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We have derived a quantum distribution function in terms of cumulants that are expectation values
of a �anti�symmetric-ordered product of position and momentum fluctuation operators. A
second-order approximation leads a Gaussian distribution function, which is positive definite and
has proper marginals so that the Shannon entropy can be evaluated. © 2008 American Institute of
Physics. �DOI: 10.1063/1.2917799�

In 1932, Wigner first opened a new field of quantum
mechanics described in the phase space of position and mo-
mentum. He studied a function F�q , p�=��*�q+s /2���q
−s /2�exp�−ips�ds, which yields the proper quantum me-
chanical marginal distribution function.1 This function has
the remarkable property that it can be used to calculate a
class of quantum mechanical averages in the same manner as
the classical phase space distribution function is used to cal-
culate classical averages. Therefore, it has been applied to a
wide variety of fields such as quantum statistical mechanics,
quantum optics, and questions relating to the foundations of
a quantum-classical correspondence.2–4

As Wigner pointed out in his first paper, the function
cannot be considered a proper probability distribution, be-
cause it may take on negative values. For this reason the
function has a poor correspondence to the classical distribu-
tion function and is sometimes called a quasiprobability. The
Husimi function is the simplest class of Gaussian smoothing
of the Wigner distribution and leads to a non-negative
distribution.5 Although the Husimi function reveals a better
correspondence to the probability distribution function in
classical mechanics than does the Wigner function, the
former loses the property of the proper marginal distribution.
There are a few distribution functions that fulfill both the
non-negativity and proper marginal conditions as summa-
rized in Table 2 of Ref. 4.

Prezhdo et al. developed the quantized Hamilton dynam-
ics �QHD� approach by means of Heisenberg equations of
motion �EOM�.6–8 Recently we derived the coupled EOM of
cumulants as an extension of the QHD method.9,10 We have
called the method the quantal cumulant dynamics �QCD�. In
this Communication, the same scheme is applied to evaluate
the quantum distribution function and clarify its properties in
relation to physical meanings of cumulants.

First, we evaluate the density and the momentum density
based on the QCD method. We use dimensionless units such
that the Planck constant �=1 and consider the usual Hermit-

ian position Q̂ and conjugate momentum P̂ to be dimension-
less operators, which obey the usual canonical commutation
relations for a boson and the anticommutation relations for a

fermion. In the QCD theory, the central variables are an ex-
pectation value of the position operator with respect to a

given wave function �, q= �Q̂�, that of the momentum opera-

tor p= �P̂�, and cumulants11,12 of nth- and mth- order with
respect to the position and momentum operators �n,m, where
the bracket means �¯�= ���¯ ���. Hereafter, we will refer q
and p as the classical and �n,m as the cumulant variables. For
example, the lower-order cumulants are defined to be �2,0

	��̂2,0�= ��Q̂2�, �1,1	��̂1,1�= ���Q̂�P̂���, and �0,2	��̂0,2�
= ��P̂2�, where the subscript � denotes a symmetric-ordered
product for the boson �upper sign� and an antisymmetric-

ordered product for the fermion �lower sign�, i.e., �ÂB̂��

=1 /2�ÂB̂� B̂Â�, and �Â	 Â− �Â� is a fluctuation operator

of Â.
The density is defined as the expectation value of the

delta function, then we have

��q0� = ���Q̂ − q0�� = 
�exp��Q̂
�

�q1
���q1 − q0�


q1=q
,

�1�

where we have used the shift operator representation.9 There
seems a strange expression in Eq. �1�, because the delta func-
tion exists without any integral. It should be stressed here
that the expectation value of the shift operator is still a func-
tion of a differential operator. Since the differential form can
be transformed into an integral form via the Fourier transfor-
mation, this expression is formally valid. By means of the
density ��q0�, the expectation value of an arbitrary analytic

function f�Q̂� can be written as

�f�Q̂�� =� ��q0�f�q0�dq0. �2�

By using the cumulant expansion techniques,9,11,12 the
density can be expressed in terms of an infinite series of the
cumulant variables asa�Electronic mail: shigeta@comas.frsc.tsukuba.ac.jp.
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��q0� = 
exp��
n=2

�
�n,0

n!

�n

�q1
n���q0 − q1�


q1=q

. �3�

In the previous works,9,10 we have retained only second-
order cumulants. We assume that the density is approximated
by using the second-order cumulants and the exponential
function of the differential operator can be evaluated by the
Fourier convolution techniques9 as

�2�q0� = �2��2,0�−1/2 exp�− �q0 − q�2/�2�2,0�� . �4�

With the same manner, one can obtain an approximate mo-
mentum density as

�2�p0� = �2��0,2�−1/2 exp�− �p0 − p�2/�2�0,2�� . �5�

Both the second-order density and momentum density are
described as the Gaussian distributions centered at corre-
sponding classical variables and normalized to be unity.

Second, we proceed to evaluate the quantum distribution
function �joint density� based on the cumulant expansion
techniques. The joint density is defined as the expectation
value of the �anti� symmetric-ordered product of two delta
functions as follows:

��
joint�q0,p0� = ��̂�

joint�q0,p0�� 	 ����Q̂ − q0���P̂ − p0���� .

�6�

The expectation value of an arbitrary analytic function that
consists of �anti�symmetric-ordered products of the position

and momentum operators f��Q̂ , P̂� is written in terms of the
joint density as

�f��Q̂, P̂�� =� � ��
joint�q0,p0�f�q0,p0�dq0dp0

= I�f�q0,p0�� , �7�

where the corresponding c-number analytic function f�q0 , p0�
can be simply obtained by neglecting the �anti�symmetric
order. We also applied generalized cumulant expansion tech-
niques to the joint density, and then we have

��
joint�q0,p0� = 
exp� �

m+n=2

�
�m,n

m!n!

�m+n

�q1
m�p1

n��q1 − p0�

	��p1 − p0�

q1=q,p1=p

. �8�

Using the second-order cumulants and the classical vari-
ables, the second-order joint density can be evaluated to be

�2,�
joint�q0,p0� =


−1/2

2�
exp�− �0,2�q − q0�2 + 2�1,1�q − q0��p − p0� − �2,0�p − p0�2

2

 , �9�

where 
=�2,0�0,2−�1,1
2 . Since the expectation value of the

symmetric-ordered product is real, 
 must be positive, i.e.,
�2,0�0,2��1,1

2 . Note that this joint density is normalized to be
unity, i.e., I�1�=���2

joint�q0 , p0�dq0dp0=1. Since all the cu-
mulant and classical variables are real, the joint density is
positive-definite. It is easily shown that this joint density has
proper marginals

�2�q0� =� �2,�
joint�q0,p0�dp0, �10�

�2�p0� =� �2,�
joint�q0,p0�dq0. �11�

Furthermore, the joint density has the following boundary
conditions:

I�q0� = q , �12�

I�p0� = p , �13�

I��q − q0�2� = �2,0, �14�

I��p − p0�2� = �0,2, �15�

I��q − q0��p − p0�� = �1,1. �16�

By means of these five variables, one can evaluate any ex-
pectation value under the second-order cumulant approxima-
tion. The Hamiltonian of a one-dimensional system is given
by

H�Q̂, P̂� = 1
2 P̂2 + V�Q̂� , �17�

where the first and the second terms denote the kinetic and
the potential energy operator, respectively. The second-order
total energy is evaluated as

E2 = I�H�q0,p0�� = 1
2 �p2 + �0,2� + Ṽ�q,�2,0� , �18�

where we have used the abbreviation

Ṽ�q,�2,0� =� �2�q0�V�q0�dq0 �19�

for simplicity. To derive the expression, we have used the
proper marginal conditions. Note that the total energy is in-
dependent of �1,1.

In order to recognize the role of the cumulant variables,
we depict a unit ellipse of the exponent of Eq. �9�,
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1 =
1

2

��q − q0��p − p0��� �0,2 − �1,1

− �1,1 �0,2
���q − q0�

�p − p0�
� ,

�20�

in Fig. 1. Introducing a rotation matrix that diagonalizes the
above matrix, we have a rotation angle �, major semiaxis a,
and minor semiaxis b as follows:

� = 1
2 tan−1�2�1,1/��2,0 − �0,2�� , �21�

a = max� 1
2
���2,0 + �0,2�  ���0,2 − �2,0�2 + 4�1,1

2 � , �22�

b = min� 1
2
���2,0 + �0,2�  ���0,2 − �2,0�2 + 4�1,1

2 � . �23�

Due to the Heisenberg’s uncertainty relation, the expectation

value of ��Q̂�P̂��
2 becomes

�2,0�0,2 + �1,1
2 �

1
4 . �24�

Roughly speaking, this relation implies that �2,0 is inversely
proportional to �0,2. If we assume the minimal uncertainty
relation, i.e., �2,0�0,2+�1,1

2 = 1
4 , and �1,1=0, the density is

identical to that obtained in terms of a squeezed coherent
state. Thus, one can yield position and momentum squeezed
states by adjusting �2,0 and �0,2. When �1,1=0, the angle is
zero; i.e., the ellipse does not rotate with respect to the q-p
axis. The major and minor semiaxes depend on all cumulant
variables. In particular, as �1,1 and the difference between
�2,0 and �0,2 increase, the difference between the major and
minor semiaxes becomes larger.

Judging from the resultant density, the second-order cu-
mulant method is almost equivalent to several other methods,
such as the Gaussian wave packet method of Heller,13,14 the
Jackiw–Kerman approach,15 and the squeezed coherent state
approach of Tsue and Fujiwara,16 when we assume the mini-
mal uncertainty condition. The number of independent vari-
ables in those approaches for the one-dimensional problem is
4, while it is 5 in this approach. In particular, two of the three
cumulants have a clear physical meaning. �2,0 and �0,2 are
related to the width of the Gaussian wave packet in the po-
sition and the momentum space, respectively. We demon-
strated that �1,1 contributes both to the rotation with respect
to the q-p plane and the squeezing of the distribution.

Third, we consider a Liouville equation of the joint den-
sity operator up to the second order. Heisenberg EOM for the
expectation value of the joint density operator is given by

�̇�
joint�q0,p0;t� = − i���̂��q0,p0;t�,Ĥ�−� , �25�

where �¯ , ¯ �− is a commutator and Â�t�
=exp�iĤt�Â exp�−iĤt� is operator Â in the Heisenberg repre-
sentation. Since the joint density depends only on the classi-
cal and cumulant variables, in terms of the chain rule, we
have

�̇joint�q0,p0;t�� = �
X

Ẋ�t�
��joint�q0,p0;t�

�X�t�
, �26�

where X=q , p, and �n,m�m+n=2, . . . ,��. Within the second-
order approximation, substituting the EOMs of classical and
second-order cumulant variables9 in Eq. �26� leads to

�̇2,�
joint�q0,p0;t� = ��q�t� − q0��1,1�t� − �p�t� − p0��2,0�t��

	��q�t� − q0�Ṽ�2��t� − Ṽ�1��t��

	�2,�
joint�q0,p0;t� , �27�

where Ṽ�n��t� is the nth derivative of Ṽ�q�t� ,�2,0�t�� with re-
spect to q�t�. This EOM should be solved with the EOMs of
the classical and cumulant variables. Initial conditions are
obtained from the least quantum energy principle initially
suggested by Tsue and Fujiwara, which gives the exact
ground state energy and density for a harmonic oscillator.

Finally, we consider an entropy of the distribution func-
tion. Since the joint density devised here is positive definite,
one can define the entropy by means of the joint density. The
Shannon entropy is given by

S2
joint�t� = −� � �2,�

joint�q0,p0;t�ln �2,�
joint�q0,p0;t�dq0dp0

= 2.837877 +
1

2
ln 
�t� . �28�

The Shannon entropy is independent of time, because the
derivative of 
�t� with respect to time is identically zero. We
define here a Lagrangian that is a sum of the Shannon en-
tropy and the boundary conditions with Lagrange multipliers
�x as

L2 = S2
joint�t� + �

X

�X�I�X�q0,p0�� − �X̂�� , �29�

where X= �q , p ,�2,0 ,�1,1 , and �0,2� and X�q0 , p0� is the cor-
responding c-number function. It is easy to prove that the
entropy S2 is maximized subject to the constraints that the
joint density leads the expectation values given in Eqs.
�12�–�16�, since dL2 /d�2,�

joint=0 and d2L2 /d��2,�
joint�2�0. These

relations were previously demonstrated by Rajagopal as an
extension of the classical probability function with con-
straints on the quantum expectation values based on the
maximum entropy method.17 Thus, the joint density is a
variational solution that maximizes the Shannon entropy.

In this Communication, we restrict ourselves to treating
second-order cumulant variables for the one-dimensional
cases to show the basic properties that the distribution func-
tion in QCD exhibit. Of course, the method is applicable to
many-particle multi-dimensional cases. In particular, we per-
formed the second-order QHD simulation of fourth-order

FIG. 1. �Color online� A unit ellipse of exponent in second-order distribu-
tion function centered at �q0 , p0� for �1,1�0 �red� and �1,1=0 �black�.
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multidimensional ab initio vibronic Hamiltonians8 and found
that the obtained vibrational frequencies are in good accor-
dance with those obtained by the vibrational configuration
interaction method. Since the QCD with the truncated poten-
tial is equivalent to the QHD, both QHD and QCD are pow-
erful tools for simulating the molecular vibrations. Since
each vibrational mode is expressed as a different boson, the
total density is described as a product of densities of all
vibrational degrees of freedom. The other issues are how to
include higher-order cumulant variables, which leads to non-
Gaussian distributions, and how to take its statistics into ac-
count. These extensions will be done in future work.
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