for X a constant function and the above morphism f. The

relation(68) implies that S=d°f. Indeed, the induced morphisms satisfy

(69) |f|'li≫l= lgl-/.

Since there is a unique morphism which satisfies(69), namely the morphism

S(f), we get S(f)=6(Kf)). □

Inverse of 8

We shall now prove that on spaces which admit ANR-resolutions with the

onto projections (that we callO-spaces) the functor 6 is a category isomorphism.

Definition 7. A space X is called an O-space provided thereis an ANR-

resolutionp={pa＼ :X-*{Xa, p%, A} m the sense of Mardesic [7], where each

projectionpa is an onto map.

At present we do not know what is the real extend of O-spaces. From

resultsin [11], it follows that inverse limits of inverse systems of compact

Hausdorff spaces with onto bonding maps are O-spaces. In particular,all com-

pact metric spaces are O-spaces. One can easily check that the examples of

non-degenerate regular spaces with the property that every real valued map on

them is constant [5, p. 1601 provide examples of spaces that are not O-spaces.

Theorem 4. Let X be a topologicalspace and let Y be an O-space. Then

the function6: MM(X, Y)-*Sh{X, Y) is a bijection.

In order to prove Theorem 4, we shall construct the functionZ,:Sh{X, Y)

->MM(X, Y) which willbe the inverse for the function d. The descriptionof

C and the verificationof its propertiesis given below in Claims 7-10.

Construction of the function £

Let f=(f, {fc}cec) be a morphism between inverse systems ＼3C＼and |Q/|.

Let sef. Recall that s is a finiteset of normal covers of Y with the unique

maximal element seF. By the condition (Bl) for the approximate resolution
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q [8], thereis an index c(s)e.C such that

(70) (9c)"1(le) refiness for every c>c(s).

Let fiF―>C be an increasing function with y(s)>c(s)for every sgF, Let

^={Fs}se?, where F^W^ofrWapftrw).

Claim 7. 77iefamily (p is a multi-netfrom X into Y.

Proof of Claim 7. Let a <7<=F be given. We must show that thereis a

ceF such that

(71) Ft = FS for every t>s.

Let s―{ct}gY. Let i>s. Put m=y(t), n―yis),v = f(m) and w=f(n). Since

m>n and f is a morphism of inverse systems, thereis an a>v, w and a map

#:ZaX/->Fn with

(72) if(x,0)=^ =/m°/>£0Oand K{x, i)=f °p(x)

for every xeZa. Let L=(gny1^Ko(paxidI). Then L:Xx/-+F is a <r-small

homotopy. Moreover, for every jcgI, from (72),we get

(73) L(X, 0)= (g-)-^glof^oplopa(x)zD{gm)-iofmopv{x)^Ft(x)

and

(74) L{%, l)=(q≫)-i,fn°p op≪(x)=(q≪)-iofnoP">(x)=Fs(x).

Hence, L is a <?-smallhomotopy between Ft and Fs. D

Now we can define the function £by the rule £([/])=[^>]-

Claim 8. The function Z,is well-defined,i.e., the value C([^"3)does not de-

pend on the choice of the representive f of the equivalence class[f] and on the

choice of the function r in our description of (p.

Proof of Claim 8. Let g=(g, {gc}cec)e[f]. Let <p= {Gs}s<=y be con-

structed from g by the above procedure using the increasing function p.: Y―+C.

We must show that <p and <p are homotopic, i.e., that for every ae.Y there is

an sg7 such that

(75) Ft = Gt for every t>s.

Let a (/ef be given. Let re<j*2. Put s={r}£7. Pick an increasing

function d: Y-*C such that d(t)>y(t),pt(t)for every t^Y.
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Let t>s. Let m=j{t), n=p.(t),k=5(f), u―f(m), v=f{k)

g(k). Since k>m, thereisan a>u, v with fm°pl~qf°fk°pva.

of Claim 7, we can conclude from here that

(76) FtT=K,

where K={qkYl°fk°pv. Similarly,we obtain

(77) L i Gt

y=g(n) and z―

As in the proof

where L={qh)~1°gk°p＼ Since f and g are equivalent, there is a b>v, z and a

homotopy H:XbXI―Yk with i/(x, 0)=/*≪/>?(jc)and H(x, l)=gkopi(x) for every

xgIj. It follows that the composition (qk)~l°H°(pbXidI)is a r-small homotopy

joining /C and L. This together with (77) and (76) implies (75). □

Claim 9. For every morphism f=(f, {fc＼c&c): |3f|->|o/| we have ＼f＼

Proof of Claim 9. For every sef choose an index c(s)(eC such that (70)

holds. Let y: Y-*C be an increasing function with y(s)>c(s) for every seF.

Let 8: C^Y be a function such that d(c)^y~＼c) whenever y~＼c)^0. Let <p―

{Fs)*ey, where Fs―{qns)yl°frwopfirw＼ with respect to <p we now choose rjc,

nc and lc as we did in the description of the function 6. Hence, we can assume

that (grwyiofrwopfinrrm £(qrw)-iofrwopf<TW) whenever m, n>lc.

Next, we shall select a cofinalincreasing function X: C-+Y such that k(c)>

U, {nc}, d(c) for every cgC. Let u=k{c), v=y{u) and w=f(v). Then v>c and

Hence, in the next step, (i.e.,the selection of the index "f(c)" and the single-

valued continuous function "/c") we can take some z=g(c) with z>w and the

map gc=qi°fv°p?. It remains to check that the morphisms f and g=(g, {gc}cec)

are equivalent. In other words, that for every ceC we can find an a>f(c),

g(c) with

fC°Pfa^^gC°Pfa^=qCv°fV°P?°pZa.

But, this follows from the fact that v>c and f is a morphism of inverse sys-

tems. □

Definition 8. Let a be a normal cover of a space Y. Two multi-valued

functionsF, G: X-*Y are g-hooked provided for every xe! thereis an Sxeer

such that Sx has non-empty intersectionwith both Fix) and G{x).
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Observe that c-close multi-valued functions are a-hooked.

Lemma 4. Let F, G: X^Y be multi-valued functions and let a be a normal

stia)
cover of Y. If F and G are a-small and a-hooked, then F = G.

Proof of Lemma 4. Since F and G are tf-small, there is a normal cover

7] of X such that for every E^rj there are SE, TEe.o with F(E)aSE and

G(E)(zTE. Define a function H:XxI->Y by the rule H{x, t)=F{x)＼jG{x) for

every xe! and every t<Bl. Let t~={ExI＼E<=7]}. Clearly, £ is a normal cover

of Zx/. We shall check that H is a (£,sf(d))-map. This would imply that H

is a s£(<7)-smallhomotopy joining F and G.

Then H{K)=F{E)＼jG{E)=SE＼jTE, for a member K=ExI of £ and £g^.

But, since F and G are ff-hooked, for every x^E there is an Rx^a with

i?*nF(x)-^0 and i?xnG(x)^0. Hence, H(K)dst(Rx, a). D

Claim 10. For every multi-net <p= {Fs} s<=y' X―+Y we have Z,°d{＼_(p])=＼_(p~].

Proof of Claim 10. We first perform steps from the description of the

functor 0 to get Cc, nc, lc, 1, f, and the maps fc. Then we perform steps from

the description of £ to get indices c(s), the function j, and a multi-net <p―

with

e?, where Gs is the composition{qr^yKfrwopf(Tw)_ yye must s^ow t^at

(78) Ft = Gt for every t>s.

Let a <;eF be given. Let re a*3. Since <pis a multi-net there is an s> {r}

such that

(79)
a
Fr = Ft for all r, t>s

Let t>s. We shall prove that there is a large enough index c^C with the

property that

(80)

(81)

and

(82)

where u=X(c) and v

F. ~ F

st＼r)
fu
~
{qcyi°r°pv

f(c). The relations (80)-(82) and Lemma 3 imply (78).

Add (80). Since X is a cofinal function, there is a cgC so that A(c)>s



268 Zvonko Cerin

Then (80) is a consequence of (79).

Add (81). Let Or({r}). If follows that(qT'^c) refinesr so that((f)-＼st^e))

refines st(t). Hence, from the relation (34), we get

stir)
(83) (qT^qc"Fu = (qcr^fc"Pv-

But, the composition on the left side of (83) is a 7rc-smallmulti-valued function.

Since t:c=(qc)~1(7jc) refines r, by Lemma 4, from (83) we get (81).

Add (82). Let w=r(t) and z=f(w). Let c>w, r({v}). Since (/, {fd}dec)

is a morphism of inverse systems, there is an a>v, z and a homotopy H: XaX

I^YC with H(x, 0)=qZofc°pva(x) and H(x, l)=fw"pMx) for every x^Xa. It

follows that (qc)~1°H°(paXidI)is a r-small homotopy joining the left and the

right side of (82). □

Remark. It is possible to use only multi-valued functions that are upper

semi-continuous or to require that in addition images of points are compact.

With these functions we shall get a similar result but the space Y is further

restricted to spaces that admit ANR-resolutions with closed and perfect projec-

tions, respectively.
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