ON THE NULLITIES OF KÄHLER C-SPACES IN $P_{\mathcal{M}}(C)$

By

Yoshio Kimura

Let M be a Kähler C-space which is holomorphically and isometrically imbedded in an N-dimensional complex projective space $P_N(C)$. Then M is a minimal submanifold of $P_N(C)$. Let $n_a(M)$ be the analytic nullity of M which was defined in [2]. We know that the nullity n(M) of M is equal to $n_a(M)$ if M is a Hermitian symmetric space (Kimura [2]). In this note we prove that $n(M) = n_a(M)$ for any Kähler C-space M.

By a theorem of Simons [5], the nullity of a Kähler submanifold coincides with the real dimension of the space of holomorphic sections of a normal bundle of the submanifold. Put M=G/U where G is a complex semi-simple Lie group and U is a parabolic subgroup of G. By a result of Nakagawa and Takagi [4], we know that every imbedding of M in $P_N(C)$ is induced by a holomorphic linear representation of G. From this result we see that the normal bundle N(M) over M is a homogeneous vector bundle.

We prove Theorem 1 which generalizes the generalized Borel-Weil theorem of Bott [1]. Applying the theorem to calculate the dimension of the space of holomorphic sections of N(M) and prove that $n(M) = n_a(M)$.

The auther proved the above result before Proffesor Takeuchi gave another proof of it. His proof does not use Theorem 1 and is more simple than our proof (c.f. Takeuchi [6]).

§1. The generalization of Bott's result.

Let G be a simply connected compact semi-simple Lie group with Lie algebra g. Take a Cartan subalgebra \mathfrak{h} of g. Denoto by Δ the root system of g with respect to \mathfrak{h} . We fix a linear order on the real vector space spaned by the elements $\alpha \in \Delta$. Let Δ^+ (resp. Δ^-) be the set of all positive (resp. negative) roots. Let $\Pi = \{\alpha_1, \dots, \alpha_l\}$ be the fundamental root system, where l is the rank of g and Π_1 be a subsystem of Π . We put

$$\Delta_1 = \{ \alpha \in \Delta ; \ \alpha = \sum_{i=1}^{\prime} m_i \alpha_i, \ m_j = 0 \text{ for any } \alpha_j \notin \Pi_1 \}$$

Received June 9, 1978

Yoshio KIMURA

$$\Delta(\mathfrak{n}^+) = \{\beta \in \Delta; \beta = \sum_{i=1}^{\prime} m_i \alpha_i, m_j > 0 \text{ for some } \alpha_j \notin \Pi_1 \}$$

$$\Delta(\mathfrak{n}) = \Delta_1 \cup \Delta(\mathfrak{n}^+).$$

Define Lie subalgebras g_1 , n^+ and n of g by

$$g_{1} = \mathfrak{h} + \sum_{\alpha \in \Delta_{1}} g_{\alpha}$$
$$\mathfrak{n}^{+} = \sum_{\beta \in \Delta(\mathfrak{n}^{+})} g_{\beta}$$
$$\mathfrak{u} = \mathfrak{h} + \sum_{\alpha \in \Delta(\mathfrak{u})} g_{\alpha}$$

where g_{α} is the root space corresponding to $\alpha \in \Delta$. Then g_1 (resp. n^+) is a reductive (resp. nilpotent) subalgebra of \mathfrak{g} and $\mathfrak{u} = \mathfrak{g}_1 + \mathfrak{n}^+$ (semi-direct). Let U be the connected Lie subgroup of G with Lie algebra \mathfrak{u} . Then U is a parabolic Lie subgroup of G, and M = G/U is a Kähler C-space.

We denote by D (resp. D_1) the set of dominant integral forms of \mathfrak{g} (resp. \mathfrak{g}_1). Let $\xi \in D_1$. Then there exists the irreducible representation $(\rho_{-\xi}^1, W_{-\xi})$ of \mathfrak{g}_1 with the lowest weight $-\xi$. We extend it to a representation of \mathfrak{u} so that its restriction to \mathfrak{n}^+ is trivial, which will be denoted by $(\rho_{-\xi}, W_{-\xi})$. There exists a representation of U which induces the representation $(\rho_{-\xi}, W_{-\xi})$ and we denote it by $(\tilde{\rho}_{-\xi}, W_{-\xi})$. Let (ν, V) be a holomorphic representation of G. We denote by $((\nu|_U)\otimes\tilde{\rho}_{-\xi}, V\otimes W_{-\xi})$ the tensor product of the representations $(\nu|_U, V)$ and $(\tilde{\rho}_{-\xi}, W_{-\xi})$ of U. We also denote by E_S the holomorphic vector bundle over M associated to the principal bundle $G \longrightarrow M$ by a representation of U on S. For a holomorphic vector bundle E over M, we denote by ΩE the sheaf of germs of local holomorphic sections of E. We shall consider the cohomology groups $H^j(M, \Omega E_{V\otimes W_{-\xi}})$.

Let W be the Weyl group of g and Δ_1^+ the set of all positive roots of Δ_1 . We define a subset W^1 of W by

$$W^1 = \{ \sigma \in W; \sigma^{-1}(\Delta_1^+) \subset \Delta^+ \}.$$

Let δ be the half of sum of all positive roots of g.

THEOREM 1. Let $\xi \in D_1$ and (ν, V) be a holomorphic representation of G. If $\xi + \delta$ is not regular, then

$$H^{j}(M, \Omega E_{V \otimes W_{-\epsilon}}) = (0)$$
 for all $j = 0, 1, \cdots$.

If $\xi + \delta$ is regular, $\xi + \delta$ is expressed uniquely as $\xi + \delta = \sigma(\lambda + \delta)$, where $\lambda \in D$ and $\sigma \in W^1$, and

$$H^{j}(M, \Omega E_{V \otimes W_{m,s}}) = (0)$$
 for all $j \neq n(\sigma)$,

60

On the Nullities of Kähler C-spaces in $P_N(C)$

 $H^{n(\sigma)}(M, \Omega E_{V \otimes W_{-s}}) = V \otimes V_{-s}$ (as G-module),

where $n(\sigma)$ is the index of σ and $(\nu_{-\lambda}, V_{-\lambda})$ is the irreducible G-module with the lowest weight $-\lambda$.

If (ν, V) is the trivial representation of G, the theorem coincides with the generalized Borel-Weil theorem of Bott [1].

We prepare some lemmas to prove this theorem. Let (f, S) be a representation of \mathfrak{u} and let $H^{j}(\mathfrak{u}^{+}, S)$ be the j-th cohomology group formed with respect to the representation $f|_{\mathfrak{u}^{+}}$ of \mathfrak{n}^{+} on S. We may regard $H^{j}(\mathfrak{u}^{+}, S)$ as \mathfrak{g}_{1} -module in a canonical way. We denote by $H^{j}(\mathfrak{n}^{+}, S)^{\mathfrak{o}}$ the subspace of $H^{j}(\mathfrak{n}^{+}, S)$ annihilated by all $X \in \mathfrak{g}_{1}$. We may easily get the following lemma from theorems of Bott [1].

LEMMA 1. Let $\lambda \in D$. Then

the multiplicity of ν^{λ} in $H^{j}(M, \Omega E_{V \otimes W_{-\xi}})$ = dim $H^{j}(\mathfrak{n}^{+}, \operatorname{Hom}(V^{\lambda}, V \otimes W_{-\xi}))^{0}$ for $j = 0, 1, \cdots$,

where $(\nu^{\lambda}, V^{\lambda})$ is an irreducible representation of g with the highest weight λ . Since the representation $(\rho_{-\xi}|_{\pi^+}, W_{-\xi})$ is trivial, we have

$$\begin{split} &H^{j}(\mathfrak{n}^{+}, \text{ Hom }(V^{\lambda}, V \otimes W_{-\varepsilon})) \\ &= H^{j}(\mathfrak{n}^{+}, V_{-\delta} \otimes V \otimes W_{-\varepsilon})) \\ &= H^{j}(\mathfrak{n}^{+}, V_{-\lambda} \otimes V) \otimes W_{-\varepsilon} \,. \end{split}$$

From Schur's lemma we have

dim $H^{j}(\mathfrak{n}^{+}, \operatorname{Hom}(V^{\lambda}, V \otimes W_{-\ell}))^{0}$ = the multiplicity of $\nu^{\ell_{1}}$ in $H^{j}(\mathfrak{n}^{+}, V_{-\lambda} \otimes V)$,

where $\nu_{1}^{\xi_{1}}$ is an irreducible representation of \mathfrak{g}_{1} with the highest weight ξ .

LEMMA 2. Let $\lambda \in D$. Then

the multiplicity of ν^{λ} in $H^{j}(M, \Omega E_{V \otimes W_{-\xi}})$

=the multiplicity of ν^{ξ_1} in $H^j(\mathfrak{n}^+, V_{-\lambda} \otimes V)$.

Now we recall Kostant's result of Lie algebra cohomology.

THEOREM OF KOSTANT ([3]). Let $\lambda \in D$. Then \mathfrak{g}_1 -module $H^j(\mathfrak{n}^+, V^{\lambda})$ is decomposed into direct sums:

$$H^{j}(\mathfrak{n}^{+}, V^{\lambda}) = \sum_{\sigma \in W^{1}(j)} \bigoplus W^{\sigma(\lambda+\delta)-\delta},$$

Yishio Kimura

where $W^{1}(j) = \{\sigma \in W^{1}; n(\sigma) = j\}$ and (ν^{μ}_{1}, W^{μ}) is the irreducible representation of \mathfrak{g}_{1} with the highest weight μ .

PROOF OF THEOREM 1. Assume that the multiplicity of ν^{ξ_1} in $H^j(\mathfrak{n}^+, V^{\gamma}), \gamma \in D$, is not 0. By the above theorem there exists an element $\sigma \in W^1(j)$ so that $\xi + \delta = \sigma(\gamma + \delta)$. Since $\gamma + \delta$ is regular, $\xi + \delta$ is also regular. Therefore by Lemma 2 we see that if $\xi + \delta$ is not regular then $H^j(M, \Omega E_{V \otimes W_{-\xi}}) = (0)$ for any j.

Assume that $\xi + \delta$ is regular. Then $\xi + \delta$ is expressed uniquely as $\xi + \delta = \sigma(\lambda + \delta)$, where $\lambda \in D$ and $\sigma \in W^1$ (Kostant [3]). If $j \neq n(\sigma)$, we see immediately that $H^j(M, \Omega E_{V \otimes W_{-\xi}}) = (0)$ by Lemma 2 and Theorem of Kostant.

Let G_u be a maximal compact subgroup of G. Denote by χ_{ϕ} the character of a representation ϕ of G. Then by Theorem of Kostant we get the following:

the multiplicity of ν^{ξ_1} in $H^{n(\sigma)}(\mathfrak{n}^+, V_{-r} \otimes V)$

=the multiplicity of ν^{λ} in $V_{-r} \otimes V$

$$= \int_{G_{\mu}} \bar{\chi}_{\nu^{I}} \cdot \chi_{\nu} \cdot \bar{\chi}_{\nu^{2}} dg$$

=the multiplicity of ν^{r} in $V \otimes V_{-\lambda}$,

where dg is the normalized Haar measure on G_u . Therefore by Lemma 2, we get

$$H^{n(\sigma)}(M, \Omega E_{V \otimes W_{-s}}) = V \otimes V_{-s}$$
 (as G-module). Q.E.D.

§2. Proof of the main theorem.

We retain the same notations and assumptions introduced in §1. Let Λ be an integral form such that $(\Lambda, \alpha_i)=0$ for $\alpha_i \in \Pi_1$ and $(\Lambda, \alpha_j)>0$ for $\alpha_f \notin \Pi_1$. We denote by $(\tilde{\nu}^A, V^A)$ the irreducible representation of G with highest weight Λ . Let $P(V^A)$ be the complex projective space consisting of all 1-dimensional subspace of V^A . Since the dimension of the weight space (v) in V^A corresponding to the highest weight Λ is equal to 1, (v) is an element of $P(V^A)$. Moreover G acts canonically on $P(V^A)$ via the representation $(\tilde{\nu}^A, V^A)$, and it is known that U coincides with the isotropy subgroup of G at (v). Therefore we get a G-equivariant imbedding $f^A: M=G/U \longrightarrow P(V^A)$. Since $\tilde{\nu}^A$ is an irreducible representation, f^A is a full imbedding. Conversely every full Kähler imbedding of a Kähler C-space M in $P_n(C)$ is obtained in this way (Nakagawa and Takagi [4]).

THEOREM 2. Let M=G/U be a Kähler C-space fully imbedded in $P_n(C)$. Then the nullity n(M) of M in $P_n(C)$ is given by

$$n(M) = \dim_{\mathbf{R}} \mathfrak{a}(P_n(\mathbf{C})) - \dim_{\mathbf{R}}(M),$$

where $\mathfrak{a}(P_n(\mathbb{C}))$ (resp. $\mathfrak{a}(M)$) is the vector space of all analytic vector fields on $P_n(\mathbb{C})$ (resp. M).

PROOF. Assume that the imbedding of M in $P_n(C)$ is induced by the irreducible representation $(\tilde{\nu}^A, V^A)$, $A \in D$ and dim $V^A = n+1$, of G. Denote by (h, (v)) the representation of U on (v) induced by $\tilde{\nu}^A$ and denote by $(h^*, (v)^*)$ the contragredient representation of (h, (v)). Then we get the following exact sequence of U-modules:

$$0 \longrightarrow (v) \otimes (v)^* \longrightarrow V \otimes (v)^* \longrightarrow V \otimes (v)^* / (v) \otimes (v)^* \longrightarrow 0.$$

It is easy to see that $E_{V \otimes (v)^*/(v) \otimes (v)^*} = T(P_n(C))|_M$. Therefore we get the following exact sequence of holomorphic vector bundles over M:

$$0 \longrightarrow 1 \longrightarrow E_{V \otimes (v)^*} \longrightarrow T(P_n(C))|_M \longrightarrow 0,$$

where 1 is the trivial line bundle over *M*. Since *M* is a Kähler *C*-space, $H^1(M, \Omega 1) = (0)$. Therefore we get the following exact esquence of cohomology groups:

$$0 \longrightarrow H^{0}(M, \ \Omega 1) \longrightarrow H^{0}(M, \ \Omega E_{V \otimes (v)^{*}}) \longrightarrow H^{0}(M, \ \Omega(T(P_{n}(\mathbb{C})|_{M})) \longrightarrow 0.$$

Since the lowest weight of $(h^*, (v)^*)$ is $-\Lambda$, it follows, by Theorem 1, that $H^0(M, \Omega E_{V \otimes (v)^*}) = V \otimes V_{-\Lambda}$ as G-modules. It is obvious that dim $H^0(M, \Omega 1) = 1$. Therefore we get

dim $H^0(M, \Omega(T(P_n(C))|_M)) = (n+1)^2 - 1$.

Since $\dim_{\mathbf{R}} \mathfrak{a}(P_n(\mathbf{C}) = 2\{(n+1)^2 - 1\}$, we get

(1)
$$\dim_{\mathbf{R}} H^{0}(M, \ \mathcal{Q}(T(P_{n}(\mathbf{C}))|_{M})) = \dim_{\mathbf{R}} \mathfrak{a}(P_{n}(\mathbf{C})).$$

The exact sequence of holomorphic vector bundles over M:

$$0 \longrightarrow T(M) \longrightarrow T(P_n(\mathbb{C}))|_M \longrightarrow N(M) \longrightarrow 0$$

and $H^{1}(M, \Omega T(M)) = (0)$ (Bott [1]) induce the following exact sequence of cohomology groups:

$$(2) \quad 0 \longrightarrow H^{0}(M, \ \Omega T(M)) \longrightarrow H^{0}(M, \ \Omega(T(P_{n}(\mathbb{C})|_{M})) \longrightarrow H^{0}(M, \ \Omega N(M)) \longrightarrow 0.$$

Recall that the nullity n(M) of M is given by

(3)
$$n(M) = \dim_{\mathbf{R}} H^{0}(M, \Omega N(M))$$

(Kimura [2]). From (1), (2), (3) and $\dim_{\mathbf{R}} H^{0}(M, \Omega T(M)) = \dim_{\mathbf{R}} \mathfrak{a}(M)$, we get

$$n(M) = \dim_{\mathbf{R}} \mathfrak{a}(P_n(\mathbf{C})) - \dim_{\mathbf{R}} \mathfrak{a}(M)$$
Q.E.D.

From the above theorem and Lemma 3.4 in Kimura [2] we have the following result.

63

COROLLARY. Let M be a Kähler C-space holomorphically and isometrically imbedded in $P_N(\mathbf{C})$. Then

$$n(M) = n_a(M)$$
.

References

- [1] Bott, R., Homogeneous vector bundles, Ann. of Math., 66 (1957), 203-248.
- [2] Kimura, Y., The nullity of compact Kähler submanifolds in a complex projective space, J. Math. Soc. Japan, 29 (1977), 561-580.
- [3] Kostant, B., Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math., 74 (1961), 329-387.
- [4] Nakagawa H. and Takagi, R., On locally symmetric Kaehler submanifolds in a complex projective space, J. Math. Soc. Japan, 28 (1976), 638-667.
- [5] Simons, J., Minimal varieties in Riemannian manifolds, Ann. of Math., 88 (1968), 62-105.
- [6] Takeuchi, M., Homogeneous Kähler submanifolds in complex projective spaces, Japan J. Math. 4, (1978), 171-219.

Nagasaki Institute of Applied Science Abamachi, Nagasaki-shi 851-01 Japan