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§1. Introduction.

Relative to Takahashi's theorem [9] for minimal submanifolds, the idea of

submanifolds of finite type in a Euclidean space was introduced by Chen [2]

and the theory is recently greatly developed. Let x : M^Rn+1 be an isometric

immersion of n-dimensional Riemannian manifold into an (n+l)-dimensional

Euclidean space Rn+1 and A the Laplacian on M. As a generalization of Taka-

hashi's theorem for the case of hypersurfaces, Garay [4] considered the hyper-

surface satisfying the condition Ax=Ax, where A denotes the constant diagonal

matrix of order n + 1.

On the other hand, let x : M~^Rm be an isometric immersion of a compact

oriented ^-dimensional Riemannian manifold into Rm. For a generalized Gauss

map G: M^G(n, m)<Z.RN (^N=(m^ of x, where G(n, m) is the Grassmann

manifold consisting of all oriented n-planes through the origin of Rm, Chen and

Piccinni [3] characterized the submanifold satisfying the condition AG=ZG

(X^R). For a hypersurface M in Rn+1 and a unit vector field£ normal to M,

we can regard £(/>)(p<=M) as a point in an n-dimensional unit sphere Sn(l) by

translating parallelly to the origin in the ambient space Rn+1. The map £ of

M into S (1) is called a Gawss ma/> of M in i£n+1. Recently for the Gauss map

of a surface in R3 the following theorem is proved by Baikoussis and Blair [1].

Theorem. The only ruled surfaces in R3 whose Gauss map $ satisfies

(1.1) A£=A$, Ae=Mat (3, R)

are locally the plane and the circular cylinder.

It seems to be interesting to investigate the Lorentz version of the above

theorem. Now, let R?+1 be an (m+l)-dimensional Minkowski space with standard

coordinate system {xA) whose line element ds2 is given by ds2= ―(dxo)2jr
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2
i(dxi)2.

Let Sf-(c)(resp. Hm{c)) be an m-dimensional de Sitter space (resp.

a hyperbolic space) of constant curvature c in Rf+l. We denote by Mm(s) a

de Sitter space Sf(l) or a hyperbolic space Hm(―1), according as e=l or e――1.

Let M be a space-like or time-likesurface in /?!and £a unit vector field normal

to M. Then, for any point p in M, we can regard £(/>)as a point in H＼―l)

or Sf(l) by translating parallelly to the origin in the ambient space R＼, accord-

ing as the surface M is space-like or time-like. The map £ of M into M＼s) is

called a Gauss map of M into R＼. Then we prove the following

Theorem. The only space-like or time-likeruled surfaces in R＼ whose Gauss

map £: M―>M2(s) satisfies(1.1) are locally the following spaces:

i. R＼,SlxR1 and RlxS1 if e = l,

ii. R* and H'xR1 if s= -l.

In §2 we define a space-like or time-like ruled surface M in R＼. Roughly

speaking, non-degenerate ruled surfaces are divided into two types: Cylindrical

surfaces, non-cylindrical surfaces. The main theorem is proved for each case

in §3 and §4,§5.

The author would like to express her gratitude to Professor Hisao Naka-

gawa for his useful advice.

§2. Ruled surfaces.

First of all,we recall one of fundamental properties in a 3-dimensional

Lorentz vector space. Let V=V3 be a 3-dimensional vector space with scalar

product <, > of index 1. Then V is called a Lorentz vector space. In the rest

of this paper, we shall identify a vector X with a transpose lX of X. For any

vectors X=(XA) and Y=(YA) in a Lorentz vector space V the scalar product of

X and Y is defined by (X, Yy = ―X0Y0+XiYi.+X2Yif which is called a Lorentz

product. Let V be a 3-dimensional Lorentz vector space with Lorentz product

<, >. Then a Lorentz cross product XxY is defined by

(―XiYz-＼-XzYi, X2Y0 XoYZ) XoYi XiY0).

Then it is easily seen that the Lorentz cross product satisfiesthe following.

Lemma 2.1.

(2.1) XxY=0&X and Y are linearly dependent,

(2.2) XxY=-YxX,
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(2.3) <XxY, X}=(XxY, Y}=0,

(2.4) <XxY, zy=<yxz, xy,

(2.5) X or Y: time-like^ XxY : space-like,

(2.6) {XxY, XxYy=(X, Yy2-(X, XXY, Yy .

A time-like or null vector in the Lorentz vector space V is said to be causal.

For the Lorentz vector space the next two lemmas are given. See Greub [6].

Lemma 2.2. There are no causal vectors in V orthogonal to a time-like

T)P.r.tnr.

Lemma 2.3. Two null vectors are orthogonal if and onlyif they are linearly

dependent.

Throughout this paper, we assume that all objects are smooth and all sur-

faces are connected, unless otherwise mentioned. Now, we define a ruled sur-

face in R＼. Let / and / be open intervals containing 0 in the real line R.

Let a―a(u) be a curve on / into R＼ and /3=/3(w) a vector fieldalong a ortho-

gonal to a. A ruled surface M in R＼ is defined as a semi-Riemannian surface

swept out by the vector field /3 along the curve a. Then M always has a

parametrization

(2.7) x(u, v)=a(u)+vp(u), u<=J, i/e/,

where we call a a base curve and ft a director curve. In particular,if /Sis

constant, then it is said to be cylindrical,and if it is not so, then the surface

is said to be non-cylindrical. Since our discussion is local, we may assume that

we always have fi'{u)-£Qin the non-cylindrical case. That is, the direction of

the rulings is always changing.

The natural basis {xu, xv) along the coordinate curves are given by

% u = d<Ju)="'+^'' *'='*(£)=l>

Accordingly we see

g(xu, xv)=g{a', a')+2vg(a', p')+v*g(p', B'),

g{xu, xv)=0,

g(xv, xv)=g((3, 8).

Since Mis a semi-Riemannian surface, it sufficesto consider the case that a is

a space-like or time-like curve and 8 is a unit space-like or time-like vector
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field. The ruled surface M is said to be of type I or type II, according as the

base curve a is space-like or time-like. First, we divide the ruled surface of

type / into three types. In the case that /3is space-like,it is said to be of

type /+ or /+, according as /3'is null or non-null. If /3is time-like, it is said

to be of type /_. Since we have g(/3,JQ/)=0, if M is of type /_, then /3'is to

be space-like by Lemma 2.2. On the other hand, for the ruled surface of type

//, it is also said to be of type III or //+, according as £'is null or ft'is non-

null. Notice that in the case of type // the director curve /3 always is space-

like. Then the ruled surface of type /+ or /+ (resp. /_, //+ or III) is space-

like (resp. time-like).

Thus we can consider these kinds of ruled surfaces in R＼.

Let M be a space-like or time-like hypersurface in Rf+1 with local coordi-

nate system {xt}. For the components giS of the Riemannian metric g on M

we denote (giJ)(resp. g) the inverse matrix (resp. the determinant) of the matrix

(Sij)' Then the Laplacian A on M is given by

(2.8) *=-7m2§?(vw^)

In particular,for a Gauss map £ of a hypersurface M in Rf+1, it satisfies

(2.9) A%=mgradH+eS£

where grad H denotes the gradient of the mean curvature H and S denotes the

traceof the square of the shape operator.

§3. Cylindrical ruled surfaces.

In this section we are concerned with cylindrical ruled surfaces. Let M be

a cylindricalruled surface swept out by the vector field /3 along the base curve

a in R＼. That is, a―a{u) is a space-like or time-like smooth curve and fi=fi(u)

is a space-like or time-like unit constant vector along a orthogonal to a. Then

the cylindricalruled surface M is only of type /+, /_ or //+. And M is para-

metrized by

x = x(u, v)=a{u)-＼-vfi, u<bJ, v<=I.

It is space-like, provided that the base curve a is space-like and the director

curve /3is space-like. In the other case, the surface is time-like. Let £ be a

unit normal to M. It is defined by f~la'Xfi,where / is the norm of the vector

a'X/3. Then we get g{£,£)=s(=±l). Let M2(e) be a 2-dimensional space form

as follows:



cosh u/r, 0) and director curve $(u)=(0, 0, 1). The Gauss map is given by

with base curve a(u)=(r s'mh u/r

= r2, r>0}

£=(― cosh―, ―sinh―, 0)
＼ r r /

Hence the Lorentz circular cylinder satisfies(3.1) with

^=if

and the Laplacian A$ of the Gauss map £ can be expressed as

The Gauss map of ruled surfaces

M2(£) -
Sf(l) in R＼, e=l;

//2(-l) in R＼, £= -1
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Then, for any point x in M, £(x)can be regarded as a point in M＼s) and the

map £:M^M＼z) is the Gauss map of M into M2(s).

We give here examples of ruled surface of type /+ and //+ whose Gauss

map satisfies

(3.1) A£=y4£, AtEMat(3, R).

Example 3.1. A hvoerbolic cylinder

H＼c)xR=kxQ, xlfx2)<=R＼＼-xl+x＼=- = -r＼ r>o＼
I c I

is a cylindrical ruled surface of type /+ with base curve a(u)―(r cosh u/r

r sinh u/r, 0) and director curve B(u)=(0, 0, 1). The Gauss map is given by

£=(― sinh―, ―cosh―,
6)

＼ r r /

le Gauss map $ can be exfand the Laplacian A£ of the Gauss map £ can be expressed as

Hence the hyperbolic cylinder satisfies(3.1) with

A

1

_

r2

0

0

0

r2

0

Example 3.2. A Lorentz circular cylinder

S＼(c)xR=＼(xo> xu x2)<=Rl＼-

is a cylindrical ruled surface of type //+

C
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/
r2
0

0

0

J_

r2

0

Proposition 3.1. The only cylindricalruled surfaces of type I+ (resp. 11+)

in R＼ whose Gauss map satisfiesthe condition(3.1) are locally the plane and the

hyperbolic cylinder (resp. the Minkowski plane and the Lorentz circular cylinder).

Proof. Let M be a cylindricalruled surface of type /+ or //+ parametrized

by

x=x(u, v)=a(u)+vfi ,

where /?is a unit space-like constant vector along the curve a orthogonal to it.

That is, it satisfiesg(a',(Z)=0, g{fi,
J8)=l.

Acting a Lorentz transformation,

we may assume that /3=(0, 0, 1) without loss of generality. Then a may be

regarded as the plane curve a(u)=(ao(u), a^u), 0) parametrized by arc-length;

The Gauss map £is given by £=(―a[, ―a'o,0). Itis the space-like or time-like

unit normal to M, according as £=1 or ―1. Since the induced semi-Riemannian

metric g is given by gn = s, gn=R and g2i―l, the Laplacian of £ is given by

J£=(―ea?, ―ea%, 0) from (2.8). Thus, from the condition (3.1) we have the

following system of differentialequations:

(3.2)

sa'f=an≪i+Gi2≪o,

sa%―a21a[+a^a'o,

0 =azla'1+aB2a'o,

where A―(aij) is the constant matrix.

Now, in order to prove this proposition we may solve this equation and

obtain the solution a0 and ax. First we consider that the surface M of type

/+, i.e., the plane curve a is space-like(e = ―1). So we get gia', a')――≪o2+≪i2

―1. Accordingly we can parametrize as follows:

(3.3) ≪o=sinh 6, ai=cosh 8,

where 8 = 8{u). Differentiating (3.3), we obtain

a'i= 6f cosh 6, a%=0" cosh 0 + 0/2sinh 8

(3.4)

a'i= 8' sinh 0, a% = 0" sinh ^ + ^/2cosh 0.
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By (3.2),(3.3) and (3.4) we have

―(0" sinh 0+0n cosh 0)=au cosh 0 + a12 sinh 0,

-(#" cosh 0+0'2 sinh 0)=a81 cosh 0 + a22 sinh 0,

which give

(3.5) 0"―(an ―a22)sinh 0 cosh 0 + a12sinh2# ―a21 cosh2#,

(3.6) dn=(a2i ―a12)sinh 0 cosh # + a22 sinh2^―an cosh2(9.

Differentiating(3.6), we get

2^'^"=:^'{(a21-fl12)(cosh2^+smh2^)+2(a22-a11) sinh 6 cosh 6).

Substituting (3.5) into this equation, we get

(3.7) 0'{4(flii-a22)sinh d cosh 0+(3a12-a21) sinh20+(a12-3a21) cosh20} =0.

We suppose that d'*0. By (3.2) and (3.7) we get

(3.8) dn ―a22, ai2=^a21= a3i= as2―0,

because sinh 6 cosh 0, sinh2# and cosh2# are linearly independent functions o1

0=0(u). Combining the above equations with (3.6) gives

where

r2

e=±―u+b,
r

flll a-zz, r>0, beR.

Accordingly we have

ao~±r cosh d + c0, co^R,

ai ―±r sinh B + cu c^R.

This representation gives us to

-(ao-co)a+(ai-Ci)s=-r2, r>0.

We denote by H＼r, (c0, cx)) the hyperbolic circle centered at (c0, cO with radius

r in the Minkowski plane R＼ (the (xo^O-plane). By the above equation the

curve a is contained in H＼r, (c0, cx)) and hence the ruled surface M is contained

in the hyperbolic cylinder //xXi2.

On the other hand, let /, be a set {mg/|^(m)=0}. We claim that if J0

is not empty, then /, is to be / itself. In fact, we suppose that J0=£j, i.e.,

/―/o^0- Then (3.8) is satisfied on J―Jo. Since A is constant matrix, (3.8)

is satisfied on /. So, (3.5) leads that d"― 0 on /, i.e., B' is constant on /.
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By assumption, there exists uo(EjQ and 0'(mo)=O. Thus 0' is zero on /, a con-

tradiction. So in this case 6 is constant on /, and hence we obtain that the

normal vector $ is the time-like constant vector by (3.3). It shows that M is

contained in R2.

Next we are concerned with the cylindricalruled surface M of type //+,

i.e., the plane curve a is time-like(e=l). Then the surface M is time-like and

we get g(a', a')=―a'02+a'iz=―1. Accordingly we can parametrize as follows:

≪o=cosh 6, ≪x=sinh0, where d=0(u). By the similar discussion to that of the

above ruled surface of type /+ we can get

(3.9) B'{4(au-a28) sinh B cosh 0+(3a12-a21) cosh2^+(a12-3a21) sinh20} =0.

We suppose that 0VO. By (3.2) and (3.9) we get

an=a22, c12=a21=a3i―a32=0,

which yields that

d = ±― u+b,
r

Accordingly we have

r2
a.

&22>
r>0, btER.

ao=±rs'mh6+co, co<=R,

ai = ±rcosh0 + Ci, cx<E:R.

This representation gives us to

-(ao-Co)2+(≪i-Ci)2=r2, r>0.

We denote by S＼(r,(c0, d)) the pseudo-circle centered at (c0,cY) with radius r in

the Minkowski plane R＼ (the (xoxi)-plane). By the above equation the curve a

is contained in S＼(r,(c0,d)) and hence the ruled surface M is contained in the

Lorentz circular cylinder S＼xR.

On the other hand, if a set {Me/|^(u)=0} is not empty, then B is con-

stant on / by the similar discussion to that about the surface of type /+. So

we get that the normal vector £is the space-like constant vector. It shows

that M is contained in R＼. □

Next, we consider a cylindrical ruled surface of type /_ in R＼. We first

give an example of the ruled surface of type /_ whose Gauss map satisfies(3.1).

Example 3.3. A circular cylinder of index 1

R＼XS＼c)=＼(xo, xu x2)<ERl＼xl+xt=j=r＼ r>()}
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is a cylindrical ruled surface of type /_ with base curve a(w)=(0, r cos u/r,

r sin u/r) and director curve B(u)=(l, 0, 0). The Gauss map is given by

$={0, cos―, sm-
V r r /

and the Laplacian A£ of Gauss map £ can be expressed as

Hence the circular cylinder of index 1 satisfies(3.1) with

A =

an
0 0

1

a31 0

0

r2

)

Proposition 3.2. The only cylindrical ruled surfaces of type I- in R＼

whose Gauss map satisfies(3.1) are locally the Minkowski plane and the circular

cylinder of index 1.

Proof. Let M be a cylindericalruled surface of type /_. Then M is para-

metrized by
x=x(u, v)=-a{u)-＼-vfi,

where /3is a unit time-like constant vector along the space-like curve a ortho-

gonal to it. That is, it satisfiesg(a', /3)=0, g((2,JS)=―1. Acting a Lorentz

transformation, we may assume that jS=(l, 0, 0) without loss of generality.

Then a is the plane curve a(u)=(Q, ≪i(m),az(u)) parametrized by arc-length;

(3.10) g(a', a')=a?+a?=l.

The Gauss map £is given by $=(0, a'2,―a[). It is the space-like unit normal

to M. The Laplacian of £is given by A£=(0, ―a%, a"{). Thus, from the con-

dition (3.1) we have the following system of differentialequations:

0 =a12ai―ana[,

(3.11) ■ a%=ana'2―azsai,

a"{=ana2―assa[.

Now, we solve this equation and obtain the solution ay and a2. From (3.10)

we can parametrize as follows:

(3.12) a'i=cos0, ≪2=sin0,

where 0=$(u). Then, differentiating(3.12), we obtain
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a'[--Bf sin 0, a"{=-d" sin 6-6n cos 6,

(3.13)
a?=0'cos0, a'%=d" cos d-dn sind.

By (3.11),(3.12) and (3.13) we have

―{0" cos 0―8tz sin 6)=ai2 sin 6 ―a23 cos 0,

―(0* sin 6+6'z cos B)=aZ2 sin 6 ―aZ3 cos 0,

which give

(3.14) 0" = ―an sin20+a23 cos20-(a22-flss) sin 0 cos 0,

(3.15) d'2=a22 sin20+ a33cos2i9―(a23+a32)sin 0 cos 0.

Differentiating (3.15),we get

20'0"=0'{2(G22-a33) sin 0 cos 0-(a23+a32)(cos20-sin20)}.

Substituting (3.14) into this equation, we get

(3.16) 0/{4(a22-fl3s)sin0cos0+(G23+3G32)sin2(9-(3a23+G32)cos20}=O.

We suppose that 0'^O. Then by (3.11) and (3.16) we get

#12―#13=^23 ―#32―0, G22==Q33>

which yields that d = ±u/r+b, l/r2=a22=a33, r>0, is/J. Accordingly we

have

≪i=±r sin 0+Ci, c^R,

az― + rcos 6+cz, c2eft.

This representation gives us to

(a1-c1)2+(a8-cB)8=ra, r>0.

We denote by Sx(r,(cu c2))the circle centered at (c1? c2) with radius r in the

plane R2 (the (xiX2)-plane). By the above equation the curve a is contained in

S^r, (cu c2))and hence the ruled surface M is contained in the Lorentz circular

cylinder R＼xS＼

On the other hand, if a set |ue/|^'(m)=0} is not empty, then 0 is con-

stant on / by the similar discussion to that in Proposition 3.1. So we get that

the normal vector f is the space-like constant vector. It shows that M is con-

tained in R＼. □



The Gauss map of ruled surfaces 295

§4. Non-cylindrical ruled surfaces of type /+, /_ or //+.

In this section we are concerned with non-cylindrical ruled surfaces of type

/+, /_ or //+ in the 3-dimensional Minkowski space R＼. Let M be a non-

cylindricalruled surface of type /+, /_ or //+ with the base curve a and the

director curve /3. That is, a=a(u) is a space-like or time-like curve and /3=

/3(u)is a space-like or time-like unit vector fieldalong a orthogonal to a. Then

M is parametrized by

(4.1) x=x(u, v)―a(u)+v^(u), u^J, ve/,

where g(p, fi)―e2=±l and g(a',($)=Q. Here we can regard jS as a curve in

M2(s2) parametrized by arc-length u, i.e., g(f2',(2')=e3=±l. And we have the

natural frame {xu, xv) given by

(4.2) xu=a'+vfi', xv=fi.

Let £ be a unit normal to M. It is defined by f~1xuXxv, where / is a positive

smooth function defined by f'i=eig(xu> xu). Then we get

£(£,£)=6= -s264(=±l).

Accordingly £ can be regarded as a Gauss map of M into the 2-dimensional

space form M2(e).

Theorem 4.1. The only non-cylindricalruled surfaces of type I+ (resp. /_

or 11+) in R＼ whose Gauss map satisfies

(4.3) A£=A$, A<EMat(3, R)

are locally the plane (resp. the Minkowski plane).

Proof. Let M be a non-cylindrical ruled surface of type /+, /_ or //+

parametrized by

x ―x(u, v)=a(u)+vfi(u), u^J, v^I,

where /3 is a curve in M2(s) parametrized by arc-length. The Gauss map

|: M―>M2(e) of the surface M is given by

$=f-KxuXxv)=f-＼a'+vp')xp.

We define smooth functions h, k and vector fields X, Y as follows:

(4.4)

Then we have

h=g{a', jSO, k=g{a', a')/2,

X=a'xB, Y = B'XB.
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/2=-se2(63y2+2/iv+2&),

g(X, X)=-2szk, g(X,Y) = -e2h, g(Y,Y)=-s2es,

where we have used (2.6). Then £is represented as £=/ ＼X+vY). It is easy

to show that the Laplacian A of M can be expressed as

(4.6)

Since we get

K

du

32£

^<-H+
pduV

= -±L(X+vY)+MX'+vY')

duz

J J uu £ju

(X+vY)-2

%-fyfX+vY)+±rY,

32£_ ffvv-2fv*

dvz

we obtain by (4.6)

r

fu
r

(X+vY)-2J?2Y

s2A$=(sffuu 3/V

(X'+vY')+j(X"+vY")

ffv-f
p

v~yx+vY)

-3e^r(X'+vY')+zj-3(X''+vY'') + yzY.

By the assumption (4.3) and the above equation we get the partial differential

equation

{s(ffuu-3fu2)+f＼fU-m(X+vY)

(4.7) -2>effu{X'+vY')+zf＼X''+vY'')+PfvY

= etf*A(X+vY).

By (4.5) we have

sffu=-S2(h'v+k'), sff^-s^v+h),

£(ffuu+fu*) = - ^(h"v+k"), //w+/t,2=-££263.

Using the above equations, we can eliminate fuu and fw in (4.7), and then fu

and fv. Then we have the following equation:

{(h"v+k≫)+Aztf-＼h'v+k'T-szzp-2sz{Biv+h)z}{X+vY)

+3(h'v+k')(X'+vY')+e£2fXX"+vY")-ef2(e3v+h)Y

= f*A(X+vY),
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which can be regarded as the polynomial with the variable /:

-A(X+vY)fe+{-ee3(X+vY)+eez(X"+vY")-s(esv+h)Y}f*

(4.8) + U(h"v+k")-2ea(e9v+hyKX+vY)+Wv+k')(X'+vY/)]ft

+4££2(h'+vk')2(X+vY)=0.

By the definition of the function / (4.8) becomes the polynomial with the

variable v whose coefficients are functions of variable u. Then, by the co-

efficientsof v6 and v＼ we have

(4.9) AX=0, AY=0,

where A is the matrix, and X and Y are vectors. Suppose that A is non-

singular. Then (4.9) means that X―Y=0, which implies that ?=0, a contra-

diction. Accordingly we see that the matrix A is singular.

Next, consider the coefficientsof the other powers of v in (4.8) and using

(4.9) we obtain

(4.10) Y"=Q,

(4.11) e2X" + e3X-j-4e2eshY"-3e2e3h'Y'-(h-{-eze3h")Y=0,

(4.12) 4£2£3hX"-2>£2£3h'X''+{4h-£2£zhf')X+4£2{h2+£3k)Y"

-3ez(e3k'+2hh')Y'-(2s3h2+2e2hh"-4ezh'2+4:k + e2ezk")Y=0>

4e2(h2+e3k)X"-3s2(e3k'+2hh')X'

(4.13) +(6e3h2+4e2hn-2e2hh"-e2£3k")X+8e2hkY"

-6e2(hk' + kh')Y'+2(4£2h'k'-6s3hk-e2hk"-e2kh")Y=0,

Se2hkX" -§s2{hkf+kh')X'+2{2h*+4e2h' k'-e2hk" -£2kh")X

(4.14)
+4s2k2Y"-6£2kkfY'+2(2£2k'*-£2kk"-4e3kz-2h2k)Y=0>

(4.15) 4£2kzX"-§£2kk'X'+2{2kh2+2£2k'2-£2kk"-2£3k2)X-4hk2Y=Q).

From (4.10) we have Y=ua+b, where a and b are constant vectors. We claim

that F=6(=£0), i.e., a=0. In fact, since g(Y, Y)=―£2£3by (4.5), we have

u2g{a, a)+2ug{a, b)+g{b, b)=-£2£3,

from which we conclude

g(a, a)=0, g(a, b)=Q, g(b, b)=-£2£3.

Since the vector Y is defined by jS'XjS, we get g(Y, p)=Q and g(Y, p')=0,

from which imply that
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j~g(X, p)=g(a, 0)=O,
4-g(R,

P)=g(a, j8')=0.

Since g(p, ft')=Q, it sufficesto consider the following three cases. First of all,

if /3 and /3'are space-like,then from g(b, b)=―l, g(a, b)―0 and Lemma 2.2 a

is space-like. On the other hand, if /3is space-like (resp. time-like) and /3'is

time-like (resp. space-like),then Lemma 2.2 implies that a is space-like. Since

g(a, a)=0, we get a=0, i.e., we have F=6( =£()).This yields that #(/J,6)=0,

which means that ^ is contained in the plane passing through the origin in R＼.

Without loss of generality, we may suppose that b=(b0, bu 0) and g(b, 6)=

―bo2-＼-bi2――s2£3.Then we get

Y=(Y0, Yu Yt)=(b0, blt 0).

Now, from (4.11) we have e2X" + esX-(h+£2e3h")Y=Q. If we put Z=X-s3hY,

(4.16)

(4.17)

Z"+£2esZ=Q,

g{Z, Z)=e2(esh2-2k)

where we have used (4.4) and (4.5). Using F2=0 and (4.16), we see that the

x2-component of (4.12) is given by

(4.18) h"X2+Zh'X's=Q,

where X={X0, Xu X2). Using (4.16) and (4.18), we have from (4.13)

(4.19) (2s3h2-4k+4s2h'2-sze3k")Xz-3e2e3k'X'2=Q.

By making use of (4.16), (4.18) and (4.19),equations (4.14) and (4.15) can be

written as

(4.20) h'{k'-£3hh')X2=Q,

(4.21) (k'2-2e3hnk)X2=0.

Now, using the equation (4.17)~(4.21),we will prove that Z=0 on /. We

firstprove that X2 vanishes on /. In fact, we suppose that there exists u^J

such that X2(mi)=£0. Let ]X be an open interval containing ux in {ugJ＼X2(u]

^0}. Then, from (4.20) and (4.21), we obtain

(4.22) h'{k'-e3hh')=Q on J≫

(4.23) k'2-2e3khn=0 on J1.

Differentiating (4.23), we get

(4.24) k"2+k'k'"-e3(k"h/*+4k'h/h/'+2kh"2+2kh'h'")=() on Jt.
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Let J＼be a set {u<=Ji＼h'(u)i=0} and J＼ a complement of J＼. On J＼ we get

g(Z, Z)=0 by (4.22) and (4.23). By (4.18) and (4.23) we have that h"=0 and

k'=0 on J＼. Since we have k"=Q on J＼ by (4.24), (4.19) leads that ssh2-2k

=0, i.e., g(Z, Z)=Q on J＼. Since £ and /3 are orthonormal vectors and both

orthogonal to Z on Jlt if the plane spanned by £ and /3 is space-like (resp.

time-like), then the vector Z is time-like or 0 (resp. space-like) and hence Z=0

on /j. This means that X2=0 on Ju a contradiction. Thus Z2=0 on /, i.e.,

Z is contained in the xox!-plane. We claim that X and F are linearly dependent

on /. In fact, if there exists u^J such that X(ux) and Y(ui) are linearly

independent, then there exists a positive number £ such that X and Y are

linearly independent on J^―iux ―e, u1-{-e). The plane spanned by X and Y is

to be xoxi-plane on Js. Since g(X, /3)=0 and g(Y, /3)=0, j3 is parallel to the

x2-axis on Je, i.e., p=y(u)e2 on /£, where e2=(0, 0, 1). Thus we have b=

/3'X/3=Q on Je, a contradiction. Thus X―qY, where q is a non-zero smooth

function on /. By the definition we have {a' ―q^')y,^―Q. Since a' ―qfi' and

/3 are orthogonal, we have a' ―qfi'=Q. From (4.4), we get h―qez. Hence Z =

^-£3/^=0 on /.

By the definition we see {a' ―£zh^')X^―Q. Since a' ―£3/i/3'and /3 are

orthogonal, we have by (2.1)

a'-e3hp'=0.

By the definition of £ we obtain ^^=f~1(ssh+v)h―±h. It means that if M is

contained in R2 or i2f, according as £= ―1 or £=1. This completes the proof. □

Remark. As is seen from the proof above, Theorem 4.1 holds under the

condition that each entry of A is a smooth function of u. But it is not valid

provided that entries are smooth functions of u and v.

We can consider an example which satisfiesthe condition (4.3), where an

entry of A is a function of v.

Example 4.1. A helicoid of 2nd kind with a base curve a(u)=(0, 0, u) and

a director curve j8(tt)=(smh u, cosh u, 0) is the non-cylindrical ruled surface of

type /+. The Gauss map is given by

£= ,~―2-(coshu, sinh u, v).

The Laplacian A^ of Gauss map $ can be expressed as

A$=
(1

_2

-v2)2

e
1>I<1.
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Example 4.2. A helicoid with a base curve a(u)=(u, 0, 0) and a director

curve j8(m)=(0, ―sinu, cos u) is the non-cylindrical ruled surface of type //+.

The Gauss map is given by

tz=―j^=s-{v, ―cos u, ―sinw).
VI ―v

The Laplacian A£ of Gauss map £ can be expressed as

Remark. Since a helicoid and a helicoid of 2nd kind are both maximal

surfaces in R＼,it is seen by (2.9) that the Gauss maps satisfy A$=f(u, v)£.

But, in these example, f(u, v) depends only on v.

§5. Ruled surfaces of type II or 11%

In this section we are concerned with non-cylindrical ruled surfaces of type

/+ or III in the 3-dimensional Minkowski space R＼. Let M be a ruled surface

of type /+ or //+ with base curve a and director curve /3. Then the surface

M in i?f is parametrized by

(5.1) x=x(u, v)=a(u)+v^(u), u^J, ye/,

where g(fi,/3)=1, g(a',iS)=0 and /3' is null. So /3 can be regarded as a null

spherical curve in Sf(l) parametrized by u. For such ruled surface M we have

the natural frame {xu, xv} given by

(5.2) xu=a'+vp', xv=fi.

Let $ be a unit normal to M. It is defined by f~lxuXxv, where / is a positive

smooth function defined by fz― ―^g{xu, xu). Then we get

Accordingly £ can be regarded as a Gauss map of M into the 2-dimensional

space form M2U).

Theorem 5.1. There are no ruled surfaces of type 1+ or 11+ in R＼ whose

Gauss maps satisfies

(5.3) A£=A$, A<=Mat(3,R).

Proof. Let M be a ruled surface of type 1+ or III parametrized by

x=x(u, v)=a{u)+vB{u), u^J, ve/,
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where g(a', a')=eu g(a', p)-0 and g($, iS)=l

of the surface M is given by
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The Gauss map £: Af-≫M2(e)

$=f-＼xuXxv)=f-＼a'+vP')xp.

We definea smooth function h and vector fieldsX, Y as follows:

h=g{af, p), X=a'Xp, r=/3'X/3.

Then the vector Y is null. In fact, by (2.6) and the definition of Y, we get

g(Y, Y)=-g{$', 0')£(j8,j8)=0. Accordingly we have that Y=0 or null. But

Y=0 if and only if $' is parallelto /3,a contradiction. Hence Y is null. Since

the vector
i8/

is null and orthogonal to Y, there is a non-zero smooth function

a such that Y ―afif from Lemma 2.3. By the property of the Lorentz cross

product, we have F/=JS//X/3 = a//3/+ aiS//,which implies g(a'p' + ap", j8*)=0.

Because /3'and /3" are orthogonal, /3"is the null or zero vector. Thus there

is a smooth function b such that fi"=hfi' and we get

(5.4) Y'-bY, Y"=(b'+b2)Y.

It is easy to show that the Laplacian A of M can be expressed as

(5.5)

Accordingly we get

A£―( rffuu
^f

2

J Jvv fv_
-―73 ){X+vY)

By the assumption (5.3) and the above equation we get the partial differential

equation

{-s(ffuu-3fu2)+fz(ffvv-fv2)}(X+vY)

(5.6) -?>effu{X'+vY')+efXX≫+vY'')+PfvY

=fiA(X+vY).

Since we have /2= ―e(2/ii>+Si),we obtain

ffu=-eh'v, //,= ―e/i,

ff.u+fu%=-eh'v, ffm+U=0.

Using the above equations, we can eliminate /Ull and fvv in (5.6), and then fu

and /≫. Then we have the following equation:
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{h"v+4ef-2(h'v)2-2h2}(X+vY)+3h/v(X'+vY')

+ ef＼X"+vY")-ef2hY-fiA(X+vY)=Q,

which can be regarded as the polynomial with the variable /:

-A{X+vY)fi+B{Y"v+{X"-hY)}fi

(5.8) + {(h"v-2h2)(X+vY)+3(h'Y'v2+h'X'v)}f*

+4e(h'v)2(X+vY)=0.

From the equation f2― ―s(2hv+ei) and (5.8) we can calculate the coefficients

of vi. Then we have

(5.9) h*AY=0.

Next, considering the coefficientsof the other powers of v in (5.8) we obtain

(5.10)

(5.11)

(5.12)

(5.13)

8hsAX+l2e1h2AY+4h*Y"+2(2h/2-hh")Y-6hh/Y'=Q,

12£1h2AX+6hAY+4h2X"-6hh'X/+(4hn-2hhff)X

+4e1hY"-3s1h'Y'+s1h"Y=(),

6hAX+e1AY+4e1hX"-3e1h'X'

+(4/i3-£1/i//)X+F//-2£1/i2F=0,

e1AX+X"4-2e1hiX-hY=0.

Now, we prove that the function h vanishes on /. In fact, suppose that

h--£0on /. Then there exists uo<=J such that h(uo)^O. Let Jo be the open

interval containing u0 in {ue/|A'(M)^0}. Then, from (5.9), we get AY=0 on

Jo, where A is the matrix and Y is the vector. By (5.4) and (5.10) we have

AX=0 (modF) on /,. Then (5.13)implies

(5.14) X/f-h2e1hiX=0 (modF) on /0.

Using (5.12) and (5.14) we have

(5.15) 3s1/i/A7+(e1/i>!'+4/i8)A'=0(modF) on Jo.

Using (5.11),(5.14) and (5.15) we get

(5.16) h'2X=0 (mod Y) on J0.

We know here that the differentiationof the function h is identically zero on

Jo. In fact,if we suppose that /i'-^Oon Jo> then there exists MiS/0 such that

h'{ui)i=Q. From (5.16),^(mx)=0 (modF). Thus there exists a non-zero smooth

function c on the open interval Jx containing ux in (≪g/0|Ii'(m)^0} such that
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X―cY. Thus we have $=f~＼c+v)Y on Jx. This means that £is null, a con-

tradiction. Accordingly, (5.15) yields that h3X=0 (mod Y) on /o. This is a

contradiction. Thus the function h is always zero on /, i.e., g{a', (2')=0 on

/. If M is the surface of type III, then since a is time-like and h=Q, Lemma

2.2 means that /3'is not causal, a contradiction. On the other hand, we sup-

pose that M is the surface of type /+. Then we know that a'=§. In fact,

the differentiatingg(a', /3)=0 and g(a', a')=l, we obtain that a" is orthogonal

to a' and /3. Since a' and /} are space-like and orthogonal, a" is time-like or

0. Differentiating g(af, f}')=0 and using the property fi"=hfi'',we get g(a", ft')

=0. If a" is time-like, Lemma 2.2 means that
i8/

is not causal, a contradiction.

Accordingly, we have a"=0. This shows that there are constant vectors a and

b such that a(u)=ua+h. Namely, the base curve a is the space-like straight

line in R＼.

Since the vector X=a'Xfi is unit time-like and g(X, X')=0, Lemma 2./

leads that X'=a'Xfi' is space-like. On the other hand, because a' and /3'are

orthogonal and /3'is null, by (2.6) we have g(X', X')=0. Hence X'=0, i.e.,

/3'is parallel to a', a contradiction.

Thus it completes the oroof. □

Remark. As is seen from the proof above, Theorem 5.1 holds under the

condition that each entry of A is a smooth function of u. But it is not valid

provided that entries are smooth functions of u and v.

We can consideran example which doesn'tsatisfythe condition(5.3).

Example 5.1. A conjugate of Enneper's surface of 2nd kind with a(u)―

{u%l7A,u*/2A-u, M2/4-l) and j8(m)= (-m/2, -u/2, -1) is the non-cylindrical

ruled surface of type II. The Gauss map is given by

g Vl+iA8^2
' 8^2' 2/

The Laplacian A£ of Gauss map £ can be expressed as

Example 5.2. A ruled surface with a base curve a(u)=(u3/2A+u, us/24,

M2/4) and a director curve fi{u)=(u/2, u/2, 1) is the non-cylindrical ruled surface

of type III. The Gauss map is given by

£―

U2 V

8 9
u-+

V

~2
+1, - -)

2/
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The Laplacian A| of Gauss map £can be expressed as

A£=

■£

2(l+t;)2

e
v>-l
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