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ON A CLASS OF REPRESENTATION-FINITE OF-3 ALGEBRAS

(Dedicated to ProfessorHisao Tominaga on his 60th birthday)

By

Ibrahim AsSEM and Yasuo IWANAGA

Let k be an algebraically closed field, and A be a finite dimensional k-

algebra. Then DA = Horn* (A, k) has a canonical A-A-bimodule structure. In

Hughes-Waschbiisch's work [13] on trivialextensions of tilted algebras, an in-

finitematrix algebra:

A =

A 0

DA A

DA A
0 ＼ ＼

plays an important role. So, it seems interesting to consider a 'finite'dimensional

^-algebra:

A(≫ =

Ao

0

0

Ax

D2 A2

Dt "At

for fel

(where Ai=A, Dt = aDAa for all i) with the ordinary matrix addition and the

multiplicationinduced from the canonical A-A-bimodule structure of DA and the

map DARaDA->0.

When A is hereditary, A(O is representation-finitefor some t iff so is AiO

for all t, iff so is the trivial extension T(A)=A＼XDA of A and iff A is of

Dynkin type. However, these equivalences no longer hold for iterated tilted

algebras. Actually, in Assem [1], Aa:> was studied in the case where A is an

(iterated) tiltedalgebra of Dynkin type, and in particular,it was proved that,

if A is iterated tilted of Dynkin type, then AC1) is simply connected, and con-

sequently, so is Aa:> for any t^l.

If the trivialextension T(A) is representation-finite,then, by Yamagata [22],

the (ordinary) quiver Qa of A contains no oriented cycle, and hence A must be

a homomorphic image of a hereditary algebra. However, an algebra A with an
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oriented cycle or a loop might have a representation-finite Acl). For instance,

let A be given by the quiver:

o o with Ba = O,

then Aw is representation-finite. Thus, a different class of algebras of finite type

from a trivial extension case is included in our consideration.

Finally, what we'd like to point out is that Ac" is a so-called QF-3 algebra,

namely the injective hull E(A(") of A(o is projective. Moreover, Aw has the

(left and right) maximal quotient ring:

^"HADAHomfA' ]

which is also QF-3 and, if the Auslander algebra of A is representation-finite,

then so is Q(AO)).

In §1, we shall give bounds for the global and the dominant dimensions of

A(o in terms of the global dimension of A:

l^dom. dim Ac≫^gl. dim A+l^gl. dim AC"^O + 1) gl dim A+t.

In §2, we assume that the algebra A has square-zero radical and give an

effectivecriterion to determine when ACJ) is representation-finite.

In §3, we consider the case where A is a Nakayama algebra, and, using the

listsof [12], [4], we give a criterionfor deciding when AC1) is representation-

finite. As a particular case, we shall determine the representation type of Aa)

when A belongs to a class of Nakayama algebras studied by Marmaridis in [15].

We shall use most of the notations of [1], especially,if the ordinary quiver Qa

of A has as vertices1, 2,---,n corresponding to an admissible ordered complete

set of orthogonal primitive idempotents [ei,e^,･･-,en) of A, then the ordinary

quiver of A(1) contains as full connected subquivers two copies of Qa, denoted

respectively by Qa and Q
A.
Also, there is an arrow i' -≫j whenever

rad (e'iAwej) /rad2(^AC1)^) =£)(^(rad A)e{) ^0 (here i' and e^ denote respectively

the vertex of QA and the corresponding idempotent associated to the vertex i of Qa) ･

§1. Homologlcal dimensions of the algebra Am:

Proposition (1.1)

gl. dim A+t£.g＼.dim Ac"^(* + l)gl. dim A+t.

Thus, the global dimension of Aa) is finiteif and only if the global dimension

of A is finite.

PROOF. Since
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(where M(≫ = [0,･･･,0,DA] is an A-A^-^-bimoduIe and Am = A), it follows

from [17, Corollary (8.4')] that:

max{gl. dim A""", gl.dim A, max(pd4DA, pd(DA)^)+l}

^gl.dim A(≫

^max{gl. dim A""", gl.dim A, min(gl. dim A""15+ pd (DA) 4,

gl.dim A+pd ADA) +1}

for £^1. Thus, if gl.dim A = oo, then gl.dimA(" = oo and the result holds.

Assume now that gl.dim A: =d<oo. We claim that:

pd ADA=pd (DA)A = d.

Since A is of finiteglobal dimension d, there exists a module Ma such that

ExtA(M, -)^0 but ExtdA+1(M, -)=0. Let X4 be an A-module such that

Ext* (iW,X) =£0, and consider a short exact sequence of A-modules :

0^Ka^La->Xa->0

with LA free. It induces an exact sequence :

Exti (M, L) -> Extl (M, X) -* Ext^+1(M, X) = 0.

Since Ext*(M,X)^0, we have Ext*(M, L)^0, and so id LA^d. Since LA is a

free module, idL^ = idA^. Hence id AA~^d, and so idA^=<i. However, by [14,

Proposition (1)],

id A4 = sup{pd(^/) ＼aIinjective}=pd^DA.

This shows that pdA(DA)=d. Similarly, pd (DA) A = d. Substituting in the first

inquality yields:

gl.dim A+1 ^gl dim Ac≫

^gl. dim A""" + gl.dim A +1

for *^1.

Now, it remains to prove

gl.dimA"-1J<gl.dimA≪> for ^1.

In order to do that,let F: mod Aa~1)-^mod A(" be the canonical functor denned

by:

F(X) = (XRA(t-≫M -*0)

for an A(i~i:>-moduleXAy-＼y Assume gl.dim Au~i:>=d then there existsa simple

A^-^-module S with pd(5.(≪_≫)=d. Thus, let



202 Ibrahim ASSEM and Yasuo IWANAGA

U /o

be a minimal projective resolution for S, then

F(PJ ^W^) ― ･->F(P0) ->F(S) -0

is also a minimal projective resolution for ^"-module F(S＼ and moreover, all

F(Pn), F^Pa-x), ･･■,F(P0)are projective-injectiveAa)-modules by the construction

of ACD from Aa~i:>and A. Hence, F{fd) is never injective and so pdF(S)A(t)>

d. As a consequence,

gl.dimA≪-1)<gl. dimAc" for any f^l.

Combining this with the second inequality above, we have the derired result.

REMARK (1.2) (a) The above Proposition and proof are actually valid if

A is only assumed to be a left and right noether ring by using a minimal

injective cogenerator and a cyclic module instead of DA and a simple module

S, respectively.

(b) The bounds given in Proposition are the best bounds possible. The

lower bound is attained for instance when A = k, then AC1) is the hereditary

algebra T2(k) of all two-by-two lower triangular matrices with coefficientsfrom

k. To see a situation where the upper bound is attained,let A be given by the

quiver:

a

bound by aB = 0. Then gl.dimA = 2, and Aa) is given by the quiver:

P r
2^=n<―1

a
a'

2

bound by a/3= O=a'/3/, yfi'a'= $ay. It is easily shown that gl.dim Aay = 5.

Observe that Aw is representation-finite(this indeed will follow from the results

of §3).

Moreover, we claimed in the proof above that gl.dim Aa) ―gl.dim Aa~1:)^

gl.dim.A+1 and the equality actually holds. For example, let Abe given by the

quiver :

with the commutativity relation,

A(3) = 7.

^2

^3

4

then gl.dim A = 2, gl.dim AC2) = 4 and gl.dim

Proposition (1.3) l^dom. dim A("^gl.dim A+l.
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PROOF. Since dom. dim Aa) = dom. dim Aa＼ we only prove the case t= l.

That dom. dimAcl)2sl follows directly from the fact that AC1) is a QF-3 algebra.

We thus only have to show that dom. dim Aa)^gl. dim A+l. If gl.dim A=oo,

there is nothing to prove. Assume that A has finite global dimension, let 1

denote its identity, and set:

e= r1 i
Lo oJ

then the unique minimal faithful left Acl)-module of the QF-3 algebra A(1) is

Aa:>e. It follows from a result of Tachikawa [20, Theorem (2.8)] that

dom. dim Acl) ^ id (A^e) eAWe +1.

Now, eAme=A and, as an A-module, Aa>e=AA@(DA)A. Therefore id(Awe)eAWe

= id A^==gl. dim A (by the proof of Proposition (1.1)).

REMARKS (1.4) (a) Propositions (1.1) and (1.3) allow us to find those

algebras Aa) which are Auslander algebras. Indeed, if Aa} is the Auslander

algebra of an algebra B, then gl.dim Au:>^2 and dom. dim ACi)^2 [2]. Therefore

gl.dimA=l and so A is hereditary and also representation-finite.Let n = Caxd

((Qa)o), then the ordinary quiver of Ac" is the Auslander-Reiten quiver of B,

which has thus 2n vertices, of which n are projective. This is only possibleif

A is of type A3 [6]. Finally, it is easily seen that the orientation o≪^o<-o of

Qa does not give an Auslander Algebra, while each of the other two o <- o ―>o

and o -≫o <- o does. Observe that, in each of these cases, Aw is in fact the

Auslander algebra of B and dom. dim Aa) = 2.

(b) In the two examples just constructed, the upper bound in Propositon

(1.3) is actually attained. The lower bound is attained for instance when A =

T2(k) is the 2x2 lower triangular matrix algebra with coefficientsfrom k. Then

A(1) is given by the quiver:

a
p o'

1< 2< 1'< 2'

bound by afia'=0, and dom. dim AC1)= 1. Thus the bounds given are again the

best possible.

§2. Algebras with square-zero radicals

In this section, we consider the case when A is an algebra with a square-

zero radical, and derive a criterionfor deciding when A(" is representation-finite.

We start by generalizing to QF-3 rings a result already obtained by W. Miiller

[16] and E. L. Green and W. H. Gustafson [10] in the case of QF rings.
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PROPOSITION (2.1) Let R be a QF-3 artin ring, J its radical, and n be

such that Jn^0 but JTO+1=0. Then:

(i) If Mr is an indecomposable module such that MJn=£0, then Mr is

projective-injective.

(ii) R is representation-finiteif and only if so is R/Jn.

PROOF, (i) Let e be a primitive idempotent of R such that MJne^0 and

choose an element ae^.Jne such that ae^O. Let us define an i?-linear map f:

eR-^aeR by f(ex) = aex for xe.R, then we have

f(ej) =aeJ^J≫J=0

that is, eJC ker(jO- However, &/ is the unique maximal submodule of the pro-

jectiveindecomposable eR, and ker(/)=£ei? since f(e) =ae^0. Therefore, eJ―

ker(/). Hence the simple module Sjz^eRjeJ is embedded in aeRQR, that is to

say, Sr is a minimal right ideal of R. Since i? is QF-3, the injective hull ~E(S)

of S is also embedded in R, and is projective-injective.

Let us now take an element m^MJn such that me^O, and define an R-

linear map g : S->M by

g(ex+e,J) =mex for x^R.

Clearly g is well-defined and injective because it is nonzero and S is simple.

Then there exists an i?-linear map h: M->JL(S) such that hg=j (where j: $->

E(5) denotes the canonical inclusion).

g

0 >S< M
n

E(

Assume now that h(M) is strictly contained in E(5). Since E(S) is in-

decomposable projective with radical E(S)J, h(M) must in fact be contained in

E(S)J. But this implies that

0^i(S) =hg(S)Qh(MJn) =h(M)JnQE(S)J-Jn = O

an absurdity. Therefore, h(M)=E(S), and so h: M->E(S) is an epimorphism.

Now, E(/5) is projective and M is indecomposable, therefore h is actually an

isomorphism, and M=E(S) is indeed projective-injective.

(ii) Follows directly from (i) : indeed, an indecomposable i?-module which

is not annihilated by Jn is projective-injective. Hence, if R/Jn is representation-

finite, the same is true for R. The converse is trivial.

In order to state our criterion, we recall the notion of a separated quiver



On a class of representation-finite QF-3 algebras 205

due to Gabriel [9]. Let A be a finite dimentional algebra over an algebraically

closed field k, and {ei,---,en} denote a complete set of primitive orthogonal

idempotents of A. The separated quiver A (A) of A is defined to have as vertices

the elements of the set {1,2, ■･･,/i}X{0,1}, the number of arrows from (i, 0) to

(j, 1) is equal to dim& (ej (rad A) ei), and these are all the arrows of A (A). Gabriel

has proved that, if rad2A = Q, then A is representation-finite if and only if the

underlying graph of A (A) is a disjoint union of Dynkin diagrams. We deduce

the following Corollary :

COROLLARY (2. 2) // A has square-zero radical, then A(" is representation-

finite if and only if the underlying graph of A (AH)/rad2 A(") is a disjoint union

of Dynkin diagrams.

PROOF. Indeed, if A has square-zero radical, the radical of Aco is such that

rad3Aa) = 0. Thus, it follows from Proposition (2.1) that A<{) is representation-

finite if and only if the square-zero radical algebra A^/rad2 Aco is representation-

finite, that is to say, if and only if the underlying graph of J(Aa)/rad2 Aa)) is

a disjoint union of Dynkin diagrams.

The separated quiver of Au:>/r&d2Aa) is easily constructed as follows: let

{eu e2, ■･･, en} be a complete set of primitive orthogonal idempotento of A and

e＼^ primitive idempotents of Aa) with ei on the (≪ + l, * +1) -component and 0

elsewhere for i = l, ･■-,n, then {et, ･･･,en, e[i:>,■･-,<?£°,･･･, e[t:>,･･･, e^} is a complete

set of primitive orthogonal idempotents of Au＼ and the set of vertices of

i(ACJ)/rad2A(≫) is, by denoting z"(0)= /, {(iM,l)＼ic=O,l,-,t; i=l,---,n; 1 = 0,1],

also, for any arrow (&',0)-■>(;, 1) in A (A), there are arrows (i, 0) ―>(j, 1), (zC/t),0)―≫･

(j<*＼ 1) and Uc'~1＼O)-+(ic'＼'O, l^K^t, in J(A(≫/rad2A(≪) (for, e^ (rad A(≫/

rad2 A(")^ = D(^(rad A)ej)^0) and these are all the arrows in J(Aa)/rad2 A(")-

In contrast to the case where A is iterated tilted of Dynkin type [1], we

may have A(1) representation-finite but Aa) representation-infinite for some t^2.

For example, if A is the algebra with square-zero radical given by the quiver :

o^―*o >o

then AC1) is representation-finite but AC2) is not. On the other hand, if A is the

algebra with square-zero radical given by the quiver:

o
°*＼

o

thus A is a quotient of a hereditary algebra, but is not iterated tilted,then A(f)

is representation-finitefor any f2:l.
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§3. Nakayama algebras

In this section, we consider the case when A is a Nakayama (generalized

uniserial) algebra, describe an easy construction for the bound quiver of A(1),

and deduce an effective criterion for deciding whether Aw is representation-

finite. In the following, we denote A(1) by A.

We shall first assume that A has a simple projective module. In this case,

A is given by the quiver:

1< 2< 3<~-･≪-≪

bound by certain zero-relations which we can encode in the Kupisch series of A.

Here, for the right module category, we shall consider the left Kupisch series of

A, (ci)i^i£n, thus

ct=l(Aet)=l(L(i)A).

We have cn = l and 2^Ci^a-i + l for any i^n. Observe that the left Kupisch

series of A is closely related to the right, in fact, one may be deduced from the

other [8]. We associate to (ci)i£ig,n a new series (aOi^f^ra which we define by:

ai ―i+a ―1 (l^i^n).

By adding i―2 to the three members of the inequality 2^Ci+i^Ci + l (z'^1),

we see that i^at-x^ai for all z'#l, and also ai=Cu an = n. In fact, since a =

/(!(/)) and S(7) =soc 1(0, we have S (at) = top I (i).

Recall that the ordinary quiver Qa of A consists of two copies Q^ and Qj

of the ordinary quiver of A, fully embedded in Q^5 and such that every vertex

of Qa belongs to either Q^ or Q^, together with some additional arrows of the

form i'-*j with zve(Q^)0 and JG(Qa)o- To construct Q^, it suffices thus tc

LEMMA (3.1) There is an arrow i'-^j if and only if at=j and at-i^j

for z'=^l,and for i―＼if and only if a＼―i.

PROOF. By definition, the number of arrows from i' to j is given by

dim& Hom.A.(P(f), rad P(z') /rad2P(i')). Thus, thereis an arrow i'^-jifand only if

S(j) is a direct summand of rad P(i') /rad2P(zv). Recall that 1(7) is the maxi-

mal submodule of P(zv) whose composition factors lie in Q^ (even Supp P(i')D

Q^ = Supp 1(0).

Assume that there is an arrow i'->j. S(j) must then be a composition factor

of the uniserial module I CO, thus /eTA #tl and, since i'->i is an arrow, we even



On a class of representation-finiteQF-3 algebras 207

have j=at. On the other hand, we have rad P(xv)/rad2 P(i') =S(i)@S(i-l)'

and so

Hom^(I(z-l), I(i)) sD(e,AH)

= Hom^(P(i), P(i-l)')=0.

Therefore j^.[i―1,a*_i] and in particularj^ai-＼.

Conversely, suppose that ai=j^ai_v Then j=ai>ai_1 hence Hom^(I(z ―1),

IO))=0 and so there is no nonzero path from (z―1)' toj. Since ai―j, we have

a nonzero map from I(z) to 10") and hence a nonzero path from zv to j. Since

this path cannot factor through (i―V)' and cannot factor either through any V>j

(for, otherwise, S(Z) would be a composition factor of I(z), and this contradicts

ai~j), there must be an arrow i'-+j.

Observe that the binding relations on Qa are the original zero-relationson

Qa, the corresponding zero-relationson QJ,, all possible commutativity relations

together with some zero-relationsof the form w = 0 where w is a path from i' to

i―l, for 2^i^n, or from 2' to 1, arising from the fact that A is constructed

from A using a sequence of one-point extensions. We have thus completely

determined the bound quiver of A.

Next, we shall consider the case where the Nakayama algebra A has no

simple projective module. In this case, the quiver of A is an oriented cycle with

(say) n vertices. To describe these vertices, we shall adopt the following con-

vention : tor an integer i, we shall let i be the least strictlypositive remainder

of i modulo n, thus, if i is a multiple of n, we have z= n. We shall also order

the cycle in such a way that decreasing circular order corresponds to the counter-

clockwise direction:

2< 3 ≪―･*-≪

Let (ci)i^i^n denote the left Kusisch series of A, and put, as before:

ai = i+ci―l QSi^ri).

Again, we have S(a-t)= top I(z), and also:

LEMMA (3.2) There is an arrow i'->j if and only if ≪5==;and aj―r^=7.

PROOF. Similar to the proof of Lemma (3.1).

The binding relations on Qa are constructed just as before: they are the

original zero- relations on Q^, the corresponding zero-relationson Q＼, all possible
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commutativity relations on Qa, together with some extra zero-relations of the

form w=0, where w is a path from i' to i―1 (for z'e(Qa)o)-

In order to state our criterion for the representation type of A, let us consider

again the case where A has a simple projective module. It follows easily from

the previous construction that A is a Schurian and directed algebra which is A-

free in the sense of [5]. Also, A is a tree algebra, and so is simply connected.

Therefore, as in [1], Proposition (1.4), A satisfiesthe condition (S) of [3].

Consequently, A is representation-finiteif and only if its bound quiver does not

contain as a full convex subquiver the bound quiver of a criticalsimply con-

nected algebra from the list of [12], [4]. On the other hand, if A has no simple

projective module, and so its ordinary quiver is an oriented cycle, a Galois

covering A->A with A simply connected is constructed as follows: the set of

verticesof Qa is the set {(a,t)|ae (Q^)o> t^Z] and there is an arrow (#,£)->

(b, s) in one of the following cases:

(i) t=s, a = i, b ―i―1 or a = i', b=(i―X)' with i±?l

(ii) t=s+l, a = ~±,b = n or a = Y, b=n'

(iii) t=s, a ―i', b―j and there is an arrow i'->j in Qa-

The binding relations on A are taken to be the lifted relations,thus A is

locally bounded and Schurian, its quiver is connected, directed and interval-finite.

The group of the Galois coverling A―>A is infinite cyclic. Finally, every finite

full convex bound subquiver of Qa satisfiescondition (S) and so A satisfiesthe

conditions of [5]. Therefore A is representation-finiteif and only if A does not

contain (as a full convex bound subquiver) the bound quiver of a criticalsimply

connected algebra. We thus have:

THEOREM (3. 2) Let A be a Nakayama algebra with {respectively,without)

a simple projective module. Then A is representation-finiteif and only if its

bound quiver (respectively, the bound quiver of its Galois covering A) does not

contain as a full convex bound subquiver one of the following bound quivers:
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1.a) o^―o≪―o≪―o≪―o* b) o≪―o<-Q*―o<r―o c) ex―o

04―O O≪―O CX―O4―O≪―O4―O

d) ^-o

2. a) o4―o*―04―ex―ex―o4―o b) o

6 O4-O^C*~L-O≪-CX-O

c) o^―o≪―o-s―o≪―o d) c*―o≪―o4―o<―o

6≪―o≪―o o$―o≪―o

e) o≪―ck―ex―o*―o f) ck―O4―o*―o≪―o

o≪―o≪―o ov-ex―o

q) c*―o-c―o h) o<―o^―o

04-0≪-0≪-0^-0 o^_o<-O4―i≪-O

i) cm―o≪―o j ) ex―o*―q
f I
ex―ex―o<―o<―o o≪―o*―o*―o<―o

4. a) O4―CX―CK―CX―CK―CK―O<―O b) O^― O<―Q*―O≪―CX―O4―Oi―'O

0 O

C) Q d) Q

e) CX―CX―O<―O<―CX―Qi―O f) C*―O^―CX―CK―O4―Qi―O

o^―ex―o ex―ex―o

g, c^0^CX-0*-O≪-O^0 h) cX-^-CX-O^-04-04-0

O≪―O4―O CX―CX―O

i) O ―CX―O j) CX― O4―Q

k) o≪―ex―o £) ex―o≪―g
T T

O^―CK―O4―O^― >･$―O*―O CW―O<―O*―O4―O4―O<―O

78a) .' --. b) ex―o*― ex―o

I C^―CX―CK― CX-;-p

^ 6*― O4r~O<― CX-^tD
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11.a) of―cx―o b) of―of―cx―o

OS―C*―Of― O O≪―Of―O

O≪―O<―O4―O<―O

13. a) of- 04― o*―o4―o≪―o b) o≪―g

C*―O Of― O4―<*><―O<―O4―O

14. a) O4―CK― Of― O≪―O b) Of― O4―0

C*― C≪―O Oi―O<―O<―O*―O

17. a) 9^~~°^―04―04―of―o b) g≪―cx―o

O£ Of―O Oi―CK―O4―O4―O4―O

18. a) 04―o≪―04―04―o<―o b) o≪―o^―o

5^―04―o 04―ex―o≪―04―o≪―o

19. a) °^~2 ^^ oe-o^―of―o<―c*―y~o

21.a) of―94―o b) of― of-of-c*― o<―o
Jlj
<_o<_o<_o

k-L-o

23) ^1―^

I r

O4―Of― C*―Of―O

2 5. a) g<―g≪―cx―o≪―o b) o^― o≪―0^―-o
T T T f

Qf―O-≪―Of-^P O ―O≪―6<―O≪―O

2 9. a) o4―of―nt―2 k) o^―O<~24―9^―°

o*―o<―o<―o≪―o cx―o≪―O4―o

3 6 . a) c* 04―o b) o4―q<―o*―o<―o

O<―Ok―O ―O4―O O4―O< O

3 7. a) o< 9*~° ^) °^~24―°*―9^―°

O4―(X―Of- O*―O O4―O≪ O

3 9. a) oi -Q b) of-of―04―o≪―of―o≪―o

c*―of― of― 04―04―o≪―o ok o

40. a) of―oi―Qi―o b) 04 94―of―of―o

O≪―Of― C*―O^ O O4― Of― O4―O
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41.a) o< 9*~~°*―ex―o b) ex―ex―ex―o

42. a) ex q b) ex―-os―ex―ex―o*―ex―o

CX.―CX―O4―'O≪―O4r-CX―O CX O

44. a) g≪ g b) o4―o≪―g<―cX―o4―o≪―o

O≪-C*-A4-O^
L
-C≪-O

L__i

45. a) o^―g≪―o4―o b) ex―o^ o<―ex―o

O4―O4―O4――――O―O O^―<X―CX―O

64. a) Qi―o4―ex―ex―o b) o≪ <x―o<―o

O4―(X―O≪ O O*―CK―O4―CX―O

65. a) g≪ 2*~"° ^) °^―04―ex―o≪―o≪―o

ex―ex―cK―ex―ex―o ex―o≪ o

76. a) o≪―ex―ex―ex―o b) ex―ex―ex―o<―q

ex―ex―ex―o ex―o≪―o≪―o

86. 2*―9*―2*-―°

ex―ex―o≪―o

89. a) |*-<p-2 b^ ^S^-c^-cx-cx-o

93. a) ex―ex―o b) ex―o<r―cx-^―ex―o

ex―ex―o≪―ex―ex―o o―o―o

106. a) ex―ex―ex―g b) ex―o^ ex―o

ex―ex―ex ex―o c*―ex―<x―o

114. a) ex ex―o≪―o b) ex-ex―ex―<x―o

CX―O4―O<―CX―O O<―CX―O^ O

{All the previous quivers are assuumed to be fully commutative. Dotted

lines indicate zero-relations. The numbert are those of [4].)

PROOF. The previous listwas established by going through the listof [12],

[4] and observing that most of the criticalalgebras cannot in our case. Also,

the possible orientations of the arrows are prescribed by the shape of the quiver

Qa- Thus, eliminating the impossible cases and imposing allpossibleorientations,
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we obtain our list. There only remains to prove that the listed criticalbound

quivers may actually occur as full convex bound subquivers of Qa for some

Nakayama algebra A. We give below a list of algebras A realising the corre-

sponding listed criticalbound quivers. All the algebras listed have a simple

projective module, n is the number of vertices of Q^, a pair (a, b) means that

there is a zero-relationsfrom b to a:

1. a) w = 9, (3,7)

c) w = 9, (3,8)

2. a) ≪ = 8, (1,6)

c)

e)

g)

i)

7

11

a)

c)

e)

g)

i)

k)

a)

c)

a)
12.

13. a)

14.

17.

18.

19.

21.

b)

a)

a)

a)

a)

a)

23.

26. a)

29. a)

36. a)

37. a)

39. a)

40. a)

n = 9, (3,8)

72 = 9, (3,6)

n = 10, (3,7), (5,8)

^ = 11, (2, 8), (6,9)

≪ = 9, (1,8)

n = 10, (6,10)

tz= 11, (3,10)

≪ = 12, (3,7)

72 = 13, (6,10), (8,11)

71= 13, (2,10), (8,11)

72= 11, (4,7), (5,10), (7,11)

72= 8, (2,5)

7z= 10, (2,7), (3,8), (5,9)

b)

d)

b)

d)

f)

h)

j)

b)

d)

f)

h)

j)

1)

≪= 10, (2,5), (3,8)

≪= 9, (3,7), (6,8)

n=9, (4,9)

72= 10, (3,5), (4,9)

n = ll, (3,6), (4,8)

w=9, (4,7)

w = 10, (2,8)

w = 9, (1,5)

≪= 10, (3,10)

n = U, (3,7), (5,13)

≫= 13, (3,6), (4,8)

72= 11, (6,9)

n = ll, (2,9)

b) 72= 11, (1,5), (2,6), (5,8)

d) ?i= 10, (5,9), (6,10)

b) ≪= 10, (2, 6), (3,8), (4,9)

w = 10, (1, 6), (2,7), (3, 8), (4, 9), (5,10)

n = 9, (1,7), (2,8), (3,9)

w = ll, (1,7), (2, 8), (3, 9), (4,10), (5,11)

≪ = 10,(l,7), (3,8) b) 71= 10, (3,8), (4,10)

and b ) n = 12, (1, 8), (2, 9), (3,10), (4,11), (5,12)

n=>10, (1,5), (3,6)

and b) w = 9, (1,8), (2,9)

71= ll, (2,8), (3,10), (7,11)

72= 11, (4,9), (5,10), (9,11)

≪= 9, (1,4), (2,6), (4,7)

w = ll,(2,8), (3,11)

72= 11, (3,9), (5,10), (6,11)

72= 11, (2,8), (4,9), (6,10)

72= 10, (5,9), (7,10)

w = 12, (4,9), (5,10), (6,12)

b) ≪= 10, (5,8), (6,10)

b) n = 12, (1,6), (2,10), (4,11)

b)

b)

b)

b)

b)

b)

≪= 12, (4,9), (5,11), (9,12)

≪= 12, (1,7), (2,10), (5,11)

≪= 11, (2,7), (3,8), (4,10)

w = ll, (2,6), (3,8), (4,10)

≫= 12, (1,6), (2,8), (3,12)

n = ll, (2,7), (4,-8), (5,9)
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41. a) ≪= 10,(2,6),(4,7) b) n = 10, (4,7),(5,9)

42. a) w = ll,(4,10), (6,11) b) ≪= 9, (1,5), (2,7)

44. a) ≪= 10, (3,9), (5,10) b) w = 9, (1,6), (2,8)

45. a) w = 10,(3,7), (4,9) b) w = 12,(1,7), (3,9), (5,10)

64. a ) n = 11,(2,7), (3, 8),(4,11) b ) n = 11,(2, 8),(5,9), (6,10)

65. a ) n = 12,(2,9), (5,10),(7,11) b ) n = 12, (2,6), (3,8), (4,11)

76. a) 7i= ll, (2,7), (4,8), (5,10) b) n = 8, (2,7)

86. n = 9, (1,6), (2,7),(3,8), (4,9)

89. a ) and b ) n = 11,(1,7), (2, 8),(3,9), (4,10), (5,11)

93. a ) and b ) n = 10,(1,7), (2, 8),(3,9), (4,10)

106. a ) 7i= 10, (3,7), (4,8),(5,10) b) n = 9, (1,6),(3,7), (4, 8)

114. a ) 7i= 10,(2,7), (4,8), (5,9), (6,10)

b) 7i=ll, (2,7), (3,8), (4,9), (5,11)

The following generalizes an old result of S. Brenner [7] :

COROLLARY (3.4) Let A be a self-injectiveNakayama algebra of Loewy

length s. Then A is representation-finiteif and only if sfS3.

PROOF. In this case, the ordinary quiver of A is an oriented cycle bound

by the relation ideal generated by all paths of constant length s. Clearly, if

5^4, the bound quiver of A contains the number (86) of the list,while if 5^3,

it contains no criticalfull convex subquiver.

§4. The case of the algebras A (n, s)

In this section, we shall investigate the representation type of A for A being

the algebra of the quiver:

1

a

.2<_1.3≪-...≪-w-i
<*n-l

bound by the ideal generated by the set of all paths of constant length 5^2 [15].

We shall denote this algebra by A (n, s). If there are no relations on the quiver

of A, we shall denote it by A(n,G) (thus, with this convention, we always have

w>5). For each algebra A(n,s), the representation type of the two-by-two lower

triangular matrix algebra T2(A(n,s)) is known:

THEOREM (4.1) [15] (i) T2(A(n, 0)) is representation-finite if and only

if w5S4

(ii) T2C/f(≪,s)), ≪>5>0, is representation-finite if and only if s==2, or 3.
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We shallnow prove:

THEOREM (4.2) (i) 7/5 = 0, 2 or 3, then A(n,s) is representation-finite

for any value of n>s.

(ii) // 5^>4, then A(n,s) is representation-finiteif and only if n=s+l or if

(n, s) is one of the five pairs (6,4),(7,4), (7,5), (8,5) and (8, 6).

(A(?i,s) is an algebra A for A = A(n,s).)

Observe that the ordinary quiver of A(n, s) is:

1< 2< <-s< 5 +!≪-･･■< n

M

a a'

(s-1)'≪-･･･< n

bound by the zero-relations o:iai+1---ai+s_1= 0=a'ia'i+1---a'i+s_1(l^i^n―s), the com-

mutativity relations aia'i = ai+s_1^i+1 (l^i^n―s), and relations of the form

aiwa't = 0, where w is a path from i' to i+l. Observe also that A(n,s) satisfies

the condition (S) of [3], and hence is simply connected whenever it is repre-

sentation-finite. In the proof of Theorem (4.2.), we shall use the fact (already

mentioned in the Introduction) that if A is an iterated tilted algebra of Dynkin

type, then A is representation-finite ([1, Proposition (1.4)]). We shall also need

the following lemma;

LEMMA (4.3) (i) For any pair (n,s), s^O, there is a full exact embed-

ding of mod A(n,s) into mod T2(A(n + s―l,s)). Thus, if the latter algebra is

representation-finite,so is the former.

(ii) For any pair (n,s), s^O, n>2s―l, there is a full exact embedding of

mod T2(A(n―s+l,s)) into mod A(n,s). Thus, if the former algebra is repre-

sentation-infinite,so is the latter.

(iii) For any pair (n,s), ≪>s^3, there is a full exact embedding of

mod A(n,s) into mod A(n + 1, s+1). Thus, if theformer algebra is representation-

infifiite,so is the latter.

PROOF, (i) Consider the specialization [18] of the bound quiver of

T2(A(n+s―l,s)) obtained by shrinking the arrows /3l5/32,･･･,fis-iand fin+i,fin+z,･･･,

fin+s-i. We clearly obtain in this way the bound quiver of A (n, s). The statement

then follows from [181.
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T i ≪

A /92 y?3 !,A i8ri-l /?≫ '. I j3n+,-1
j

f i 4
_j ,

!'^ 2'< 3'< +-＼―s'< (s+l)'< n't―(n + l)'< ･･<≪―(n+ s-1)' ',

Ol' 02' i O/ On' !
L

(ii) The bound quiver of T2(A(n―s+l,s)), ?i>2s―l, is obtained from that

of A(n,s) by deleting the vertices 1,2,･･･,5―1 and (n―s+!)',■■-,n'.Hence the

result follows.

(iii) The bound quiver of A(n,s) is obtained from that of A(n + l,s + l~)by

deleting the vertices 1 and (n + l)', and adding all possible zero-relations of

constant length s on the two paths from n + l to 2 and from n' to V.

PROOF OF THEOREM (4.2) : (i) Consider first the case 5=0. In this case,

A(n,0) is a hereditary algebra of type An, and hence A(n,0) is representation-

finite. If 5=2 or 3, it follows from Theorem (4.1) and Lemma (4.3) (i) that

A(n,s) is representation-finite for any value of w>5.

(ii) Assume now that 5^4. Observe first that, for any value of 5^0,

A(s + l,s) is a tilted algebra of Dynkin type Ds+1, thus A(s+l,s) is representation-

finite. On the other hand, if ≪>25―1, the algebra T2(A(n―s+l,s)) is repre-

sentation-infinite by Theorem (4.1), hence so is A(n,s) by Lemma (4.3) (ii).

We thus only have to consider the case of the pairs (s + t,s) for 2:_£^5― 1. By

Lemma (4.3) (iii), there exists a full exact embedding of mod A(4 + t,4) into

mod A(s+t,s) for any values of t and 5^4. Now, if £>3, then 4-K>7 implies

by the above remarks that A (4+^,4) (and hence A(s+t,s)) are representation-

infinite.

Consider now the algebras A(s+2,3) and yl(5+3,5) for 5^4. By Lemma

(4.3) (iii) there exist full exact embeddings of mod A (9,6) into mod A (5+3, s)

for any value of 5 = 6 and of mod ^1(9,7) into mod A (s+2,5) for any value of

5^7. Now the bound quiver of A(9,6) (respectively, /i(9,7)) contains as a full

convex subquiver the critical subquiver number (13. b) (respectively, (19. b)) of

the list of Theorem (3.3). It follows that A (9,6) and A (9,7) are representation-

infinite, and consequently so are A(s+3, s) for 5=6 and A(s+2, s) for 5_-7.

There remains to consider the cases of the five pairs (6,4), (7,4), (7,5), (8, 5)

and (8,6). It is easily verified that A(6,4) is iterated tilted of type E6, A(7,4)
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and A(7,5) are iterated tilted of type E7, while A (8,5) and A(8,6) are iterated

tiltedof type E8. Therefore 1(6,4), 1(7,4), 1(7,5), 1(8,5) and 1(8,6) are

representation-finite.The proof of the theorem is now complete.

NOTE (1) After the completion of this work, the authors learned that A.

Skowronski has also studied the case of the algebras with square-zero radical in

[19], obtaining the same criterionfor the representation-finitenessof Am described

in §2 by the differentmethod.

(2) This paper is the complete and revised version of the talk at ICRA IV

(1984) in Ottawa.

(3) This paper was written while the firstauthor was an Alexander von

Humboldt fellow at the University of Bielefeld.
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