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ON THE NULLITIES OF KAHLER C-SPACES IN /VC)

By

Yoshio Kim lira

Let Mbe a Kahler C-space which Is holomorphically and isometrically imbedded

in an N-dimensional complex projective space Pjv(C). Then M is a minimal sub-

manifold of Pn(C). Let na(M) be the analytic nullity of M which was defined in

[2]. We know that the nullity n{M) of M is equal to na{M) if M is a Hermitian

symmetric space (Kimura [2]). In this note we prove that w(M)-=na(M) for any

Kahler C-space M.

By a theorem of Simons [5], the nullity of a Kahler submanifold coincides

with the real dimension of the space of holomorphic sections of a normal bundle

of the submanifold. Put M=G/U where G is a complex semi-simple Lie group

and U is a parabolic subgroup of G. By a result of Nakagawa and Takagi [4], we

know that every imbedding of M in Pn(C) is induced by a holomorphic linear

representation of G. From this result we see that the normal bundle N(M) over

M is a homogeneous vector bundle.

We prove Theorem 1 which generalizes the generalized Borel-Weil theorem of

Bott [1]. Applying the theorem to calculate the dimension of the space of holo-

morphic sections of N(M) and prove that n(M) = na(M).

The auther proved the above result before Proffesor Takeuchi gave another

proof of it. His proof does not use Theorem 1 and is more simple than our proof

(c.f.Takeuchi [6]).

§1. The generalization of Bott's result-

Let G be a simply connected compact semi-simple Lie group with Lie algebra

8. Take a Cartan subalgebra I) of 0. Denoto by A the root system of g with respect

to fy We fix a linear order on the real vector space spaned by the elements ereA.

Let A+ (resp. A~)be the set of all positive(resp. negative) roots. Let IT = {au･･･,ai)

be the fundamental root system, where /is the rank of g and IL. be a subsystem

of II. We put

Aj-JaeA; a ―
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A(n')={/96A; /3= J] intm, ?%>0 for some o^II'i}

A(u)= A,uA(n+).

Define Lie subalgebras cji,n1 and u of b by

nT =

/S£i(n

+
)

≪i(u)

where qa Is the root space corresponding to ≪eA. Then cjj(resp. n+) is a reductive

(resp. nilpotent)subalgebra of S and u = gi4-n+(semi-direct). Let U be the connected

Lie subgroup of G with Lie algebra u. Then U is a parabolic Lie subgroup of G,

and M=G/U is a Kahler C-space.

We denote by D (resp. A) the set of dominant integral forms of fl(resp. e?i).

Let c Di. Then there exists the irreducible representation (/o]_f,PF_f) of Qi with

the.lowest weight ―?. We extend it to a representation of u so that its restriction

to n+ is trivial,which will be denoted by (p_?, W-i). There exists a representation

of U which induces the representation {ps, W-s) and we denote it by {ps, W-s).

Let (v, V) be a holomorphic representation of G. We denote by ((v＼u)<S>p-s,V<g)W-?)

the tensor product of the representations (v＼UtV) and (p.-s,W-?) of U. We also

denote by Es the holomorphic vector bundle over M associated to the principal

bundle G―>M by a representation of U on S. For a holomorphic vector bundle

E over M, we denote by QE the sheaf of germs of local holomorphic sections of

E. We shall consider the cohomology groups Hj(M, QEvRw__$)-

Let Whe the Weyl group of g and A^ the set of all positive roots of A1# We

define a subset W1 of W by

P7i= {ffep7;(T-i(A1+)cA+}.

Let 8 be the half of sum of all positive roots of g.

Theorem 1. Let feA and (v, V) be a holomorphic representation of G. If

f+<5 is not regular, then

W{M, £Eiw_{) = (0) for all i = O,l,･･･.

/f $-＼-dis regular, f+5 fs expressed uniquely as $+8=a(?.+8), where AeD and <tgPF1,

W(M, QEV9W.) = (0) for all 7>w(a),
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where n(a) is the index of a and (v-i, V-x) is the irreducible G-module with the

lowest weight ―A,

If (v, V) is the trivialrepresentation of G, the theorem coincides with the

generalized Borel-Weil theorem of Bott [1].

We prepare some lemmas to prove thistheorem. Let (/, S) be a representatior.

of u and let Hj{＼＼＼S) be the j-th cohomology group formed with respect to the

representation / j,+ of n+ on S. We may regard Hj(n+, S) as Qi-module in a canoni-

cal way. We denote by //･7(rt＼S')°the subspace of HJ(n+, S) annihilated by all

Xgql We may easily get the following lemma from theorems of Bott [1].

Lemma 1. Let XqD. Then

the multiplicityof vx in Hj{M, OEv^,w_()

=dim HJ(n＼ Horn (V＼ VR W-())° for y = 0,1,･･-,

where (v＼ Vx) is an irreduciblerepresentation of a,with the highest weight 1.

Since the representation (p-e|n+, W-i-)is trivial,we have

W(n＼ HornCFS V0W.e))

= FP{m+, V-.&VRW-.e))

= /f(tt+,V-x<g)V)RW-e.

From Schur's lemma we have

6＼mW{v.＼ Flora{Vk, VRW-())°

^=the multiplicity of i^ in IP{＼v, V-X(&V),

where vc＼is an irreducible representation of cu with the highest weight £.

Lemma 2. Let AgD. Then

the multiplicityof vl in Hj(M, QEv^w^)

―the multiplicityof v^ in Hj(n+, V-xRV).

Now we recall Kostant's result of Lie algebra cohomology,

Theorem of Kostant ([3]). Let ZeD. Then fa-module PP(n+, Vx) is decomposed

into direct sums:

W(n+, Vl)= E @WaUid)~d,
o£WUi)
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where W＼j) ―{a£＼＼n; n{o)=j) and {v''u W") is the irreducible representation of at

with the highest weight ft.

Proof op Theorem 1. Assume that the multiplicityof v(iinl.l'(nl,Vr),yeD,

is not 0. By the above theorem there exists an element a ＼V＼j)so that $+8 ―

a(y+o). Since y+o is regular, $+8 is also regular. Therefore by Lemma 2 we see

that if |+() is not regular then IP(M, QEvRw_() ―(0) for any ;.

Assume thatf4-<5is regular. Then $+o is expressed uniquely as ^+8 ―a(X+o),

where AqD and <7 W1 (Kostant [3]). If j*?n(a), we see immedietly that IF(M,

QEvzw-^ ―iR) by Lemma 2 and Theorem of Kostant.

Let Gu be a maximal compact subgroup of G. Denote by ^ the character of

a representation <f>of G. Then by Theorem of Kostant we get the following:

the multiplicity of 'A in Hn(-a＼＼v,V-r(g)V)

= the multiplicity of vx in F_r(x)F

r

= ＼ & ■i*■V(k
Jgu

= the multiplicity of yr In V(x)V~i,

where dg is the normalized Haar measure on Gu. Therefore by Lemma 2, we get

Hn(a＼M, {1EV&W_J=VRV^ (as G-module). Q.E.D.

§2. Proof of the main theorem.

We retain the same notations and assumptions introduced in §1. Let A be an

integral form such that (//,ca)= 0 for oaGlIi and (A, a/)>0 for a$f[i. We denote

by (oA, VA) the irreducible representation of G with highest weight A. Let P(VA)

be the complex projective space consisting of all l-dimensional subspace of VA.

Since the dimension of the weight space (v) in VA correspanding to the highest

weight A is equal to 1,(v) is an element of P(VA). Moreover G acts canonically

on P(VA) via the representation {vA, VA), and it is known that U coincides with

the isotropy subgroup of G at (v). Therefore we get a G-equivariant imbedding

fA: M―G/U >P{VA). Since vA is an irreducible representation,fA is a full im-

bedding. Conversely every full Kahler imbedding of a Kahler C-space M in Pn(C)

is obtained in this way (Nakagawa and Takagi [41).

Theorem 2. Let M=(i/U be a Kdhler C-apace fully imbedded in Pn(C). Then

the nullityn(M) of M in Pn(C) is given by

w(M) = dim≪a(/VC))-dim≪(M),
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where a(Pn(C)) {resp. a(M)) is the vector space of all analytic vector fields on Pn(C)

(resp. M).

Proof. Assume that the imbedding of M in Pn{C) is induced by the irredu-

cible representation (v'＼VA), AqD and dim VA = n + l, of G. Denote by (h, (v)) the

representation of U on (v) induced by i>Aand denote by (A*, (v)*) the contragredient

representation of {h, (y)). Then we get the following exact sequence of ^/-modules:

0 ―> (v)R(v)* ― 7R(f)* ―+ VR(v)*/(v)R(v)* ― 0.

It is easy to see that EvRw*/(.v^w*=T(Pn(C))＼M- Therefore we get the following

exact sequence of holomorphic vector bundles over M:

0 ―, i ― eV9W. ■―>T(Pn(C))＼M―* 0 ,

where 1 is the trivialline bundle over M. Since Mis a Kahler C-space, H＼M, til)

= (0). Therefore we get the following exact esquence of cohomology groups:

0 ― H°(M, 01) ―> H°(M, S)Emw) ―> H＼M, fJ(T(Pn(C)＼M))―> 0 .

Since the lowest weight of (h*, (v)*) is ―A, it follows, by Theorem 1, that I1°(M,

QEV9lv>*)=V(g)V-.t as G-modules. It is obvious that dim//°(M, 01) = 1. Therefore

we get

dim IP(M, 0(7＼/>B(C))U))= (≪+ l)2-l ･

Since dim≪o(PB(C)=2{(≪ + l)8-l}, we get

(1) dimRH＼M, 0(r(PB(C))U)) = dim≪Q(PB(C)).

The exact sequence of holomorphic vector bundles over M:

0 ―> T(M) ―y T(Pn{C))＼M―> N(M) ― + 0

and H＼M, L>T(M)) = (Q) (Bott [1])induce the following exact sequence of cohomology

groups:

( 2 ) 0 ― H＼M, DT(M)) ―> H＼M, Q{T{Pn{C)＼M)) ―> H＼M, QN{M)) ―> 0 .

Recall that the nullity n{M) of M is given by

(3) n(M)=dimRFP(M, QN(M))

(Kimura [2]). From (1),(2),(3) and d＼n＼RH＼M, 07XM))=dim*a(M), we get

n(M) = d＼mRa(Pn(C))-dimRa(M)

Q.E.D.

From the above theorem and Lemma 3.4 in Kimura [2] we have the following

result.
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Corollary.

bedded in PN(C).

Yoshio Kimura

Let M he a Kahler C-space holomorphically and isometricallyim

Then

n(M) = nJM).
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