
TSUKUBA J. MATH.

Vol. 4 No. 2 (1980). 177-202

ON VARIOUS RELATIVE PROPER HOMOTOPY GROUPS

1 Introduction.

By

Zvonko Cerin, Zagreb

Dedicated to Mother Young

A large number of problems in geometric topology can be reduced to ques-

tions about homotopy properties near infinity of non-compact locally compact

spaces or proper maps between them. These properties were studied most suc-

cessfully under the following four notions of a homotopy for proper maps: a

proper homotopy ([2], [10], and [22]), a germ proper homotopy ([2] and [3]), a

weak proper homotopy ([7]), and a homotopy at oo ([4] and [5]).

The present paper is an introduction into a systematic study of the above

four types of homotopy for proper maps using the techniques of algebraic topo-

logy. The key idea in this paper is to associate to every pair (K, L) of connected,

(non-compact) locally compact, separable metric ANR spaces and a paper map a

of the ray [1, oo) into L certain groups which will correspond to the relative

homotopy groups in the ordinary homotopy theory.

The description of such groups for the germ proper homotopy was given by

Brown in [2]. Here we define those groups anew in such a way that their

analogues in the other three homotopy theories are apparent. In fact, we intro-

duce eleven different groups for the triplet (K, L, a) and study their most ele-

mentary properties and investigate how do they relate to various shape invariant

groups (inward, approaching, and fundamental) of compacta [20], [21].

In order to sketch our main results, in this introduction, we shall consider

only relative proper homotopy groups. The map a will play the role of a base

point and triplets {Un, Sn'＼ *) = (Dn X [1, oo), S^xtf., oo), {*} x [1, oo)) and

(Dn, Sn-＼ *)=(( 0 DnX{k})yJ*, Os^X^lU*, *) are two possible choices for
k=i k=i

a space which will play the role of the relative ft-cell(Dn, S71"1, *) in the defini-

tion of relative homotopy groups. We identify {*} x[l, oo) and [1, oo) and denote

by PAD71, Sn~l; K, L) the collection of all proper maps f: (Dn, Sn~l)->(K, L)
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which agree with a on *. Let nn{K, L, a) be the set of all equivalence classes

under the relation of proper homotopy rel * on Pa(Dn, S71'1;K, L). For n^2, it

is possible to define a group operation on 7zn{K,L, a) by multiplying restrictions

of representatives on each relative n-cell (Dn, Sn~x,*)x {k} in (Dn, Sn~x,*). By

replacing (Dn, Sn~＼*) with (nD, S11"1,*) we similarlyintroduce groups xn{K,L, a)

(n>l) and a pointed set Ki(K, L, a). The group rcn(K, L, a) {nn{K, L, a)) is

called the n-th relativediscrete(continuous) proper homotopy group of (K, L) at a.

Motivated by Hu's paper [12], we firstshow in §2 that groups nn{K, L, a)

and nn(.K, L, a) are naturally isomorphic to the n-th relative homotopy group of

pointed pairs S(K, L, a) and I(K, L, a), respectively, associated functorially to

(K, L, a). From this observation we see that every statement about relative

homotopy groups has an analogue about both relative discrete and relative con-

tinuous proper homotopy groups. Then we show how to compute 7tn(K,L, a)

from relative homotopy groups of complements of an exhausting sequence of

compacta in K.

In §3 we prove that for every pointed pair (X, A, x) of compact metric

spaces there is a naturally associated pair of contractibe Q-manifolds (M(X), M(A))

and a proper map a : *-*M(A) such that Quigley's inward group In(X, A, x) and

approaching group Jn(X, A, x) [21] of (X, A, x) are naturally isomorphic to

■Kn(M(X), M(A), a) and %n{M{X), M(A), a), respectively. Borsuk's fundamental

group Fn(X, A, x) of (X, A, x) [21] is naturally isomorphic to the relative limit

group nn(M(X), M(A), a) of {M(X), M(A)) at a defined as the inverse limit of an

inverse sequence of relative homotopy groups of complements of an increasing

sequence of compacta in M(X) (see §2).

By combining results in sections 2 and 3 it follows immediately that every

statement about relative homotopy groups has an analogue about both inward

and approaching relative groups of pointed pairs of compacta.

In §4 we show that for n^3, any pair (K, L) of connected, locally compact,

separable metric ANR spaces, and a proper map a: *->L there is an exact

sequence

0 ―> Kn(K, L, a)

:n

J k

■kJK, L, a)

Id-sh^

nV

■Kn(K, L, a)

dn

*

%n-x<,K, L, a) ―-> 0

Kn-iiK, L, a)

connecting the n-th and the (n-l)-st relativelimit group of (K, L) at a.

Finally, in §5 we introduce the notion of a {(Dn, S71"1,*)}-movable at oo

triplet(K, L, a) and show that on such tripletsthe homomorphism Id-sh in the

above sequence is an epimorphism.
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In view of §3 our theorems in §§4 and 5 generalize the principal results of

r9.11

2. Various relative homotopy groups.

We shall consider only triplets (M, Mu Mo) of connected, locally compact,

separable metric ANR spaces such that MoCMjCM and Mo and M2 are closed

subsets of M.

A map is called proper if the counter-image of each compact set is compact.

On the collection P(M, Mlt Mo; N, Nlf No) of all proper maps between triples

(M, Mlt Mo) and (N, Nlt No) (i.e.,proper maps /: M-*N with /(M^CATj and f(M0)

CiV0) that agree on Mo we can introduce eight equivalence relations =, IT, p, x,

=°°,TV, p°°,and tT as follows. For /, ge P(M, Mu Mo; N, Nlt No),

f―g iff maps / and g are identical,

fUg iff maps / and g are homotopic rel MQ (i.e.,there is a map H: (MXI,

MjX/, M0YsI)->(N, Nu No), where /=[0, 1] is the unit interval,such that H0=f,

H^g, and Ht＼Mo=f＼Mo=g＼Mo for all *≪=/),

/jo^ iff maps / and ^ are weakly proper homotopic rel Mo [7] (i.e.,for

every compactum B in N there is a compactum
^4

in M and a map //:(Mxl,

M2X/, M0Xl)MN, Nu No) with H0=f, H1=g, Ht(M-A)dN-B, and//£|M0=

/|Mo=^|Mo for all fe/),

/7r^ iff maps / and g are properly homotopic rel Mo (i.e.,there is a proper

map H: (Mxl, M,Xl, M0Xl)^(N, Nlf No) such that HQ=f, Hi=g, and Ht＼M0=

f＼M0=g＼M0 for all t&I),

f=°°g iff maps / and g have the same germ [2] (i.e.,there is a compactum

4 in M such that /IM―^glM―4),

/II00^ iff maps /and ^ are germ homotopic rel Mo [2] (i.e., there is a

compactum A in M such that (f＼M― A)Jl(g＼M― A)),

f p°°giff maps / and g are homotopic at oo re/ Mo [4] (i.e.,for every

compactum B in N there is a compactum A in M and a map H: (M―A, Mx ―A,

M0-A)Xl->(N-B, Nx-B, No-B) withH0=f＼M-A, Hi=g＼M-A, and Ht＼M0-A

=f＼M0-A=g＼M0-A for all tel), and

f ~nTg iff maps / and g are germ proper homotopic rel Mo [2], [3] (i.e.,

there is a compactum A in M such that (f＼M― A) tz(g＼M― A)).

The obvious inclusions (denoted by arrows) among these relations are indi-

cated in the diaexam below. In general none of the arrows can be reversed.
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n >n~

! I

P * p~

I

1

The following simple proposition shows that the first three arrows in the

above diagram can be reversed when N and N* are contractible.

Proposition. 2.1. Let f, g<EP(M, Mu M0;N, Nu No) where N and Nx are

contractible locally compact separable metric ANR spaces and let i?e {IL p, ^1-

Then fRg iff f R~ g.

The equivalence class of /e P(M, Mlt Mo; N, Nu No) with respect to the rela-

tions ==°°,n, IT, p, p , ic, and jt°°are denoted by /, II(/), XT(/), pif), pm(f),

7i{f), and 7r°°(/),respectively.

In order to define our relative homotopy groups we need a triple that will

play the role of a triple (Dn, Sn~l, *), consisting of the unit n-disc Dn, its boun-

dary (n ―l)-sphere S "1 and a point *eSn~＼ in the ordinary homotopy theory.

Two most useful choices for such a triple are (Dn, Sn"＼ *)=(DnX[l, oo),

SB-]X[1, oo), {*}x[l, oo)) and its subtriple (Dn, Sn~＼ *) = ((
0 Dn

X ＼k})xJ %

(Osn^x{^})w*, *)

These two possibilitiesimply that we can introduce twelve types of relative

homotopy groups for a pair (K, L) of connected, locally compact, separable metric

ANR spaces and a proper map a : *-≫Las follows. Let Pa(Dn, Sn"1; K, L) denote

the collection of all proper maps /: (Dn, Sn'＼ *)―>(K,L, a(*)) which agree with

a on *. The set Pa(Qn, §""'; K, L) is defined similarly. Now, for any /?e

{II,II00,p, p , 7i,71°°},let Rn(K, L, a) be the set of all i?-c!asses of maps in

Pa(Dn, Sn~l;K, L) and let Rn(K, L, a) denote the set of all i?-classes of maps in

Pa(Dn, Sn-X;K, L).

When n^2, we can define group operations in Rn(K, L, a) and Rn{K, L, a)

coordinatewise. More precisely, let vn :{Dn, Sn'＼ *H(Dre, Sn-＼ *)V(DB, S""1, *)

be a fixed continuous comultiplication mapping of the homotopy cogroup

(Dn, Sn~＼*). Then the element R(f)+R(g) in Rn(K, L, a) is represented by a

proper map h: (Dn, Sn~＼*)->(K, L, a(*)) where h＼*=a and for each k^N (N
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denotes the natural numbers), h＼{Dn, Sn~＼*) X {k} = (f＼{Dn, Sn~＼*) X {k},

g＼{Dn, Sn~＼*)x{k})o(vnxid{k)): {Dn, Sn~＼*)x{k}^(K, L, a{k)). The element

R(f) + R(g) in Rn(K, L, a) is similarlyrepresented by a proper map H: (Dn, Sn"＼ *)

-~*{K,L, a{*)) where H＼*=a and for each fe [1, oo),i/|(£)B,S""1, *)x {*} =

(f＼{Dn, Sn-＼ *)x{*}, g＼(Dn, Sn~＼*)x{t})o(pnxidit}). It is easy to check that

in these definitionsR(f) + R(g) depends only on R(f) and R(g) and not on the

choice of proper maps / and g and that with thismultiplications Rn{K, L, a) and

Rn(K, L, a) are groups (and abelian for n^3).

Note that groups En{K, L, a) and Rn(K, L, a) for Re. {II°°,p°°,;?"} depend

up to an isomorphism only on the germ a of a. Moreover, for those R, Rn{K, L, a)

depends up to an isomorphism only on the end of L determined by the map a

[1]. On the other hand, groups Rn(K, L, a) and Rn{K, L, b)(and, similarly,groups

7tn(K,L, a) and rcn(K, L, b) defined below) need not be isomorphic even though a

and b might represent the same end of L (the complement in the Hilbert cube Q

of a Z-set copy of a space X constructed by Keesling [15] gives an example of

this phenomenon).

We have defined twelve groups but there are only at most ten different

groups among them because by (2.2) below groups En(K, L, a) and %1{K, L, a),

are identical with groups pH{K, L, a) and pn(K, L, a), respectively.

Proposition 2.2. Proper maps f, g^Pa(Dn, S71"1;K, L) are weakly proper

homotopic (homotopic at oo) rel * iff f and g are proper homotopic {germ proper

homo topic)rel *.

Proof. Let Co―0cC!CC2C ･･･ be a sequence of compact subsets of K such

that ＼JCt=K and let fog. Then there is a sequence n(l)―l<n(2)< ･･･ of

natural numbers such that for every m, n(z)^;n<n(z+l), there is a homotopy

Hm: {{Dn, Sn~＼*)x {m})X/―(/f-Ci-!, L-d^) rel(*, m) betv/een /|(Dn, Sn-＼ *)

X{m} and ^|(£>n,S71"1,*)X {m} (z= l, 2,■･･)-The map //:(DB, S""1, *)X/->

(K, L, a(*)) which agrees with #m on (Z)nX{m})X/ and on each *X {t} (t&I)

with a is a proper homotopy rel * joining / and g. Hence, f p g iff / tzg because

we already observed that f tcg implies f p g. The proof for the other case is

the same. The only difference is that in general we can not get n(l)=l.

Remark 2.3. The groups nZ{K, L, a) and TLn(K> L, a) were Introduced by

Brown ([2] and [3]) who called them the n-th relative proper homotopy group

Tcn(K, L, a) and the n~th relative repeated homotopy group 7vn(K, L, a) of (K, L)

based at a, respectively. His description of these groups is easily seen to be
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equivalent with ours using the homotopy extension theorem (HET) [14, p. 117].

In order to have consistent terminology, we shall call nZ(K, L, a) the (n-th rela-

tive)discrete germ proper homotopy group {of (K, L) at a), JTn(K, L, a) the dis-

crete germ homotopy group, n^(K, L, a) the (n-th relative)continuous germ proper

homotopy group (of (K, L) at a), JI£(K,L, a) the continuous germ homotopy

group, and so on. However, for obvious reasons, we shall try not to use those

names too often.

Motivated by Hu's methods in [12] we shall now give another description of

groups Kn(K, L, a) and nn(K, L, a) which allows to consider these groups as

(singular) relative homotopy groups of certain pointed pairs functorially associated

to (K, L, a).

Let K be a connected, locally compact, separable metric ANR space and let

a : *―>K be a proper map representing the end e^EK of K and let a denote the

sequence (a(*, i))T=iin K. Let S be the subspace {0} W{l/n| n = l, 2, 3, ･･･} of

/=[0≫ 1]- The space of ail continuous maps s: (S, 0)-*(FK, e) (FK is the Freu-

denthal end-point compactification of K) such that 's~＼EK)=0 and the sequence

(s(l/0)f=i is equivalent to a [1] (i.e.,both sequences converge in FK to e), with

the compact-open topology, will be denoted by S(K, a) and called the tangent S-

space of K at a. Similarly, the space of allcontinuous maps p :(I, 0)―>(iTUoo,oo)

(EXJoo is the one-point compactification of K) such that /)~1(oo)=0≫with the

compact-open topology, will be denoted by I(K, oo) and called the tangent I-space

of K at cxd(see [12, p. 174]).

Let (K, L) be a pair of connected, locally compact, separable metric ANR

spaces and let a : *->L be a proper map. Then S(L, a) is a subspace of S(K, a)

and I(L, oo) is a subspace of I(K, <x>). The pointed pairs (K*, L*, sa) and

(K**, L**, pa), where K*=S(K, a),L*=S(L, a), sa :(S, 0)-+(FK, e)is a map given

by sa(0)=e and sa(l/i)=a(*, i) for i=l, 2, 3, ･-, K**=I(K, oo), L**=I(L, oo),

and pa: (I, 0)―>(KUco; oo) is a map given by pa(0)~°°and pa(t)=a(*, l/t) for

£e(0, 1], will be called the tangent S-pair and the tangent I-pair of (K, L, a)

and denoted by S(K, L, a) and I(K, L, a), respectively.

Lemma 2.4. The associations of the tangent S-pair S(K, L, a) and the tangent

I-pair I(K, L, a) can be considered as functors from the category of (pairs of)

connected, locally compact, separable metric ANR spaces with a fixed proper map

of * and proper maps respecting those maps to the category of pointed (pairs of)

topological spaces and continuous maps preserving base points.

Proof. Obvious.
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Theorem 2.5. The n-th (relative) discreteproper homotopy group functor 7tn

is naturally isomorphic to the functor 7in°S and the n-th (relative) continuous

proper homotopy group functor Kn is naturally isomorphic to the functor
7vnol.

Proof. We shall prove that functors nn and xncS are naturally isomorpic.

The proof for functors jrn and 7rno/ is similar.

Let K, L, a, and a be as above. Let a proper map f^Pa(Dn, Sn~x;K, L)

represent an element n(f) of xn(K, L, a). For each point d^Dn the sequence

(f(d, i))?=iis an admissible sequence in K (in L if d&S71"1) equivalent to a [1],

Hence, in a natural way, / determines a continuous map <p:(Dn, Sn~＼*)―*

S(K, L, a). We associate C^]e7rnS(/C, L, a) to n(f) and denote this correspon-

dence by tuc,L,ai. We shall show that t= t(.K>L,aiis an isomorphism and thai

for each proper map p: (K, L, a)-+(Kf, U, a') (i.e.,poa ―a') the diagram

7tn(K, L, a) > 7un(K', L', a')

(2.6)

commutes.

t(K,L,a) I I tlK'.L'.a-)

7rnS(K, L, a) > znS{K', U, a')
S(Ph

Claim 1. The function t is onto.

Proof. Let ＼_<p]e TtnS(K,L, a) be represented by a continuous map

(p:(Dn, S"-1,*)^S(K, L, a). Define a map f: (Dn, Sn^)xN->(K, L) by f'(d,k)

=<p(d)(l/k),for d(EDn and k^N, and extend / to a map /: (Dn, Sn~＼*)->

(K, L, a(*))such that/ and a agree on *. Clearly,t(7c(f))=[_<p].

Proof. Let /, g^Pa(Dn, S11'1;K, L) and assume that l<pl=t(n{f)) and [£]

= t{n(g)) coincide. Let l:(Dn, Sn~＼*)XI―>S(K, L, a) be a homotopy joining
<p

and <f>. Define H': l{Dn, S^xNlXl-^iK, L) by H'{d, k, s)=X(d, s)(l/k), for

d^Dn, k&N, and se/, and extend H' to a proper map H: (Dn, Sn~＼*)X/-*

(/C,L, a) so that //s agrees with a on *, for each se/. Hence, / and £ are

nrnnerlv hnmntnnir. re＼*.i.e. ir(f＼―ir((A.

Claim 3. The function Ms a homomorphism of groups for n^2.

Proof. Consider /, g<E Pa(Dn, S""1; K, L). Recall that the element n(f) + n(g)

in nn(K. L, a) is represented by a proper map h :(Dn, S71'1,*)^(K, L, a(*)) where
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h＼*=a and for each k(EN, h＼(Dn, Sn~＼ *)x {k} ==(f＼(Dn, S71'1, *)x {k}, g＼(Dn,

Sn'＼ *)x {^})o(ynxf(i[&!) (yK : (Dn, Sn~＼ *)-^{Dn, Sn~l, *)V(Dn, Sn'＼ *) is a fixed

continuous comultiplication mapping of the homotopy cogroup (Dn, Sn~＼ *)). But

it is clear that a map 1: (Dn, Sn'＼ *)-*S(/sT,L, a) associated by the above con-

struction to h is just {(p, (p)oyn; (D, S71"1, *)-+S(K, L, a) where (p and <p are asso-

ciated to /and g, respectively. Thus £(jr(/)+7r(g))=£(7r(/))--H(7r(,g"))and Ms a

homomorphism.

Claim 4. The diagram (2.6)is commutative.

Proof. If fePa(Dn, Sn~l;K, L), then p#(n(f)) is represented by a proper

map pof(=Pa,(Dn, S11'1;K', U). Now, tac>,L>,ao°P$(x(f))is represented by a

continuous map <p:(Dn, Sn'＼ *)― S(K', U, a) defined as <p(d)Q./k)=pof(d, k):

d^Dn, k<EN. We can view <p as S(p)*(<p),where <p:{Dn, Sn~＼*)->S(K, L, a) is

defined by <p(d)(l/k)=f(d, k). But, clearly,t<p]=tlK,L,a>(n(f)).Hence, S(p)*tlK,L.ai

= tcK>.L-.a>)°P*-

Remark 2.7. By the similar method one can prove that the diagram

3

Kn(K. L. a) ―> 7Tn-i(L.a)

tlK,
L, a)

^
V

8

KnS(K, L, a) ―> KnSiL, a)

commutes for every triplet(K, L, a) (the boundary homomorphism d is defined

coordinatewise). Hence, homotopy systems JCs=(k, d, #) and JCs=(koS, k°S, #)

are equivalent in the sense of [13, p. 121]. Similarly, homotopy systems Mi =

{■k,d, #) and M'i={koI, izolt #) are also equivalent. It follows from these equi-

valences that for every statement concerning (relative) homotopy groups there is

a corresponding statement about (relative)discrete and continuous proper homo-

topy groups. In fact, for every homotopy invariant functor 3 on the category of

(pointed) topological pairs we can define proper homotopy invariant functors 3

and 2 by 9f=£FoS and 2=£Fo/. In particular, there are discrete proper homo-

logy and cohomology groups Hn and Hn and continuous proper homology and

cohomology groups Hn and HJ1.

Remark 2.8. Observe that the groups iznl(K, L, a), HnI(K, L, a), and

HnI(K, L, a) are precisely Hu's (relative)local homotopy group An(K＼JcofLWoo,

oo; pa) of (A'Woo, LWoo) at oo based at the path pa, (relative)local homology

group Ln{KSJoo, LWoo, oo) of (K＼Jco}LWoo) at oo, and (relative) local cohomo-
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logy group Lre(ivWoo? LVJoo, oo) of (/(Woo, LWoo) at oo, respectively (see [12, p.

175 and p. 199]).

We continue with a description (similar to Brown's description of groups

7tn(K, L, a) involving the functor 3? [2], [11]) of a method for computing dis-

crete groups of a triple{K, L, a).

Let (Gij) be an infinite diagram

I

I

Gis

I

G21

!

G22

I

G23

I

!

G33

of groups and homornorphisms (indicated by arrows). Let 2(G^) denote all

sequences (gi,ac≪)?=iof elements of the above groups, gi,k<.i->^Gi,k<.n,such that

k(i)―>ooas i―*oo. If g=(gi,kco) and £'=(£*,*.≪))are two sequences in 2(G^-),

we write

^11^' iff for every ieiV there isl(i)^N such that gi'tw^Q?! *'≪))to＼where

guHi) is the image of gi.kw in the group Giti≪) under the composed vertical

homomorphisms in the diagram (and, of course, l(i)^k{i), k＼i)).

g IT0 gf iff there is io^N such that for every i^i0 there is an l(i)satisfying

the above condition.

g ftg' iff there is a sequence (/(0)?=i in N converging to co such that

gli%>=(gi,k'u>)Ui> for each i<=N.

g ft00g' iff there is an io&N such that for every i^i0 there is l(i)^N with

lim/(i)=oo and gZV≪,= (gi k<u,)Ui)■
iii0

It is easily seen that these are four equivalence relations on 2(Gtj). The

equivalence class of g―(gi,kco) under n is denoted by Jl(g) and the set of all

equivalence classes by ri(G^). If EK^), IK^O^IKG^), select representatives

Ffejio), ^/=(^I,*'c≪) so that k(i)=k'(i) for each i. Then define IK^O-IK^')

=Tl((gi,kco-gi.ku)))' This gives a well defined group operation on JKGtj).

Clearly, n can be considered as a functor from the category of diagrams (Gij)

into the category of groups (abelian groups if all groups Gi; are abelian). The

analogous definitions and statements hold also for the remaining three relations

(functors).

(2.9) Let (K, L) be a pair of connected, locally compact, separable metric
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ANR spaces,let {C
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k) be a sequence of compact subsetsof K such that Cj―0,

C*Clnt(C*+1), and WC

i =l
k=K. and let a : *-^L be a proper map. For each k. let

Bk be the component of L―{Lr＼Ck) which containsa(*,t) for allsufficiently

large £e[l,oo)and let Ak be the component of K―Ck containingBk. Choose

an increasing sequence v={l―v1<v2<vz< ･･■}such that a(*,t)e.Bk for all t^

vk+1. Let (7zn)vdenote the followingdiagram of groups (n^2).

7tn(K, L,

*

a(l)) Tcn(K,L, a(v8))-
f !

1

*

I

XniAi, B

!

*

1

-7zn{K,L, a{v,))-
＼

i, a(vt)) nJAu Bu a(vs))■■■
I

･･■7Tn(AZ) B2,

I

a(vs))

with verticalhomomorphisms induced by inclusionsand with * replacinga group

which agrees with the one above it.

Theorem 2.10. For each i?<= {JX 11°°,x> k°°}, R((xnX) is naturally isomorphic

to RJK, L, a).

Proof. We shall consider only the case R=k. The proof for the other

groups is similar. We shall also not discuss the meaning of the word natural in

the statement of the theorem (see [2] for some indications as to what it should

mean) in order to keep the paper at reasonable lenght.

Let a proper map /e Pa(Dn, S11'1; K, L) represent an element n{f)^xn(K, L, a).

For each integer i, let ki~k{ be the maximum of numbers k such that

(f(DnX{i}), fiS^X {i))(Z(Ak, Bk) and a([i-l, oo))cfl*. Then the map /,=

f＼(Dn, S71'1, *)x {i} : (Dn, Sn~＼ *)X {i}~^(Aki, Bki, a(i)) determines an element gt,ki

of 7tn(Akp Bki, a(i)). Since / is a proper map, {(gt, ki)} e2((7rn)J. Let a denote

a map which associates ft((gi,kt))^ fc((izn)v)to rc{f). It is easy to check that a is

an isomorphism.

There is a one more group (called the limit group) associated to a triple

(K, L, a) that we shall need. It is defined (with the above notation) to be the

inverse limit of the inverse sequence

7in(K, L, a(l)) <― nn(Alt Blt a(v2)) <― 7in(A2, B2, a(vs)) <

(where bonding homomorphisms are induced by inclusions followed by the change
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of a base point along the path a|[vn_i, vnD and it is denoted 7tn{K, L, a). The

group Kn{K, L, a) does not depend (up to an isomorphism) on the choice of

sequences {Ck} and v (see [2], [23], and (4.4) below).

There are some interesting homomorphisms between groups that we denned

which we describe now.

With the notation from (2.9) and the proof of (2.10), for a proper map /e

Pa(Dn, S"-1; K, L) and every i^2, let fti: (Dn, S71"1,*)X {i-l}-+(Akt, Bki, a(i-l))

be a map representing (a%)~＼[_fiX)^Kn(Aki,Bki, ai.i―1)),where Lft]^7cn(Aki, Bkp

a(i))is a homotopy class determined by a map ft and a%: izn(Aki, Bkp aii―l))

-≫jcn{Aki,Bki, a(ij)is the isomorphism induced by the path al~a＼＼_i―1,f＼.The

maps {/?}
=i determine

a proper map f*<E Pa(Dn, S11'1;K, L). It is easy to

check that for every R& {U, U , p, p°°,7t,x°°}the map s/i£:/?,(/£,L, a)->

Rn(K, L, a) which maps R(f) into R(f*) is well defined and is a homomorphism

of groups (called the shift operator [2]) (n^2).

The second homomorphism 3r (the boundary operator) maps Rn{K, L, a) into

Rn^x{K, L, a) and is defined as follows. Let /e Pa(Dn, S71"1;A",L) represent an

element R(f)^Rn{K, L, a). Then 3&R(f))=R(£)<=Bn-i(K, L, a) is represented

by a map g-e Pa(Dn~＼ Sn~2;K, L) constructed in the following way. We regard

each relative n-cell CD", Sn"＼ *)i=(Dn, S71'1,*)x {i} in (Dn, Sn~＼*) as the cone

C(Dn~1)iover the (n ―l)-cellsuch that the intersection of C(Dn~1)i with the ray

* is precisely its vertex vt. Let /■(i^l) be a map of (CCD""1)^ Bd{C{Dn'l)l), vt)

into (/C,L, a{i))homotopic (in (Aki, Bki)) to fi=f＼C(Dn"1)i such that /J maps the

segment [y^, (*, 1)], where *<^Sn~2aDn~＼linearly onto the segment a([i,z+1]),

and it maps the base of C(Dn'1)i into the point a(i+l). Let the map g=5({/J})

map the horizontal t-section of Dn~lx[i, i+1] in the same way as f't maps the

^-section of C(Dn'l)i, for every z>0 and t&I.

Finally, the homomorphism rg: Rn{K, L, a)-*Rn(K, L, a) (called the restric-

tion operator) takes R(f), feiPn(Dn, Sn~l;K, L), into R(f＼(Dn, S71'1,*)).

3. Connections with inward, approaching, and fundamental groups.

Now we shall relate Quigley's inward groups In(X, A, x) [21] of a pointed

pair of compact metric spaces (X, A, x) with discrete proper homotopy groups of

a certain pair of contractible(^-manifolds and show that his approaching groups

rcn(X, A, x) and Borsuk's fundamental groups xn(X, A, x) are in a similar way

related to the continuous proper homotopy groups and the limit homotopy groups,

respectively, of the same pair of (^-manifolds.

Consider the pointed pair (X A, x) of compact metric spaces as a subset of
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the Hilbert cube Q and let (Ni, Mi) be a decreasing sequence of compact Q-

manifold neighborhoods of (X, A) in Q such that (Nu A41)=(Q, Q) and (~＼(Nt, Mi)

= (X, A). Let H(X)=N1x{l}U{(g, t)＼q<=Nitl/i^t^l/(i-l), i>0}UXx{0}, and

H(A)=M1x{l}U{(qf t)＼q<=Mitl/i^t^l/(i-l), i>0}UAx{0}. Let H{X, A) be

the pair (H(X), H(A)). We shall identify (X, A, x) with the triplet(Ix {0},

AX {0}, {x} X {0}) in H(X, A). Let a : *-+H(A) be defined by a(t)=(x, l/t), for

fe*=[l, oo). Finally, denote the pair (M(X), M(A)) by M(X, A), where M{X)

―H{X)-X and M(^)=//(.4)-y4. Observe that H{X, A) is a pair of Hilbert cubes..

MiX, A) is a pair of contractible Q-manifolds, X is a Z-set in H(X), A is a Z-set

in M.4) T81. and a is a orooer mao of * into M(A).

Remark 3.1. The reader familiar with the description of the strong shape

category in [9] can easily check that M can be considered as a functor from

the strong shape category (of pointed pairs of compacta in Q) into the proper

homotopy category (of pairs of ANR's pointed by proper maps of *). It can also

be considered as a functor from the category ShFE (of pointed pairs of compacta

in Q) constructed by Kodama and Ono [16] (which is equivalent to Mardesic-

Segal shape category [19]) into the weak proper homotopy category (of pairs of

ANR's oointed bv Drooer maos of *).

Theorem 3.2. The Quigley's relativeinward group functor In [21], the func-

tor KnoM, and the functor 7Vn°M are naturally isomorphic.

Proof. We shall prove that /, and nn°M are naturally Isomorphic. The

isomorphism of nn°M and ifn°M follows from (2.1).

Consider the triple(X, A, x) as being embedded in H(X, A). If f :(/)", S71'1,*)

xN―(H(X),H(A),x) is an inward mapping [21], let f*: {Dn, Sn~l)xN->

(M(X), M(A)) be defined as follows. For a point d^Dn and a natural number

k&N, $*(d, k) is a point of M(X) whose (^-coordinate is equal to the (^-coordinate

of $(d, k) and whose /-coordinate is the maximum between 1/k and the /-coordi-

nate of q(d, k). Then f* extends to a proper map f *e PJMn, S""1; M(X), M(A)).

Let t<;x,A,x-)(L$J)=n(t;**),where [£]is the element of In(X, A, x) represented by

$ and ;r(£**)is the element of xn(M(X), M(A), a)=7zn(M(X, A, x)).

Claim 1. The function t=t(X,A,^ is onto.

Proof. Let fePa(Dn, Sn~l;M(X), M{A)). The map / restricted to DnxN

is an inward mapping from (Dn, S71'1,*) into (X, A, x) except that base points

are not preserved. Hence we must modify / by shrinking f(*)=a(*) to a point.
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In order to do this,let {t/JtU be a decreasing sequence of open neighbor-

hoods of x in Q such that UidNi, Ui+1(ZUi+1c:Ui and assume also that Ni+1C.

Int NiCNi, for each z>0. Now, construct a map 2: H(X)-*I such that X is 1 on

(N1-U1)X{1}1 1/2 on Bd(U2)x[l/2, l]W(7V2-f/2)X {1/2}, 1/3 on Btf(f/s)x[l/3, 1]

yj(N3―Ua)X {1/3}, and so on and is interpolated continuously in between. Observe

that X-＼0)={x}xI(ZH(X)

Let a map /: (Dn, S71'1,*)xN-*(H(X), H(A), x) has at a point {d, k)^DnxN

as the value the point of H(X) whose Q-coordinate is the Q-coordinate of f(d, k)

and whose /-coordinate is the minimum between X{f{d, k)) and the /-coordinate

of f{d, k).

It is easy to check that £=/ is an inward mapping from (Dn, Sn~＼*) into

(X, A, x) and that $** and / are proper homotopic rel *. Hence, KLO―^(/)-

Claim 2. The function t is one-to-one.

Proof. Take inward maps £, -q:{Dn, Sn~＼ *)xAr-(if(I), H(A), x) and assume

that £** and rj** are properly homotopic rel * via a proper homotopy H: (Dn, S71'1,*)

Xl-+(M(X), M(A), a). Let H be obtained from H by the above construction.

k), for (d, k)^DnxN, has the ^-coordinate equal to the Q-coordinate

t-(d, k) while its /-coordinate is min {max (u(d, k), l/k), 2(v(d, k),

max (fx(d,k), 1/k))}, where pt{d,k) is the /-coordinate of g(d, k). Just as in the

proof of Claim 1, it follows that Ho is inward homotopic to £. Similarly, Hx is

inward homotopic to rj. Since H is an inward homotopy between Ho and Hlt we

get that | and v are inward homotopic.

Claim 3. For n^2, the function Ms a homomorphism of groups.

Proof. Let ?, r):{Dn, Sn'＼ *)XN^(H(X), H(A), x) be Inward maps from

(Dn, Sn'＼ *) into (X, A, x) and suppose that C: Wn, Sn~＼*)XN-(H(X), H(A), x)

represents [6] + [>] in In(X, A, x). Then, for every k^N, C*=CI(£B, Sn~＼*)x

{^} is equal to the composition (^ft,rjk)°vn. If we now construct £**, 97**,and

C** we easily see that tt(C**)represents 7r(|**)+ 7r(j?**)in ?rn(M(X ^4.x)).

Claim 4. Let /: (X, A, x)-+(Y, B, y) be a continuous map and let F: (H(X),

H(A), x)-+(H(Y), H{B), y) be an extension of / such that F-＼Y)=X. If K]e

In(X, A, x), let /*([£])be the element of In(Y, B, y) represented by Fc£. Then

the diagram
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In{X, A, x)

L(X, A, x)

V

Kn(M(X), M(A), a)

commutes.

8
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/*

tlX.A.X)
|

I≫(Y, B, y)

8

KY, B, y)

(F＼M(X)h

Zn{M{Y), M{B), b)

Proof. A simple proofis leftto the reader. Observe that Claim 4 holds

also when the map / is replaced by an arbitrarymorphism of the strong shape

category of pairs [9] (or,what is equivalent,by a morphism of the fineshape

category of pairs[173) but the descriptionof /* and a morphism corresponding

to F＼M(X) above are more complicated.

Remark 3.3. Even though Quigley did not defineexplicitelythe boundary

homomorphism d:In{X, A, x)―*In-i(A,x) it is obvious how to do this. By the

similarmethod one can prove that the diagram

d
IJX, A, X) >/n-i(A X)

d

J

-<(A, x)

En(M(X), M(A), a) ―> Un-i{M{A), a)

commutes for every triple(X, A, x) and n>0. This implies that homotopy sys-

tems (/, 8, *) and (tvoM, 8, *) are equivalent [13].

In particular,since the long sequences of discrete proper homotopy groups of

the pair (M(X), M(A), a) and the triplet(M(X), M(A), M(B), a), where xe5 and

BcAaX, are exact (see (2.7)),we immediately get.

Corollary 3.4. The long inward sequences

i
J

･･･->In+1(X, A, x) ―* In(A, x) ―^ In(X, x) ―> In(X, A, x) ―^ In-i(A, x) - ･

and
8' i' y b'

- ->In+1(X, A) ―> /,(>!,B) ―> /n(Z, 5) ―> /n(X A) ―* 7^,(71, fl)- ■･■

are exact.

Remark 3.5. By combining Theorems (2.4) and (3.2)we see that the inward

group IJX, A, x) can be in a natural way considered as the (singular) relative
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homotopy group of SM(X, A, x), the tangent 5-pair of the triplet(M(X), M(A), a).

Let Jn(X, A, x) denote Quigley's n-th relativeapproaching group of {X, A, x)

[21] (his notation for this group was Kn(X, A, x) and thus is not convenient

here).

Theorem 3,6. The functors Jn, %noM, and tc^oM are naturally isomorphic.

Moreover, homotopy systems (/, 8, *) and (tcoM, d, *) are equivalent in the sense

of [13, p. 121].

Proof. It follows from (2.1) that KnM and tz^M are naturally isomorphic.

We shall now only indicate the proof that /, and 7cnoM are naturally isomorphic

because the detailsare either easy to check or are very similar to the ones used

in the proof of (3.2).

Let K{X) be the space obtained from H(X) by shrinking I to a point and

let p : H{X)^K{X) be the natural projection. Let K{X, A, x) denote the quadruple

(K(X), K(A), xo;pa) where K{A)=p{H(A)), xo=p(X), and pa:I^K(A) is a path

denned by pa(0)=x0 and pa(t)=poa(l/t) for fe(O, 1]. Recall(see (2.8))that the

group Kn{M(X), M(A), a) is isomorphic to Hu's relative local homotopy group

Xn(K(X), K{A), x0; pa) of (K(X), K(A)) at x0 based at the path pa [12].

Let £:(Dn, Sn'＼ *)-~>{H{X),H{X), x) be an approaching n-map [21]. By de-

finitionand the fact that H(A) is an ANR, we can assume that there is an re*

such that g(Sn~1X[r, co))aH(A). Define a new approaching ra-map £'by g'(d, t)

―^(d, t+r), for each (d, t)^DnX[_l, oo). Then $' is approaching homotopic to

^ (via the approaching homotopy which sends (d, t, s)gDbX[1, oo)x/ into

£(d,t+ sr)). Hence, we could assume from the begining that f maps S71'1into

H(A).

From $ we construct a map feFB(Dn, S""1; M(X), M(A)) as follows. For

d<^Dn and ?e[l, oo), %(d, t) is a point in H(X) with the Q-coordinate v(d, t)

and the /-coordinate ft(d, t). Let ^*(rf,t) be a point of H{X) whose Q-coordinate

is v(d, t) and whose /-coordinate is max (fi{d,t),l/t).

The composition pog*tEPpoa(Dn, S71'1;K(X)―{x0}, K(A)-{x0}) induces an

admissible map [12] £**:([D"x(0, l]]Woo, [S""^^, l]]Woo, oo)―(/C(Z),/f(^),ato)

such that £**(*,t)=poa(*, l/t)=pa(t) for each ^e(05 1]. We define £([£])=

lex,4,x)([?])to be [|**], where [^] is the element of Jn(X, A, x) represented by

| and [£**] is the element of An(K(X), K(A), x0; j&J represented by £** [12].

The necessary properties of t_are now verifiedin much the same way as

this was done in the proof of (3.2) for t. The only differences are that instead

of natural numbers we use the ray [1, oo) and that from H(X) we must pass to
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K(X) by composing with the projection p.

Remark 3.7. Since the groups nn(M(X), M(A), a) and nn(I{M(X), M{A), a))

are naturally isomorphic (by (2.4)),it follows that the relative approaching group

Jn(X, A, x) can also be in a natural way considered as the (singular) relative

homotopy group of IM(X, A, x), the tangent /-pair of the triplet{M(X), M(A), a).

Hence, for every statement about (relative)homotopy groups there is an analogous

statement about (relative) approaching groups. The corollaries below ((3.8) was

firstproved in [21]) are trivialapplications of this correspondence.

Corollary 3.8. The lone approaching sequence

d
i 8

-- -+Jn +1(X, A, x)―>Jn{A, X) ―>Jn{X, X) ―>Jn(X, A, x) ―* Jn-i(A, x) - ･-

of the pointed pair (X, A, x) of compacta is exact.

Corollary 3.9. The long approaching sequence

8' i' y d'

■~-+Jn+1(X,A)―>Jn(A, B)―*Jn(X, B)-^>Jn(X, A)-^Jn.1(A, B) - -

of the triple{X, A, B) is exact.

Let Fn(X, A, x) denote the n-th relative fundamental group of (X, A, x) [21]

or, equivalently, the inverse limit group of the inverse system

7cn(NltMit x) <― 7in(N2>M2> x) <― 7tn(N3fMit x) <

with bonding homomorphisms induced by inclusions. This group is usually denoted

7tn(X, A, x) and also called the n-th relative shape group of {X, A, x) but in our

paper that notation might be confusing.

THEOREM 3.10. The functors Fn and rtn°M are naturally isomorphic. More-

over, homotopy systems (F, 8, *) and (jtoM, o, *) are equivalent.

Proof. A routine proof is left to the reader.

4. The exact sequence.

In this section we shall show that for R=tu and R=7c°°and every triple

(K, L, a), the five terms sequence of groups and homomorphisms (w^3)

0 --> ker (Id-shl) ―^ Rn(K, L, a) ――^ Rn(K, L, a)

~
^>

Rn.rCK, L, a) -^ Im r%~"―> 0
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is exact. Then we shall prove that groups Im r＼,ker (Id-sh^), and 7cn{K, L, a)

are isomorphic for all n^3. In view of the results in the previous section, it

follows that Quigley's exact sequence from the w-th to the (n ―l)-strelative

fundamental group of a pointed pair of compacta [21] can be regarded as the

special case of the above sequence.

Let Id denote the identity homomorphism on the group Rn(K, L, a) and let

i≫be the inclusion of the kernel of Id-sh.R into Rn(K, L, a).

Theorem 4.1. For i?e {tc,tt00},every pair (K, L) of connected, locally com-

pact, separable metric ANR spaces, every proper map a : *-*L, and every ?x^3,

the above sequence of groups and honiomorphisms is exact.

Proof. We must show that the sequence is exact at the third and at the

fourth group. The exactness at other terms is obvious.

Claim 1. ker (d%)=lm {Id-sh%).

Proof. Let R{f)t=Rn(K, L, a). We shall show that if R(g)=R(f)-shTA(R(f))

= /?(/)-/?(/*) then d^R(g))=O^En-i(K,L, a). We can assume that R(g) is

represented by a proper map g'&Pa(Dn, Sn~l;K, L) such that the restrictiong'm

of g' onto C(Dw~1)m, has the property that g'm restricted to the lower half of

C(Dn~1)m is in the homotopy class of fm, g'm restricted to the upper half of

C(Dn~1)m is in the homotopy class ―[/m+i] (with the base point moved to a{m)),

g'n maps the middle section of C(Dn~~1)minto the point a(m+(l/2)), and g'm maps

the segment [_vm,(*, 1)] linearly onto the segment a([m, m + lj), for every m>0.

Observe that for each m>l, £({#*})IZ^xCm―(1/2), m + (l/2)] is null-homotopic

in the complement of any compact set in K provided m is large enough. By

applying the HET trice we see that B({g'i})＼Dn~1X[_m-(l/2)!m+(l/2)] is homo-

topic rel a(O-(l/2), m-f(l/2)]) to a map of DB-1X[m-(l/2), m+(l/2)] which

maps a pair (x, t)^.Dn"1X[_m―(1/2), m+(l/2)] into the point a(t),and that these

homotopies for B({^})|£>^1X[m-(l/2), w+(l/2)] and B{{g'i})＼Dn~1>i{_m+(1/2),

m+(3/2)3 agree on Dn~1X{mJr{l/2)}, for every m>l. Piecing these homotopies

together we see that o^(^(^))=^(5({^-}))=0GSre_I(/f, L, a). But then d%(R(g))=

R(B({g't}))=0 also for R^k .

Conversely, let i?(/)eker(5^). Then i?(B({/J}))=i?(c), where c^.Pa{Dn-＼

Sn~2;K, L) maps (rf,Oe-Dn~1X[l, oo) into a(t). Hence, there is a natural num-

ber X=XR and a proper map H: (D71'1,Sn~2,*)x[2, oo)xI-*(K, L) such that ^ = 1,

H0=B({fi})＼Dn-1X&, oo),i/^clZ?7-^^, oo), and #t(*, s)=a(*, s) for all tel

and s^/?. For every integer m^X, the restrictioni/jD^'^xCm, m + l]X {0}W
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Dn~1x {m, m + 1} X/ can be considered as representing the sum ―[gm] + [/m]

+ im+i,m([^+i]), where gm :(Dn, S""1, *)-(#, L, a(m)) and gm+1: (Dn, Sn"＼ *)-

(K, L, a(≫z+ l)) have images outside larger and larger compact subsets of K asm

increases, while fm+i,m: 7rn(iT,L, a(m-＼-＼))-^7tn{K,L, a{m)) is an isomorphism in-

duced by the path a from a(m + 1) to a{m) (in fact, we must consider these iso-

morphisms for complements of above compacta in K). Since H＼Dn~1X[_m, m + 1]

X {0}VJDn-1x {w, 7^+ 1} X/ extends to all of Dn~xX[m, m+l]x/ and this exten-

sion agrees with c on Dn~1X[m, m+l]X {1}, we conclude that ―[gmn + [/m]

+ *"m+i,m([gm+i])=0. Hence [/m] = [^m]―im+i.m(C^m+i]). From this it follows

that R(f)=(Id-sh%)(R(g)), where g^PJD71, S71'1;K, L) is any proper map which

agrees with gm on DnX {to} for every integer m^L

Claim 2. ker(rg-1)=Im(5S).

Proof. The inclusion Im(<5g)Cker OH"1) is clear from the construction of 3r,

On the other hand, if R(g)^ker(r^'1), then rg"1(i?(^))=0, i.e.,there is a repre-

sentative g(E:Pa{Dn~＼S"~2;K, L) of R(g) and a natural number X=XR,B such

that /Ls = l and gKD^xC/i, oo))^/)""1 is proper homotopic rel {*}x[2, oo) to

c＼(Dn~'[x[2,oo))/^^71'1- By applying the proper homotopy extension theorem [9]

we see that R(g) is represented also by a proper map f^PaiQ71'1, Sn"z; K, L)

such that/(Z)"-1X{w})=fl(m) for every m^N. Clearly, R(f)elm (8%) so that

R(g)<Elm(d%) because R(f)=R(g).

Remark 4.2. The above sequence is well defined also for n=2. In this case

Id-shR, Br, and rR are merely functions of pointed sets. The proof of (4.1) can

be applied to show that in this case the sequence is also exact.

Theorem 4.3. For i?e {p, p°°,tt,7t }, every pair (K, L) of connected, locally

compact, separable metric ANR spaces,every proper map a : *―*L,and every n=^3,

the subgroups ker {Id-sk%) and Im (rg) of Rn((K, L, a) coincide and are naturally

isomorphic to nn(K, L, a).

Proof. We shall prove that ker (Id-sh%)=lm(r%) and thatIm (rg) is isomor-

phic to n(K, L, a).

Claim 1. Im(r£)Cker (Id-sh%).

Proof. Let ge Pa(Dn, S71'1;K, L) represent an element /?(g)elm (r%). Then

there is a proper map Fe Pa(Dn, S71"1;K, L) such that g Rf where /=F| Dn.

Let us firstconsider the most complicated case when R―p. Let Co^dCidCzCZ---
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be an increasing sequence of compacta in K such that K= 0 d. Then there is

a sequence mo=Kmi<m2< ･■･of natural numbers such that for every m, mx-x

^m<mu there is a homotopy Hm :(Dn, S71'1,*)x {m}―(A"― d-x, L―d-u a(m))

between fm and gm (f=l, 2, 3, ･･･)･it is clear that the collectionof allhomotopies

H1, H2, ･･･ defines a proper homotopy between / and g. By applying the proper

homotopy extension theorem [9] it follows that there is a proper map Ge

Pa(Dn, S""1; K, L) with g=G＼Dn. Hence, i?(^)eker (Id-sh?). In the case R=pc"

we don't have homotopies H1, ■･■,H ^1 so that we can only conclude that there

is a proper map GeFal[7?lliOO)(DnX [m1; oo),S""1 X [mu oo); /f,L) such that

^K^xCtw!, oo))n^B=G|(Z)BxCm1, ))nDn. This is however sufficientto get

0°°(g-)eker(Id-shnp°°).The remaining cases i?=7r and R=x'" are handled simi-

larlv.

Claim 2. ker (Id-sh&Clm (rg).

Proof. We shall assume R=p and leave the other easier cases to the reader.

Let p(f)eker(Id-sh%). Then p(f)=sh$(p(f)). Using the method of the proof

of Claim 1, we see that every representative / of o{f) is proper homotopic to a

proper map f^Pa(Dn, S71-1; K, L) such that [/{]=(a#)"1(C/i+i]) where [/{] =

irn(Aiv Bki, a{i)), Zfi+il^7tn(Aki> Bkp a(i+l)), and a% is the isomorphism induced

by the path ai=a＼[i, i+1] (the notation is explained in §2) for z=l, 2, 3,

Hence, for every it=N, there is a map Hl: (£>re,Sn~＼*)X＼j,i+1]―(/f, L, a([f, i+1]))

such that //'| Dre X {i}=/,-, //'|Z)Bx {i+l}=/i+1, H＼*, t)=a(*t t) for alUe[i, z+1],

and the image of Z/1"is in ^4ni where nt-^oo as z-^oo. By glueing all maps //*

together we shall get a proper map F^Pa(Dn, Sn~l; K, L) satisfying F＼Dn=f.

In other words, p(/)<=Im(r£).

Claim 3. The groups Im (r£)and nn(K, L, a) are isomorphic.

Proof. If J?(g)elm (r£)is represented by a proper map g<= Pa(Qn, S"""1;K, L),

then there Is a proper map Fe Pa(Dn, 5""1; if, L) such that g Rf where f=F＼ Dn.

With the notation from (2.9) and the proof of (2.10), select a sequence m1=

I<m2<ms< ■■■of natural numbers such that (F(DnX[_vmi, i>mi+1J),F(Sn~1X[vm.,

ymi+1]))CI(^4f,5i) and m^i+l for each i=l, 2, 3,■･■. Hence, the map fUjr when

shifted into the point a(vi+1)determines an element of Kn(Ait Bu a(vi+1)) while

the collection of all maps fVyl.determines an element {fVm} of 7tn{K,L, a). The

function a which associates {Am } to R(g) is easily seen to be well defined and

is an isomorphism of Im (r≫)onto xn(K, L, a).
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Remark 4.4. As In (4.2) observe that versions of (4.3) for n―l and n=2

also hold.

By combining (4.1) and (4.3) we get the following.

COROLLARY 4.5. Under the assumptions of (4.1),the sequence of groups and

homomorphisms

}r Id-shl dl
0 ―> 7in(K, L, a) ―> Rn(K, L, a) >Rn(K, L, a) ―> £,_,(#, L. a)

,,71-1
Qr

£,_,(#,L, a)―>0

is exact, where j% and q% are obtained from i% and r＼,respectively,composing

with appropriate isomorphisms from (4.3).

The routine application of techniques in§3 implies that the following theorem

holds. It provides an alternative proof of a main result in [203 and shows that

Quigley's theorem is a consequence of Corollary (4.5).

Theorem 4.6. With the notation from the section 3, the ladder

0― Fn{X, A,x)

T

in
UX, A, X)

lhZ^In(X)A,x)-~

0―~jrn(M(X),M{A), a)~^-^Kn{M{X), M(A), a)

8n

fl?

Jn-^X, A, X)

I*

Tn-i
, K≫

xn-i(M(X)s M(A), a)

Id
■
sh*^7tJM(X),

M(A), a) ―･≫

Fn^{X, A, x) ―^0

gr1

Zn-MiX), M{A), a) ―^0

commutes.

In the above ladder the upper horizontal sequence is the sequence (0.2) from

[21] and the vertical arrows are (natural)isomorphisms from theorems (3.2),(3.6),

and (3.10). The definition of the natural isomorphism t=t^x,A,x) in (3.10)is

obvious provided we recall that X is a Z-set in the Hilbert cube H(X) [8].

The homomorphisms appearing in the sequence in (4.5) are natural so that

the reader will have no difficultyto prove the following.

Theorem 4.7. Let (K. L) and (K＼ U) be two tairs of connected, locally corn-
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pact, separable metric ANR's and let a : *―>L and a': *―>L' be proper maps. If

f:(K,L)->(K',L') is a proper map satisfying /oo=fl', ft^3, and Rge{7c, n°°},

then the ladder

0 ―* 7tn(K, L, a)

j

/*

Q~-*Tcn(K>, U,

Jit

a')

Rn{K, L, a)
*L^Rn(Kt

l, a)―-

RnW, L
/ Id-shl

/*

a') Z-*≫Rn＼& , L,

ol ql-1

―~>Rn~i{K,L, a) ―> 7in-i(K;L, a) ―> 0

-i Bn-iW, V, a') -^> nn-i(K', U, a')―* 0,

in which the vertical homomorphisms are induced, by f, commutes.

', a')-―

Remark 4.8. The ladders in (4.6) and (4.7) are well defined also for n―2.

Using remarks (4.2) and (4.4)it can be proved that in thiscase too they commute.

5. {{Dn, Sn-＼ *)}-movable at oo pairs.

ThivS last section Introduces the notion of a Cp0-mQvable at oo triplet (K, L, a),

where Cp0 is a class of pointed pairs of topological spaces, (K, L) is a pair of

connected, locally compact, separable metric spaces, and a : *―*L is a proper map.

We prove that for a {(Dn, Sn-＼ *)}-movable at oo triplet (K, L, a) (of ANR's) and

R<^{jt? n00} the function Id-shsi Rn(K, L, a)-^Rn(K, L, a) is surjective for each

nSsl. In view of Theorem (4.6) this result extends the principal theorem in [21].

As a consequence we get that for a {(Dn, S""1, *)}-movable at oo triplet (K, L, a)

the groups Rn^x{K, L, a) and Xn-^K, L, a) are isomorphic (n^3, J?e {re, jt00}).

By invoking Theorems (4.6) and (5.3) below it follows that the approaching group

Jn-i(X, A x) of a {(Dn, S"-1, *)}-movable (as defined in (5.2)) pointed pair (X, A, x)

of compact metric spaces and its fundamental group Fn-i.(X, A, x) are (naturally)

isomorphic.

Definition 5.1. Let Cp0 be a class of pointed pairs (Z, Zo> *) of topologicai

spaces, let (K, L) be a pair of locally compact separable metric spaces and let

a : *-+L be a proper map. We call the triplet(K, L, a) Cp0-movable at co pro-

vided that for every compact set BdK there is a compact set C containing B

such that for every compact set D in K, DzdB, and a map /: (Z, Zo, *)-->{K―C,
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C, a(*)n(L-Q) of (Z, Zo, *) in Cp0 there is a homotopy ft: (Z, Zo, *)-*(K-B,

B, a(*)r＼(L-B)) (O^^l) with /,=/ and fx(Z)c:K-D.

It is easy to verify that the above definition depends only on the germ of a

map a

Definition 5.2. A pointed pair (X, A, x) of compact metric spaces is said to

be Cp0-movable, where Cp0 is a class of pointed pairs of topological spaces, if for

some embedding of X into an ANR M the following holds. For each neighbor-

hood {U, U') of (X, A) in M (i.e., U is a neighborhood of X in M, U' is a neigh-

borhood of A in M, and U'CU) there is a smaller neighborhood (F, F') of (X, A)

in M such that for any neighborhood (W, W) of (X, A) in M and a map

/: (Z, ZO| *M7, F', z) of (Z, Zo, *) in Cpa there is a homotopy ft: (Z, Zo, *)->

(f/,£/',̂) (O^^l) satisfying fo=f, {fx{Z)J,{Zx))^{W, W), and /≪(*)=* for each

It can be proved that a pointed pair (X, A, x)of compacta is C"p0-movable iff

the above condition holds in every ANR space containing X.

Theorem 5.3. Lei Cp0 be a class of pointed pairs of compact spaces and let

(X, A, x) be a pointed pair of compacta with XdQ. Then (X, A, x) is Cp0-movable

iff the triplet(M(Z), M(A), a) is Cp0-movable at oo.

Proof. Assume that (X, A, x)dH(X), H(A), x) is 6'p0-movable. If B is a

compactum in M(X), then U=H(X) ―B is an open neighborhood of X in H(X).

With the notation from §3, select a natural number m>l such that Hm(A)=

{(q, t)＼q^Mu l/(i+l)St£l/i, i^m}VAx{0} is contained in U. Since Hm(A) is

an ANR [8], using the HET it follows that there is a neighborhood U' of Hm{A)

in U and a homotopy rt: U->U (0<t^l) such that rQ=idv, ri(U')(zHm(A) and

rt＼Hm(A)=id for all t^I. Then pick an open neighborhood pair (V, V) of

(X, A) in H{X) with respect to (U, U') an in Definition (5.2) and put C=

(H(X)-V)V(H(A)-V). Consider a map f:(Z,Z0,*)^(M(X)-C,M(A)-C,

a(*)r＼(M(A)-C)) of (Z, ZQ, *)eCp0 and a compactum D, DZ)R, in M(X). Let

W=H(X)―D. Now, repeat the argument used in the construction of U' and rt

to get an open neighborhood W of A in W and a homotopy gt: U-+U such that

qo=idUt qt(W)dW, qt{U')dU', and qt(W')ClHm(A) for all fe/. Also, since a=

a-({.oi~1(f(*))>oo))＼J{x} is a Z-set arc in M(A)―C, the natural collapse of a onto

the point x extends to a pseudo-isotopy lt: H(X)―>H{X), O^f^l, supported on

7' such that ?H(a)(Za, for each fe/ (see [6]). The choice of the pair (V, V)

implies that there is a homotopy ft: (Z, Zo, *)-+(C/,£/',x) such that /0=>?ic/ and

(/i(21 /1(Z0))C(PF, PT'). By changing only the /-coordinate in H(X), it is easy to



On various relative proper homotopy groups 199

see that there is a deformation Dt: (H(X), H(A))-+(H(X), H(A)) with Dt{W)d

W-X, Dt(U)CZU-X, Dt(a)da, and Dt=id on /(Z), for all 0<f^l. Let

gt: (Z, Zo, *)-*{U, U', a) (0^4 fSl)denote the join of homotopies ito/and rtoqtoft.

Then ZW*: (Z, Zo, *)->(M(X)-B, M(A)-B, a-{x}) connects / with a map

D.or.oq.of.iiZ, Zo, *)-+(M(X)-D, M(A)-D, a-{x}).

Conversely, suppose that the triplet(M(X), M(A), a) is ^-movable at oo.

Let (U, U') be an open neighborhood of {X, A) in H{X). For a compactum B~

(H(X)-U)V(H(A)-U') in M(X), select a compactum C, Ci)B, as in Definition

(5.1) and put V=H(X) ―C. Then, in the same way we did it above, pick an open

nighborhood V of A in U'r＼V and a homotopy rt: V-^V (Ofgf^Sl) such that

ro=id and rxiV^dHiA). We claim that the pair(V, V) meets our needs. Indeed,

take any open neighborhood (W, W) of (X, A) in H(X) and a map /: (Z, Z0; *)

-*(F, F', x) of a pointed pair (Z, Zo, *) in Cp0. Let D=(//(Z)-PT)U(//(^)-^

and let Dt be a deformation described above satisfying,instead of the last con-

dition there, the conditions Dt(H(X)―C)(ZM(X)―C, and Dt(V')^.V'-A, for all

0<a^l. By assumption, there is a homotopy ft: (Z, ZO, *)-*(M(X) ―B, M{A)~-B

a(*)n(M(A)-B)) such that f0=D1or1of and{f1{Z)!f1{Z0))(Z{M{X)-D> M{A)~D＼

d(W, W). The composition hoft is a homotopy in (U, U') connecting the maj

XioDioriOf with Xlof1＼(Z, Zo, *)-≫(W^,W^',x). It is clear that / and ^oD^r^j

are homotopic in {U, U') rel *. The join of the last two homotopies shows tha

the oointed oair (X A, x) is Cn-movable.

Theorem 5.4. Let (K, L) be a pair of connected, locally compact, separable

metric ANR spaces, let a : *->L be a proper map, let i?e {p, p°°;n, it00},and let

n>0 be an integer. If the triplet (K, L, a) is {{Dn, Sn~＼ *)}-movable at oo, then

the function Id-sh%: RJK. L. a)-^Rr,(K. L. a) is suriective.

Proof. By Proposition (2.2) it suffices to consider cases R=tc and i?=7r°°.

We shall prove the theorem only for i?=7r because the proof for R=n°°is similar.

Let C0―QciC1c:C2C: ･･･ be an exhausting sequence of compact subsets of K

such that d+i satisfiesthe condition from Definition (5.1) with respect to d, for

each z^O. Let x(f)^Tcn{K, L, a) and take a representative /e Pa(Dn, S""1; K, L)

of 7r(/). With the notation from (2.9) and the proof of (2.10),for a pair (_/,i) of

natural numbers, let /(i,≫,t:(Dn, Sn~＼*)-+{Akj-x,Bkrl, a{*)r＼Bkj-t)be a homo-

topy with ftj.i^o^fj=f＼(Dn, Sn'＼ *)x{j} and (/o-,o,!(£>"),/o,≪.^S""1),/0,≪.!(*))

CG4*,, 5*,, fl(i))when ^>1, and let/o-.≪.t;(Dn, Sn~＼*)^{K, L, o(*))be a homo-

topy with fcj.iy.o―fjand /^,≪>1(*)=fl(i)when kj=l.

We shalldefine,for each i>0, a continuous mapgi: {Dn, S""1, *)^(^4fti,Bk ,a(0)
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such that the obvious map g :(Dn, S71"1,*)―*(K,L, a) constructed from the sequence

{£*}£=!is in Pa(Dn, 571"1;K, L) and has the property that {Id-sh7i){n{g))=Ti(f).

First pick an integer m>＼ such that ki>l for all u^m. Let gm :(Dn,Sn~1,*)

―K/C L, aim)) be a constant map into a(m). For i>m, let gt: (Dn, Sn~＼*)―>

(i4ti, 5Af, a(0) represent the element -([/(m,≫.i]+ C/(m+i.≪.i]4-･･■+C/a-i,≪.i])

of 7tn(Aki,Bki, a(i)),and for l^i<m, let ^: (Dn, S71"1,*)~^(K,L, aii))represent

the element C/cm-i,o,i]+ [/cTO-2,o.i]+ ･･･+[/ci,≪,i]of 7in(K, L, a(i)). The routine

proof that a map ^ has the required properties and a necessary alternations for

the case R=k°° are left to the reader.

By combining Theorem (5.4) and Corollary (4.5), and Theorems (5.3),(5.4),

and (4.6),respectively, we get the following two results. The later improves

Theorem 2.18 in [21] because a pointed movable pair of compact metric spaces

is {(Dn, Sn"＼ *)}-movable, for all h>0, while there exist pointed pairs of com-

pacta that are {{Dn, Sn~＼*)}-movable, for each n>0, but that are not movable

(see [18]).

Theorem 5.5. Let (K, L) be a pair of connected, locally compact, separable

metric ANR spaces, let a : *―*L be a proper map, let i?e {x, kx}, and let nS^2.

// the triplet (K, L, a) is {(Dn, Sn~＼*)}-movable at oo, then the function

Or'-Bn~i(K, L, a)-*7in-i(K,L, a) is an isomorphism of groups for n>2 and a

bijection of pointed sets for n~2.

Theorem 5.6. // (X, A, x) is a {(Dn, Sn'＼ *)}-movable pointed pair of com-

pacta, for each n>0, then Jn(X, A, x) and Fn(X, A, x) are naturally isomorphic,

for all n^O.

Corollary 5.7. Let (K, L) he a pair of connected, locally compact, separable

metric ANR spaces and let a : *―*L be a proper map. If the triplet(K, L, a) is

{(Dn, S71"1,*)}-movable at oo for each n>0, then the lone homotopy sequence

d d

Kn+1(K, L, a) ―> Kn(L, a) ―> nn(K, a) -1-> xn(K, L, a) ―> JrB-i(L,a)

is exact.

Proof. Apply Theorem (5.5)and the fact that the above sequence is exact

for the groups rcnin the place of the groups nn (see (2.7)).

Corollary 5.8.

compacta, for each

// (X, A, x) is a {(Dn, Sn~＼ *)}-movable pointed pair of

n>0, then the Ions fundamental sequence F(X, A, x) of
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Proof. Apply (3.8) and (5.6).
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Remark 5.9. Throughout the paper we treated only the relativegroups.

With minor changes our definitionsand proofs apply also to absoluteversions.

We leave the necessary alternationsin the statements and their proofs to the

reader.
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