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INDECOMPOSABLE MODULES OVER ONE-SIDED

SERIAL LOCAL RINGS AND RIGHT PURE

SEMISIMPLE PI-RINGS

By

Daniel Simson*)

Introduction

Let R be a ring with an identity element and let J=J(R) be the Jacobson

radical. We denote by Mod(R) and by mod(i?) the categories of all right R-

modules and finitelygenerated /^-modules, respectively. We recall that a local

ring R is said to be right serial(resp. left serial)if the right (resp. left)ideals

in R are linearly ordered by the inclusion. We call R one-sided serial if R is

either left or right serial.

Following ideas of Nazarova [6] and Nazarova and Rojter [7] we describe

in the present paper a method allowing us to reduce the study of modules over

one-sided seriallocal rings R to the study of finitely generated modules over

triangular matrix rings of the form ( G FJ where G, F are divisionrings and

GNF is an G―F-bimodule (comp. [2]). In the paper the method is mainly used

in constructing large indecomposable modules.

In Section 1 we prove that if R is a right serial local ring with J(R)2^0

which is not left serial then there are subdivisionrings GcH of F―R/J(R) both

isomorphic to F such that dimcF=(dimffF)2^4 and the category consisting of

such finitely generated right i?-modules M that M/soc(M) is a direct sum of

copies of R/J(R)2 is representation-equivalent to the category Ih(gFf) consisting

of those modules X over the ring

over the ring (H hFf＼F )

( ^ gFff)=A
for which the module XRA(H hF^

has no simple injective summands. A counterpart of

this result for right modules over a left seriallocal ring is also proved. Hence

we conclude that if R is a one-sided serial local ring with /(i?)2=£0which is

not both left and right serial then there exists an indecomposable right i?-module

which is not finitelygenerated.

In Sections 2 and 3 we discuss the following open problem (see [10, 11, 121):
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(psss) // every right R-module is a direct sum of finitelypresented modules,

does R is of finiterepresentation type?

Unfortunately we are not able to solve the problem in the general case.

However, using the positive solution of (pss≪)for hereditary Pi-rings given in

[11] together with the result mentioned above we prove in Section 2 that (psss;

has a positive answer for local Pi-rings. Furthermore, we show that the solution

of (pssi?)for one-sided seriallocal rings R can be reduced to (psss) for hereditary

rings S discussed in [11, Sec. 3].

In Section 3 we prove that the problem (pssffi)has a positive solution for

schurian factors of hereditary artinian Pi-rings. This wTas done by applying the

results obtained recently in [5, 13, 14] on vector space categories and associated

right peak rings. The method presented in Section 3 can be also applied to the

non-schurian right pure semisimple rings. It reduces the problem to rather

difficultquestions concerning subspaces of non-schurian vector space Pi-categories

(see [13, Theorem 1.1]).

Indecomposable modules over a one-sided serial local ring R with R/J(R)

commutative were studied by Dlab and Ringel in [2]. The main results obtained

there can be also deduced from our results in Sections 1 and 2 by using the

diagammatic characterization of hereditary Pi-rings of finiterepresentation type

obtained in [3].

Throughout this paper soc(X) denotes the socle of the module X and X1

denotes the direct sum of t copies of X.

1. Modules over one-sided serial local rings.

Throughout this section we fix the following notation. R is a one-sided

serial local ring, B = R/J(R)2, F=R/J{R) and e: R-*F denotes the natural ring

epimorphism. We fix z^J(R) such that J(R) = zR provided R is right serial and

J{R) ―Rz provided R is left serial. If R is right serial (resp. left serial) we

define a ring homomorphism

a ■p > p (resp. r: F-≫ F)

by the formula e(r)z=zae(r) (resp. ze(r)=ze(r)z) where r^R and z=z-＼-J{R)2^

J{R)/J(R)＼

We start with the following simple lemma.

Lemma 1.1 Suppose that J(R)2^Q and /(i?)3=0. // R is right serial with

J(R)~zR and r, sgR then rzz=z2s if and only if e(s) = o2e(r). If R is left
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serial with J(R)~Rz then rzz―zzs if and only if e(r) = z2e(s).

PROOF. Let oe(r) = e(r') and a2e(r) = e(r"). Then rz+f(R)2=e(r)z-=zae(r) =

zr'+J(R)＼ Hence rz―zr'=t^J(R)s and similarly rfz―zr" = t'<=J(Rf. By our

assumption we have

z2e(s)=z*s--=rz2=(zr'-＼-t)z=zr'z=z(zr"+t')=z2a2e(r).

Since z2^0 then e(s) = a2e(r) as we required. The converse implication as well

as the second equivalence can be proved similarly.

In order to formulate the main result of this section we need some termino-

logy and notation.

A corepresentation of an F― G-bimodule FNG is a triple (UG, V
F,
i) where UG

and VF are finitely generated modules over the ring G and F, respectively, and

i: UG―>V<S)FNG is an G-homomorphism. A map form (UG, VF, i) into (JJ'G,VF, i')

is a pair (g, /) with g(EHomG(U, U'), /eHom^F, V) such that (fRl)i=i'g.

The category of corepresentations of FNG is denoted by c*(FNG).

If fNh is an F―//-bimodule, GKH is an G―//-bimodule, c:
fNg<S)gKh-+fNh

is an F― //-bilinear map and VF is a right F-module then elements au ■■■,aq in

V<g)FNG are called GKH-independent if the equality c(a1(g)k1)+ ･･･ -Jrc(ag0kq)=O

with kj^GKji implies that kx― ･■■=kq-=0. If in addition F, G, H are division

rings then a corepresentation (UG, VF, i) is said to be G/Cff-independent if given

a basis eu ■■･,eq of UG the elements i(ei),■■■,i{eq)^V(^FNG are G/rff-independent.

We denote by ci(FNG)§, the full subcategory of ci(FNG) consisting of GKH-

independent corepresentations.

Finally, we denote by 6{B, F) the full subcategory of mod(/?) consisting of

modules M such that M/soc(M)^Bt for some t.

We recall that an additive functor between two additive categories is said to

be a representation equivalence if it is full, dense and reflects isomorphisms.

Now we are able to prove the main result of this section.

Theorem 1.2. Let R be a right noetherian one-sided seriallocalring and let

F=R/J(R). If /(/?)2=£0,J(R)S=O, and R is not both left and right serial then:

(i) There exist divisionrings G and H both isomorphic to F, bimodules
fNg,

fNh, gKh, and F~H-bimodule map c :fNg(£)gKh―>fNh and G-linearly independent

elements e*, x*, y* in fNg such that e*, y* are GKH-independent.

(il) There exists an additive functor

T : S{B, F) >ci(FNG)$.

which is a representation eauivalence.
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Proof. First we define two subdivision rings G°aH° of F. We put G°=

o2(F), H°^=a(F) if R is right serial and G°=r＼F), H°=t(F) if F is left serial.

Next we fix an element x&IT＼G° and an element y<E.F＼H°. The existence of

such elements follows from our assumption that R is not both left and right serial.

Now we define the division rings and bimodules required in (i) by the fol-

lowing formulas:

G°*={f*(=Extk(B, F); f*=ExtR(f, F) with /eEnd(£≪)} ,

H°p={f*<=Extk(F, F); f* = ExtR(f, F) with feiEnd(FR)},

FNG=Extji{B, FF) and n/*=/*(n) for n^FNG and /*eG,

FN^=ExtR(F, FF)
and m/*=/*(m) for mt=FN£ and /*e#,

G/^=Im[ExtA(-,
F): HomB(F, 5) > Homz(ExtA(£, F), ExtA(F, F))] ,

c(n%*)=?*(n) for n&FNG, q* = ExtlR{q, F), g^EomR(F, 5).

It is easy to see that G and H are factor rings of F and therefore they are

isomorphic to F.

Now we are going to describe matrix representations of G, H and of the

bimodule GKH which will be useful in our further calculations. For this purpose

we fix a basis j[―z, y'2,■■■,j'c of the right vector space J(R)/J(R)Z over F and

a basis /3i=z2, fi'2,■■■,/% of the right vector space J(R)2 over F. Next we define

elements yx, ■･･,jc and /31?■■･ftd as follows. If R is "right serial then c=d=l

and we put ^ = $1=1. Now suppose that i? is left serial. Then for any j"2il

there are fj, P'j^R such that r5=ry-? and P'j=P'jz*. We put n-^T"]) and ft=

£(/3'/).It is easy to check that ylf ■■･,yc^FH" are linearly independent over H°

and pu ･･･, pd<=FG° are linearly independent over G".

Now we denote by H* the subring of the full matrix ring MC(H°) consisting

of all matrices

h=＼ :
＼hcl

h 12

hc2 hcc

＼ hiJ<=H°

whose coefficients satisfy the following equalities

(hn+T2h21+ ･･･ +rchcl)rj=hlj+nh2j+ ■

for j=2, ■･･,c. We denote by G* the subring of

■+TchCJ,

Md(G") consisting of all

matrices g=(gii), l^z, j^d, satisfying the following equalities

for 7=2, ･･･, d. Finally, we denote by K* the set of matrices
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k11 ･･･ klcl

kd＼ ･･-, kdC＼

k^eG0

91

whose coefficientssatisfy the following equalities

for j=2, ■■■,c.

We will show that there are ring isomorphisms

£:G―>G*, £:#-―> H*.

Given /*gG with /eEnd(B/j) we consider the projectiveresolution of / in mod(i?)

p2

I

^ p

P2

/o/.

P2

where p^Xi, ･■■,xd) ―/3U'i+ ･･･ +fi'd.Xd- Let f1 = (rij) with rtj&R and let fo(l) = r.

First suppose that R is right serial. Then d = l, G* ―G° and we put $(/*)=

s(rn). Since z2ru = rz2 then by Lemma 1.1 £(rn)eG° and £ is obviously a ring

isomorphism.

Next suppose that R is left serial. Let £(/*)=(r2£(r^)). It is easy to see

that £ does not depend on the choice of f0 and fx. Moreover, since R is left

serial then z2rij=SijZ2 for some Sij^R and it follows from Lemma 1.1 that

z2s(rij)= e(sij) for all /, /. Then fop1=p1f1 if and only if

rMz*=p{zirlj+ - +FLztrdJ

= Lj9?e(s1J)+ - +^e(sdJ)lz2

for y=l, ･･･, d. Since z2^0 the equalities hold if and only if

e(r)= e(sn)+j8ie(s21)"t- ･･■+^^£(5^1)

and

e(r)ft=e(s1,)+iS2e(s2y)+ - +/3<i£(sd,.) for ;^2 .

It follows that f(/*)£G*. Conversely, suppose that g=(gij)^G*. Let r, ri;ei?

be such that

£(r)=£n+/32£21+ ･･■+pdgdl and r2£(rii)=^.

It follows from the discussion above that the formulas /0(l)~―r and /i = (r^-)

define i?-homomorphisms f0: R->R and f1:Rd-+Rd such that fopi=Pifi and

therefore there exits /eEnd(i?ij) such that £(/*)=g. Since f preserves the ad-

dition and the multiplication then it is a ring isomorphism. The isomorphism C
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is defined in a similar way. The details are left to the reader.

It is easy to see that a matrix which belongs either to G* or to H* is equa!

zero if and only if one of its rows or columns is zero.

Now we will define a group isomorphism oj: gKh->K*. Let t* = Extx(t, F]

where /£Homfi(F, B). Then we have a commutative diagram with exact rows

Pi

Re , R >F , 0

k ＼u ＼t

i
Pi

i i

Rd > R > B > 0

where p[(yu ―, ye)=7"zyi + ･･･ +r"zyc- Let fo(l)= s and t1= (tij) where ttj&R.

First suppose that R is right serial. Then c = d = l, K*=G° and we put

a)(t*)= oe(tn)^a2(F) = Go. It is clear that a) is an isomorphism.

Next suppose that R is left serial. Let <i)(t*)=(T2e(tij)). It is clear that m

does not depend on the choice of t0 and tr. In order to show that a)(t*)^K* we

can suppose that t^O. Then s = s'z where s' is an invertible element. Now if

we put kij=z2e(tij) then top[ = piti if and only if

= {kli+p*kii+ - +pdkai)z*

for j―1, ■■■,c. Since z*=£0 then the equalities hold if and only if

e(s')=k11 + pik*1+-+pdkdl

and

s(sf)T(rj)=k1J+p*kii+-+pdkd> for y=2, -,c. .

It follows that o)(t*) e K* and that o> is surjective. Since (d is obviously injective

it is an isomorphism.

Now K* can be considered as an G*―H*-blvaodule via the isomorphisms $,

C, a>. It is easy to check that oj{gkh) is the multiplication of matrices £(g)ai(k)zC,(h)

for any geG, k^K, h<=H where z(h)=(z(hij)). Moreover, the right G-module

action on
FNG
corresponds to the usual right matrix action of G* on Fd via the

natural composed isomorphism

(*) pN0=Extk(B, F) = UomR(Rd, F)^Fd .

Similarly
fNh^-Fc

and the right action of H on N' corresponds to the right

matrix action of H* on Fe. Finally the bilinear map c: fNgRgKh-*fNh cor-

responds to the map c':
F(Fd)0G.K£.-*F(Fc)H*

defined by the formula e'O(g)(&iJ'))=

Now let e* = (l, 0, ･･･ , 0), x* = (x. 0, ･･･ , 0), v* = (v, 0, ■■･, 0)<EFd^FNG. Then
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the equality e*gQ+x*g1 + y*g2=R with gi^G* implies that each of the matrices

gt has the firstrow equal zero. Hence they are zero matrices because they

belons to G*. Now suppose that c/(e*^k0)+c'(y*<S>k1)=0 where ks=(klj)eK*.

Then z(klj)+ yT(k＼j)=0 for /=1, ･･･,c. Since y&H0, z(klj)^H° then klj=k＼j=O

for /=1, ･･･,c and therefore c/(e*<S>ks)―0for s=0, 1. Then (i) will be proved

in the case R is left serialif we show that e* is
^/^.-independent.

We will

do it later after the proof of the statement (ii). If R is right serial then it is

easy to see that G^G°, H^H°, FNG^FFG°, fNh=fFh°, gKh = g°Hh° and c is

induced by the multiplicationFF(g>G°Hx°->fFh°- If we put e* = l, x*―x and

y*=y then (i) follows.

In order to proof (ii)we define group isomorphisms

ExtKfi', Fn) >Hom*(Pi, Fn) >Homo(G*, FnRFNG)

for any positiveintegers t and n, where P1=Rd. For this purpose we consider

a projective resolution

of Bl in mod (/?).

plex

pt . pt j. Dt.... ,.j-2 _ _> ri ≫^

Since Ext^Cfi4, Fn) is the first cohomology group of the com-

(Pi)* (Pi)*

Hom^R', Fn) > EomR(Pl Pn) > Hom*(Pl, Fn)

and (/>J)*=(/>|)*=0 then there is a natural isomorphism ExtiCfl', Fn)=HomR(Pi, Fn)

and we take it for aJn.

In order to define btn we denote by e[, ･･･, e't the standard basis in Gl and

by elf ･■■,en the standard basis in Fn. Now given h^YiomR{P＼, Fn) we put

btn(h)e'i=e1^a^(hli)-＼ ＼-enRaii(hni)

for i=l, ･■■, t, where hji―TCjhvi,i>i: P^Pi is the injection into the ith coordinate

and itj＼Fn-J>F is the projection on the jth coordinate. It is clear that btn is an

isomorphism.

Now we will prove that:

1°. atn and btn are natural maps with respect to i?-homomorphisms Fn-*Fm.

2°. If /: Br-^Bt is an i?-homomorphism given by the matrix (F*,-),rtj^R

and

■* 1

I
/

p＼

Rr

u

Rl
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Is a projective resolution of / then we have a commutative diagram

Ext^B1, Fn) -
^―> Homa(Pi, Fn) ^―> HomG(G£, FnRFNG)

＼f* I en*
, w{fr

ExtJ?(5r,Fn) T^-*UomR(Rr, Fn) ^―> HomG(Gr, FnRFNG)

where h* means the map induced by h and the G-linearmap w(J) is definedby

the formula

w(f)e'i=ef1r?l+ ■■■+eftrft

where ftj=ExtWij, F)<=G.

The property 1°as well as the commutativity of the left hand square in the

diagram above are obvious. In order to complete the proof of 2° we suppose

that f has the form /' = (/{>) where /^eHom^P!, Px). Then for any h = (htJ)

e Hornjj(P5,Fn) and any s we have

w(f)*btn(h)e's=btn(h)w(f)e's= S [btn{h)e'i]r%

ts

V* "V― ZiZj

j k

k=i

ekRanKf'jt)*hki

llHekRa^{hkjf'js)

= 2 ek<g)anKhf')kt

= lbrn(f'*)l(h)e',

and (ii)follows.

Now we define a functor T : 6{B, F)->ct(FNG). Given a module M in e{B, F)

we consider the exact sequence

eM:0 soc(M) >M >M/soc (M) > 0 .

Since soc(Af)^F" and M/soc(M)^Bl for some n and f then ej＼eExt^(fi£,Fn)

and we put T(M) = (Gt, Fn, ufn) where ufn=btnatn(eM). If f: I-*M is a homo-

morphism in 6{B, F) and soc (L) = Fm, L/soc(L) = Br then we have a commut-

ative diagram

eL : 0 >Fm > L > Br > 0

r V il

eM: 0 ―* Fn > M ―> Bl ―> 0
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and by 1°and 2°the diagram

urm
Qr >F RFNGQr

Jf'Rid
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Gl >FnRFNG

is also commutative. If we put T(t) ―{w{tfr), t') then T becomes an additive

functor.

In order to show that T is full we take a map (q, q'): T(L)->T(M). If

q-(qij) with qn~f% where r^eEnd(£) and if we define f&Wom.R(BT, Bl) by

the matrix f―(fij) then obviously w{f)―q. Next if we denote by p the map

(q'Rid)uf?m=u?nw(f)(EnomG(Gr, FnRFNG) and if

,,. o ―+ Fn ―> z ―> nr ―> o

Is an exact sequence in mod (/?) such that bTnarn(e)―p then 1° and 2° yield

Extjj(/,id)eif=e-=Ex.t1R(id,q')eL and hence there is a commutative diagram

eL : 0 ―>Fm ―> L ■―>Br ―> 0

|*' | A' |
"*

e: 0 ―> F" ―> Z ―>Br ―* 0

J≫d | A* j/

^ . A C*?l . flif . f>t . A

It follows that T(h"h')―{q, q'). Moreover, if (q, q') is an isomorphism in ci(FNG)

then q and #' are isomorphisms. We claim that / is an isomorphism, too. In

order to prove it we can suppose (without loss of generality) that q―id. It

follows from the definition of w{f) that ?if―id and fij^BJ{R) for i^j, i, j

= 1, ･･■,t. Then there is a commutative diagram

Bt >Ft

}/ ＼id

&. ^Fn

where el is a minimal epimorphism. Hence / is an isomorphism as we claimed.

Consequenly, h"h' is an isomorphism and therefore T reflectsisomorphisms.

Since btnatn is an isomorphism then in order to finish the proof of (ii)it is

sufficientto show that given an exact sequence in mod (R)

e:0 >Fn
J

X―> Bl―≫0
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the corepresentation (G£,Fn, &tnaJn(e))is G

=soc(X). For this purpose given i=(i＼

projective resolution in mod (R)

/Cff-independent if and only If Im /

pi

... £-^

I'
"

?£)eHomfi(F, Bl) we consider its

R

!-
≪

....―>/≫―: >Rt

and the induced commutative diagram

ExtUB1, Fn) ―-―> EomR(P{, Pn)

a'n X
ExtWF, Fn) >EomR(P'u Fn) >Fn6^FN'TT

where X(h[, - , h'n)=e1Ra'n＼h'1)+ - + e≫<g)an J(/i≫).

(i{, ･■■,i{) where hij^YiomR{P1, F), i＼^WomR(P[, PJ

every s and therefore

If atn(e)=(hij) and ii=

then a{,(:･)* = (xj)*a 11 for

j=＼ >S―1 /

j

5

s
ii'atnhjs)

E^R(*'')*an(M

s

= 2c[2e,Rari1(/i/.)R(*"*)*l
s L j -i

s
[btnatn(e)eftR(i')*l-

Since la'tnis an isomorphism then from the above equality follows that the

corepresentation {G＼ Fn, btn(itn(e))is G/Cff-independent if and only if there is no

nonzero maps i: F―>5£such that i*(e)=0. On the other hand it is easy to see

that Im j^soc(X) if and only if there is a nonzero map ziF-^B1 such that

z*(c)=0 (cf. [7, Sec. 12]). Consequently, Im;=soc(X) if and only if (G*, Fn,

btnO-tnW))is
G/f#-independent.

Hence T is a representation equivalence and (ii)

follows.

To finish the proof of (i)it remains to show that the element e* is G*K*H,-

independent. For this purpose we consider the exact sequence

e : 0 ≫KRY ■― R ―> 5 -―> 0 .
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Since 7(i?)2=soc (RR) = Fd then according to the statement proved above the G-

linear map hiddiaie): G->FdRFNG defines an ci^-independent corepresentation.

Since obviously ald(e): Rd-~>Fdis the natural epimorphism ed then

fti<iGid(e)l= e1Ran1(7ri£d)H t-ed<g)aT}(itds*).

It follows that the element a^^4) is G/fH-independent. Since e*^Fd corre-

sponds to au(xied) under the isomorphism (*) then e* is
(j.i^*//.-independentas

we required. Now the proof of the theorem is complete.

Remark. Another useful (but not functorial)method for the study of inde-

composable modules over one sided serial local rings R with J(R)2^Q can be

found in T2. Section 61.

2. Right pure semisimple local rings.

We recall from [9] that a ring R is right pure semisimple if every right

i?-module is a direct sum of finitelypresented modules. We keep the terminology

and notation introduced in [11] where the reader is also referred for a back-

ground of right pure semisimple rings.

We start with the following technical lemma.

Lemma 2.1. Let F, G, H be divisionrings and FNG, FN'H,
GKH be bimodules

defined in the proof of Theorem 1.2. Then there exists a sequence

uf uf

Li L2 >･･･ *Ls > Ls+1 >･･･

in the category ci(fNg)n> such that Lt is indecomposable, uf is a proper mono-

morthism for all t and L=colirn Lt is indecomposable.

Proof. Let e*, x*, y* be the elements defined in the proof of Theorem 1.2

and let LS ―{US> Fs, is) where Fs is the standard s-dimensional vector space over

F, eu ･■■,es is the standard basis of Fs, Us is the G-subspace of Vs=Fs(&fNg

generated by elements e*=ei<S)e*, 2= 1, ･･･, s, and Vj=ej<S)xe*-{-ej+1(g)ye*, j=

1, ･･･, s ―1, and is: US-*Vs is the inclusion map (comp. [1, Sec. 5]).

By the property (i) in Theorem 1.2 the elements ef, ･･･, ef 'vlf■■■,vs-x are

eATn-independent and therefore Ls is an object of ch(fNg)§,. The F-linear injec-

tion us: FS-≫FS+1 given by us(ei)= ei+1 for i―1, ■■■,s defines a map uf: LS-~>LS+1

because (M,(S)l)(e?)= et+i and (us01)(vj)―vj+1 for l^i^s and l^j^s ―1.

We recall from the proof of Theorem 1.2 that
FN=FR ･-･

cF. Then for

every neiV and /eFwe have defined nf&N and hence we have also defined

vfeV* for all yeV* and fe.F.
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Now we prove by Induction on s that Ls is indecomposable by showing that

any nonzero idempotent in the ring End(Ls) is the identity map. For this pur-

pose we note first that L1 ―(e*G, F, ix) and Ls+1/ Ls = (e*G + x*G, F, i) are inde-

composable. Next suppose that Ls is indecomposable and let /*eEnd(Ls+1) be a

nonzero idempotent. Since 1 ― /* is also an idempotent and f*us^0 or (l―f*)us

=£0 then we may suppose that /*u,=£0. Since /* is given by an F-linear map

/: Fs+i->Fs+1 such that (/(g)l)£/,+1cE/s+1 then

(/(g)l)ef = e^g!j+ ■■■+et+1gt+v+v1q1J-＼ +vsqsj

for y=l, ･･･, s-f-1, where gij―iglf), Qij=(Qif) are matrices in G* with g＼J, g^^G".

Since (/<S>l)Vie£/s+1 for z = l, ･■-, s then

(*) (f(^l)vi=e*ihli+ ･･･ +ef+1hs+li+v1kH+ ■･･+v^,<

for some elements hji = (htf), kJt=(kji) in G* with hft, ktftEG0. On the other

hand we have

(**) (fRl)vt=[.(fRl)ellx+£(fRl)et+i']y
■

Now from the comparison of the right side terms in (*) and (**) we easily con-

clude that

hiti+ xk＼ti―g＼tix― xq＼ttx=gii+iy + xq＼ti+iy

for i=l, ■■■, $ and t^l. Since xgH° then the left side of the above equality

belongs to H°. It follows that g＼i+i+xqu+1=0 because otherwise y^H" which is

a contradiction. Hence gli+i―qli+i^Q for z = l, ･■･, s, t^l, and h＼i―k＼i=Q for

f=2, ･･･, s, f2tl. It follows that the matrices gu+1, qn+i, hu, kit for f^l have

their first rows equal zero and therefore they are zero matrices because they

belongs to G*. Consequently (/Rl)ef, ･･･, (f<S>l)ef+u (/01)y2, ･･･, (/(S)l)ys belongs

to (us(&l)Us and therefore there is a commutative diagram

uf

A
. T . T

k T IT
. A

yj
_ ,

j^
,
i-/.0+ 1 ' ±Jt+ 1/ L. * U

I /* 1 /* I /*

q , l . >./ > Ls+i/Ls
0

Since Ls is indecomposable and /* is a nonzero idernpotent in End(Ls) then /*

is the identity map. It follows that ga=l for i―2, ■■■,s, gij=0 for i^j, 2^;^

s+ 1, l^^s + 1 and qij―O for i=l, ■■･,s, j―2, ･■■, s+ 1. Note also that from

the equality (f<S)l)ef--=e1p1e*+■■■Jres+1pg+1<S)e*with some pj^F we easily con-

clude that g)＼=q)[= Q for y^l and t^2. Then the equality f*2=f* yields(g＼＼+

xgiiy^gil-^xqll and therefore q＼＼=0. Hence ^n=0 because its firstrow is equal

zero. Now from the comparison of the right side terms in (*) and (**) for i―l
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we easily conclude that

g1jix+ yq1jLnx + xq}ix = h1J＼+ yk1jl11+ xk%

for t^l, j―3, ■･･,5 + 1 (we put kl+n^ql+n―Q) and

gl＼x+ xqlix = hli + ykli+xk12[ for t^2,

glix + xql＼x-ry = hli+ yk＼l+ xki＼

g＼[x= h＼＼+ xk＼＼ for f^l.

Hence we Inductively conclude that gji―qj-n ―^i ―&j-u ―0 for y = s + l, s, ･■■,3,

^21 ―/121―0, ^ii=0 for t>2 and ^it=l. Now from the last equality above fol-

lows hn~0, gli = 0 for t>2 and g＼＼~1. It follows that the Idempotent /* is

nonzero. Since Ls+1/Ls is indecompossable then /* is the identity map and

therefore /* Is also the identity map, as we required. Consequently Ls+1 is

indecomposable. The indecomposability of L can be proved In a similar way

and we leave It to the reader. Then the lemma is proved.

Now we are able to prove a result which shows that the open question (pssfi)

for a one-sided serial local ring R can be reduced to (pss5) for a hereditary ring

5 discussed in [11, Section 31.

Theorem 2.2. // R is a one-sided seriallocal right pure semisimple ring

then either R is both left and right serial or /(i?)2=0.

Proof. Suppose that R is not both left and right serialand that /(i?)2^0.

Then by Theorem 1.2 there is a representation equivalence T : 6{B, F)―>ci(fNg)§,.

It follows from Lemma 2.1 that there exists a sequence

di ds
Di __> D2 > > Ds ≫Ds+1 ―+ ...

where Dt are indecomposable modules in {B, F), di is not bijectivefor z>l and

djdj-x ･･･dx^O for any j. On the other hand R is right pure semisimple. Then

by [8, Theorem 6.3] there is an integer m such that dmdm-i ･■･di=0 and we

get a contradiction. Then the theorem is proved.

Now we are able to prove the following resultannounced in [11, Note Added in

Proof] which answers the question (pss/j)in affirmative for any local Pi-ring R.

Corollary 2.3. Let R be a local ring such that the divisionring F~R/J(R)

is finite dimensional over its center and let d = dlmF{J(R)/J(R)2), dr―

dim (J(R)/J(R)2)f- Then the following conditions are equivalent:

(a) R is of finite representation type,

(b) R is right pure semisimple,
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(c) R is artinian and either dd'―l or /(i?)2=0 and 2<dd'<?>.

Proof, (a)―>(b)follows from [8, Theorem 6.3] and (a)*-≫(c)was proved in

[3]. In order to prove that (b) implies (c) we note that by the right pure semi-

simplicity of R and [11, Corollary 3.4] R is right artinian and R/J{R)2 is of

finiterepresentation type. It follows that R is one-sided serial because we know

from [3] that dd'<3. Now (c) is a consequence of Theorem 2.2 and the proof

is rmrmtere.

Remark 1. An explicite descriptionof indecomposable modules over a local

ring R satisfying the conditions in Corollary 2.3 can be found in [3, Section 2]

(see also f2"T).

Remark 2. The problem (pssR) remains open for arbitrary local rings R as

well as for arbitrary hereditary rings R (see fill).

3. Right pure semisimple factors of hereditary Pi-rings.

In this section we give a positive solutionof the problem (pss/?)for schurian

factors of hereditary Pi-rings by applying the results on vector space categories

and right peak rings obtained in [5, 13, 14]. We use the terminology and nota-

tion introduced in T141 where the reader is referred for details.

Theorem 3.1. // R is a right pure semisimple schurian factor of a hereditary

Pi-ring then R is of finiterepresentation type.

Proof. Suppose that R is an Indecomposable right pure semisimple schurian

Pi-ring. Then R is right artinian. We will prove by induction on the length

l(RR) that R is of finiterepresentation type and that the endomorphism ring of

any indecomposable right i?-module in mod(i?) is a division Pi-ring.

The case l(RR)=0 is obvious. Suppose l(RR)>0. Since R is a factor of a

hereditary ring then R has a simple injective right module and therefore there

is a rinerisomorohism

lF

＼0

FMS＼

S

j

where F is a division Pi-ring and FMS is an F― S-bimodule. Since 1(Ss)<1(Rr)

then by the inductive assumption S is of finiterepresentation type and End(Zs)

is a division Pi-ring for any indecomposable module Xs in mod(S).

First we will show that the dimension of UF=Homs(irMs, Xs) is finite for

any indecomposable module Xs in mod(S). Assume the contrary (i.e. that
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dim Up is infinite) and consider the right i?-module C£ defined by the triple

(Up, Xs, v) where v: Uf(&fMs-*Xs is the S-homomorphism adjoint to the identity

map on £//. Since Xs is indecomposable then Q£ is indecomposable. Moreover,

C$ is not finitelygenerated because dim U§ is infinite. Hence R is not right

pure semisimple and we get a contradiction.

It follows that the category KF―Homs{FMs, mod(S)) together with the em-

bedding functor | ―|: Kp―>mod (F) is a vector space category. Then by the

inductive assumption on S and by [14, Lemma 4.6] the ring Rk associated to

KF (see [14, Sec. 3]) is a schurian artinian right peak Pi-ring. Hence the as-

sumptions required in [14, Theorem 4.1] are satisfiedand therefore there is an

equivalence of categories

(*) mod(i?)/[mod(S)]=modsp(/))

where D=(Rk)*- Now it follows from the formula following the definition of

the functor G in [14, Sec. 3] that D is an artinian schurian right peak Pi-ring.

Moreover, since R is right pure semisimple then by [8, Theorem 6.3] the Jacobson

radical of the category modsp(Z>)is indecomposably right T-nilpotent in the sense

that for any sequence of D-homomorphisms

fl fn

1 >j^% f.... >^n > An+1 >･･･

where Xt are pairwise nonisomorphic indecomposable modules in modsp(D) there

is an integer m such that fm ･･■/2/i=:0.

Now we are going to prove that the value scheme (ID, d) of D does not

contain as an upper value subscheme one of the value schemes

(a) QStjJXo, dd">A,

(b) oi^Xo< o,<fi'=3f

(c) oMiAXo< o
|

i , dd'=2,

(0) o >o< o, Z<aa , ee <Sr

(e) q >o―――o< o< o, ddr―2 and o o means either

(f) 0 >o≪JXo, dd'=3,

(g) partiallyordered sets of the form K* where K is one of the Kleiner's
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[4] critical posets (1, 1, 1, 1), (2, 2, 2), (1, 3, 3), (1, 2, 5), (N, 4) and K* denotes

the enlargement of if by a unique maximal element.

For the definition of the upper value subscheme of a given one the reader

is referred to [5, 13].

Let D=P1Q) ■･･(&Pn($Pn+i where Pj are indecomposable right ideals of D

and Pn+1 is the right peak of D. We recall that given an upper value subscheme

(L, d) of (ID, d) there is a pair of adjoint functors

modsp(DL) ~^zl modsp(D)

where DL=End(&JeLPj), n(-) = HomD(RJeLPj, -) and

TL(-) = HomDli(HomD(RJeLPj, D), -).

The functor TL is full, faithful, reflects isomorphisms and carries over indecom-

posable modules into indecomposable ones. Then, in view of the observation

above, it follows that the Jacobson radical of modsp(D£) is indecomposably right

T-nilpotent for any upper value subscheme (L, d) of (ID, d). On the other hand

if (L, d) is of one of the forms (a)―(g) except the poset (N, 4)* then by [3]

and [11, Corollary 3.3] the hereditary artinian Pi-ring DL is not right pure

semisimple. Hence by [8, Theorem 6.3] thejacobson radical of mod(DL) is not

indecomposably right T-nilpotent. This is a contradiction because one can easily

show that for any such value scheme (L, d) the category modsp(Di) is cofmite

In mod(Di) in the sense that all but a finite number of indecomposable modules

in mod(DL) belongs to modsp(DL). Now suppose that (L, d) is the poset (N, 4)*.

Applying the Nazarova-Rojter differentiation procedure to (JV, 4)* in a finite

number of steps we get a poset of width >4. This means that there exists a

representation equivalence A―>modsp(A) where A is a full additive subcategory

of mods-o(-Dz,) and A is a hereditary Pi-ring of the extended Dynkin type

^H_____ . It follows that the Jacobson radical of the category

modsp(A) is indecomposably right T-nilpotent. On the other hand we know from

[3, 11] that A is not right pure semisimple and therefore by [8, Theorem 6.3]

the Jacobson radical of mod(A) is not indecomposably right T-nilpotent. This

is a contradiction because modsp(A) is obviously cofinitein mod (A).

Consequently, (ID, d) does not contain as an upper value subscheme one of

the value schemes (a)―(g) and it follows from [5, Theorem 2] (see also [13,

Theorem 3.1]) that modsp(D) is of finiterepresentation type. Moreover, it follows

from the proof of [14, Theorem 4.4] that End(Z) is a division Pi-ring for any
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indecomposable module Z in modsp(D). Hence, using the equivalence (*) and the

inductive assumption we easily conclude that R is of finite representation type

and that the endomorphism ring of any indecomposable module in mod(i?) is a

division Pi-ring. Then the proof is complete.
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