ON THE NULLITIES OF KÄHLER C-SPACES IN $P_{M}(C)$

By
Yoshio Kimura

Let M be a Kähler C-space which is holomorphically and isometrically imbedded in an N -dimensional complex projective space $P_{N}(\boldsymbol{C})$. Then M is a minimal submanifold of $P_{N}(\boldsymbol{C})$. Let $n_{a}(M)$ be the analytic nullity of M which was defined in [2]. We know that the nullity $n(M)$ of M is equal to $n_{\alpha}(M)$ if M is a Hermitian symmetric space (Kimura [2]). In this note we prove that $n(M)=\mathrm{n}_{a}(M)$ for any Kähler C-space M.

By a theorem of Simons [5], the nullity of a Kähler submanifold coincides with the real dimension of the space of holomorphic sections of a normal bundle of the submanifold. Put $M=G / U$ where G is a complex semi-simple Lie group and U is a parabolic subgroup of G. By a result of Nakagawa and Takagi [4], we know that every imbedding of M in $P_{N}(\mathbb{C})$ is induced by a holomorphic linear representation of G. From this result we see that the normal bundle $N(M)$ over M is a homogeneous vector bundle.

We prove Theorem 1 which generalizes the generalized Borel-Weil theorem of Bott [1]. Applying the theorem to calculate the dimension of the space of holomorphic sections of $N(M)$ and prove that $n(M)=n_{a}(M)$.

The auther proved the above result before Proffesor Takeuchi gave another proof of it. His proof does not use Theorem 1 and is more simple than our proof (c.f. Takeuchi [6]).

§ 1. The generalization of Bott's result.

Let G be a simply connected compact semi-simple Lie group with Lie algebra g. Take a Cartan subalgebra \mathfrak{h} of \mathfrak{g}. Denoto by Δ the root system of \mathfrak{g} with respect to \mathfrak{h}. We fix a linear order on the real vector space spaned by the elements $\alpha \in \Delta$. Let Δ^{+}(resp. Δ^{-}) be the set of all positive (resp. negative) roots. Let $\Pi=\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$ be the fundamental root system, where l is the rank of g and Π_{1} be a subsystem of Π. We put

$$
\Delta_{1}=\left\{\alpha \in \Delta ; \alpha=\sum_{i=1}^{1} m_{i} \alpha_{i}, m_{j}=0 \quad \text { for any } \quad \alpha_{j} \notin \Pi_{1}\right\}
$$

Received June 9, 1978

$$
\begin{aligned}
& \Delta\left(\mathrm{n}^{+}\right)=\left\{\beta \in \Delta ; \beta=\sum_{i=1}^{1} m_{i} \alpha_{i}, m_{j}>0 \text { for some } \alpha_{j} \notin \Gamma_{1}\right\} \\
& \Delta(\mathrm{n})=\Delta_{1} \cup \Delta\left(\mathfrak{n}^{+}\right) .
\end{aligned}
$$

Define Lie subalgebras g_{1}, n^{+}and n of g by

$$
\begin{aligned}
& \mathfrak{a}_{1}=\mathfrak{h}+\sum_{\alpha \in \Delta_{1}} g_{\alpha} \\
& \mathfrak{n}^{+}=\sum_{\beta \in \Delta(n+)} \mathfrak{q}_{\beta} \\
& \mathfrak{u}=\mathfrak{h}+\sum_{\alpha \in \Delta(u)} g_{\alpha}
\end{aligned}
$$

where g_{α} is the root space corresponding to $\alpha \in \Delta$. Then g_{1} (resp. \mathfrak{n}^{+}) is a reductive (resp. nilpotent) subalgebra of 9 and $u=g_{1}+\mathfrak{n}^{+}$(semi-direct). Let U be the connected Lie subgroup of G with Lie algebra $n_{\text {. Then }} U$ is a parabolic Lie subgroup of G, and $M=G / U$ is a Kähler C-space.

We denote by D (resp. D_{1}) the set of dominant integral forms of g (resp. g_{1}). Let $\xi \in D_{1}$. Then there exists the irreducible representation $\left(\rho_{-\xi}^{1}, W_{-\xi}\right)$ of g_{1} with the lowest weight $-\xi$. We extend it to a representation of 11 so that its restriction to n^{+}is trivial, which will be denoted by ($\rho_{-\xi}, W_{-\xi}$). There exists a representation of U which induces the representation $\left(\rho_{-\xi}, W_{-\xi}\right)$ and we denote it by ($\left.\tilde{\rho}_{-\xi}, W_{-\xi}\right)$. Let (ν, V) be a holomorphic representation of G. We denote by $\left(\left(\left.\nu\right|_{U}\right) \otimes \tilde{\rho}_{-\xi}, V \otimes W_{-\xi}\right)$ the tensor product of the representations $\left(\left.\nu\right|_{U}, V\right)$ and $\left(\tilde{\rho}_{-\xi}, W_{-\xi}\right)$ of U. We also denote by E_{S} the holomorphic vector bundle over M associated to the principal bundle $G \longrightarrow M$ by a representation of U on S. For a holomorphic vector bundle E over M, we denote by ΩE the sheaf of germs of local holomorphic sections of E. We shall consider the cohomology groups $H^{j}\left(M, \Omega E_{V \otimes W_{-\xi}}\right)$.

Let W be the Weyl group of g and $\Delta_{1}{ }^{+}$the set of all positive roots of Δ_{1}. We define a subset W^{1} of W by

$$
W^{1}=\left\{\sigma \in W ; \sigma^{-1}\left(\Delta_{1}^{+}\right) \subset \Delta^{+}\right\}
$$

Let δ be the half of sum of all positive roots of g.

Theorem 1. Let $\xi \in D_{1}$ and (ν, V) be a holomorphic representation of G. If $\xi+\delta$ is not regular, then

$$
H^{j}\left(M, \Omega E_{V \otimes W_{-\xi}}\right)=(0) \quad \text { for all } \quad j=0,1, \cdots
$$

If $\xi+\delta$ is regular, $\xi+\delta$ is expressed uniquely as $\xi+\delta=\sigma(\lambda+\delta)$, where $\lambda \in D$ and $\sigma \in W^{1}$, and

$$
H^{j}\left(M, \Omega E_{V \otimes W \ldots \xi}\right)=(0) \text { for all } j \neq n(\sigma)
$$

$$
H^{n(\sigma)}\left(M, \Omega E_{V \otimes W_{-\xi}}\right)=V \otimes V_{-\lambda} \quad \text { (as G-module) },
$$

where $n(\sigma)$ is the index of σ and $\left(\nu_{-\lambda}, V_{-2}\right)$ is the irreducible G-module with the lowest weight - λ.

If (ν, V) is the trivial representation of G, the theorem coincides with the generalized Borel-Weil theorem of Bott [1].

We prepare some lemmas to prove this theorem. Let (f, S) be a representation of \mathfrak{u} and let $H^{j}\left(\mathfrak{n}^{+}, S\right)$ be the \mathfrak{j}-th cohomology group formed with respect to the representation $\left.f\right|_{n^{+}}$of \mathfrak{n}^{+}on S. We may regard $H^{j}\left(\mathfrak{n}^{+}, S\right)$ as $\mathfrak{g}_{1}-$ module in a canonical way. We denote by $H^{j}\left(\mathfrak{n}^{+}, S\right)^{0}$ the subspace of $H^{j}\left(\mathfrak{n}^{+}, S\right)$ annihilated by all $X \in g_{1}$. We may easily get the following lemma from theorems of Bott [1].

Lemma 1. Let $\lambda \in D$. Then

$$
\begin{aligned}
& \text { the multiplicity of } \nu^{\lambda} \text { in } H^{j}\left(M, \Omega E_{V \otimes W_{-\xi}}\right) \\
& =\operatorname{dim} H^{j}\left(\mathfrak{n}^{+}, \operatorname{Hom}\left(V^{\lambda}, V \otimes W_{-\xi}\right)\right)^{0} \text { for } j=0,1, \cdots,
\end{aligned}
$$

where $\left(\nu^{\lambda}, V^{\lambda}\right)$ is an irreducible representation of \mathfrak{g} with the highest weight λ.
Since the representation ($\left.\rho_{-\xi}\right|_{n^{+}}, W_{-\xi}$) is trivial, we have

$$
\begin{aligned}
& H^{j}\left(\mathfrak{1 1}^{+}, \operatorname{Hom}\left(V^{\lambda}, V \otimes W_{-\xi}\right)\right) \\
= & \left.H^{j}\left(1^{+}, V V_{-k} \otimes V \otimes W_{-\xi}\right)\right) \\
= & H^{j}\left(\mathfrak{n}^{+}, V_{-k} \otimes V\right) \otimes W_{-\xi} .
\end{aligned}
$$

From Schur's lemma we have

$$
\begin{aligned}
& \operatorname{dim} H^{j}\left(\mathfrak{n}^{\dagger}, \operatorname{Hom}\left(V^{i}, V \otimes W_{-\xi}\right)\right)^{0} \\
= & \text { the multiplicity of } \nu^{\xi} \text { in } H^{j}\left(\mathfrak{n}^{\dagger}, V_{-\lambda} \otimes V\right),
\end{aligned}
$$

where ν_{1} is an irreducible representation of g_{1} with the highest weight ξ.
Lemma 2. Let $\lambda \in D$. Then

$$
\begin{aligned}
& \text { the multiplicity of } \nu^{2} \text { in } H^{j}\left(M, \Omega E_{V \otimes W_{-\xi}}\right) \\
= & \text { the multiplicity of } \nu^{\xi} \text { in } H^{j}\left(\mathfrak{n}^{+}, V_{-2} \otimes V\right) .
\end{aligned}
$$

Now we recall Kostant's result of Lie algebra cohomology.
Theorem of Kostant ([3]). Let $\lambda \in D$. Then $\mathfrak{g}_{1}-$ module $H^{j}\left(\mathfrak{n}^{+}, V^{2}\right)$ is decomposed into direct sums:

$$
H^{j}\left(\mathfrak{n}^{+}, V^{\lambda}\right)=\sum_{\sigma € W^{1}(j)} \oplus W^{\sigma(\lambda+\hat{\sigma})-\dot{o}},
$$

where $W^{1}(j)=\left\{\omega \in W^{1} ; n(\sigma)=j\right\}$ and $\left(\nu^{\prime \prime}, W^{\prime \prime}\right)$ is the irreducible representation of a_{1} with the highest weight μ.

Proof of Theorem 1. Assume that the multiplicity of ν^{s} in $H^{j}\left(n^{+}, V^{\gamma}\right), \gamma \in D$, is not 0 . By the above theorem there exists an element $\sigma \in W^{1}(j)$ so that $\xi+\delta=$ $\sigma(\gamma+j)$. Since $\gamma+\delta$ is regular, $\xi+\delta$ is also regular. Therefore by Lemma 2 we see that if $\xi+\delta$ is not regular then $H^{j}\left(M, \Omega E_{V \otimes W_{-\xi}}\right)=(0)$ for any j.

Assume that $\xi+\delta$ is regular. Then $\xi+\bar{\delta}$ is expressed uniquely as $\xi+\delta=\sigma(\lambda+\delta)$, where $\lambda \in D$ and $\sigma \in W^{1}$ (Kostant [3]). If $j \neq n(\sigma)$, we see immedietly that $H^{j}(M$, $\left.\Omega E_{V \otimes W_{-i}}\right)=(0)$ by Lemma 2 and Theorem of Kostant.

Let G_{x} be a maximal compact subgroup of G. Denote by χ_{ϕ} the charactor of a representation ϕ of G. Then by Theorem of Kostant we get the following:

$$
\begin{aligned}
& \text { the multiplicity of } \nu_{1} \text { in } H^{n(o)}\left(n^{+}, V_{-r} \otimes V\right) \\
= & \text { the multiplicity of } \nu^{2} \text { in } V_{-r} \otimes V \\
= & \int_{G_{u}} \bar{\chi}_{\nu} \cdot \chi_{\nu} \cdot \bar{\chi}_{\nu} \cdot d g \\
= & \text { the multiplicity of } \nu^{r} \text { in } V \otimes V_{-\lambda},
\end{aligned}
$$

where $d g$ is the normalized Haar measure on G_{u}. Therefore by Lemma 2, we get

$$
H^{n(\sigma)}\left(M, Q E_{V_{Q} W_{--\xi}}\right)=V \otimes V_{-\lambda} \quad \text { (as G-module). Q.E.D. }
$$

§2. Proof of the main theorem.

We retain the same notations and assumptions introduced in $\S 1$. Let A be an integral form such that $\left(\Lambda, \alpha_{i}\right)=0$ for $\alpha_{i} \in I \Pi_{1}$ and $\left(\Lambda, \alpha_{j}\right)>0$ for $\alpha_{j} \ddagger \Pi_{1}$. We denote by $\left(\tilde{\Sigma}^{4}, V^{4}\right)$ the irreducible representation of G with highest weight A. Let $P\left(V^{A}\right)$ be the complex projective space consisting of all 1 -dimensional subspace of V^{4}. Since the dimension of the weight space (v) in V^{A} correspanding to the highest weight A is equal to $1,(v)$ is an element of $P\left(V^{A}\right)$. Moreover G acts canonically on $P\left(V^{4}\right)$ via the representation $\left(i^{4}, V^{4}\right)$, and it is known that U coincides with the isotropy subgroup of G at (v). Therefore we get a G-equivariant imbedding $f^{A}: M=G / U \longrightarrow P\left(V^{4}\right)$. Since \dot{u}^{1} is an irreducible representation, f^{1} is a full imbedding. Conversely every full Kähler imbedding of a Kähler C-space M in $P_{n}(\boldsymbol{C})$ is obtained in this way (Nakagawa and Takagi [4]).

Theorem 2. Let $M=G / U$ be a Kähler C-space fully imbedded in $P_{n}(\boldsymbol{C})$. Then the nullity $n(M)$ of M in $P_{n}(C)$ is given by

$$
n(M)=\operatorname{dim}_{R} a\left(P_{n}(C)\right)-\operatorname{dim}_{R}(M)
$$

where $\mathfrak{a}\left(P_{n}(\boldsymbol{C})\right)($ resp. $\mathfrak{a}(M))$ is the vector space of all analytic vector fields on $P_{n}(\boldsymbol{C})$ (resp. M).

Proof. Assume that the imbedding of M in $P_{n}(\boldsymbol{C})$ is induced by the irreducible representation $\left(\tilde{\nu}^{d}, V^{4}\right), A \in D$ and $\operatorname{dim} V^{A}=n+1$, of G. Denote by $(h,(v))$ the representation of U on (v) induced by $\dot{\nu}^{1}$ and denote by $\left(h^{*},(v)^{*}\right)$ the contragredient representation of $(h,(v))$. Then we get the following exact sequence of U-modules:

$$
0 \longrightarrow(v) \otimes(v)^{*} \longrightarrow V \otimes(v)^{*} \longrightarrow V \otimes(v)^{*} /(v) \otimes(v)^{*} \longrightarrow 0 .
$$

It is easy to see that $E_{V \otimes(v)^{* /(v) \otimes(v)^{*}}}=T\left(\left.P_{n}(\boldsymbol{C})\right|_{M}\right.$. Therefore we get the following exact sequence of holomorphic vector bundles over M :

$$
\left.0 \longrightarrow 1 \longrightarrow E_{V \otimes(v)^{*}} \longrightarrow T\left(P_{n}(\boldsymbol{C})\right)\right|_{M} \longrightarrow 0,
$$

where 1 is the trivial line bundle over M. Since M is a Kähler C-space, $H^{1}(M, \Omega 1)$ $=(0)$. Therefore we get the following exact esquence of cohomology groups:

$$
0 \longrightarrow H^{0}(M, \Omega 1) \longrightarrow H^{0}\left(M, \Omega E_{V \otimes(v)^{*}}\right) \longrightarrow H^{0}\left(M, \Omega\left(T\left(\left.P_{n}(\mathbb{C})\right|_{M}\right)\right) \longrightarrow 0 .\right.
$$

Since the lowest weight of $\left(h^{*},(v)^{*}\right)$ is $-\Lambda$, it follows, by Theorem 1, that $H^{0}(M$, $\left.\Omega E_{V \otimes(v)^{*}}\right)=V \otimes V_{-i}$ as G-modules. It is obvious that $\operatorname{dim} H^{0}(M, \Omega 1)=1$. Therefore we get

$$
\operatorname{dim} H^{0}\left(M, \Omega\left(\left.T\left(P_{n}(\boldsymbol{C})\right)\right|_{n}\right)\right)=(n+1)^{2}-1 .
$$

Since $\operatorname{dim}_{\boldsymbol{R}} \mathfrak{a}\left(P_{n}(\boldsymbol{C})=2\left\{(n+1)^{2}-1\right\}\right.$, we get

$$
\begin{equation*}
\operatorname{dim}_{\boldsymbol{R}} H^{0}\left(M, \Omega\left(T\left(P_{n}(\boldsymbol{C})\right)| |_{n}\right)\right)=\operatorname{dim}_{\boldsymbol{R}} \mathfrak{a}\left(P_{n}(\boldsymbol{C})\right) . \tag{1}
\end{equation*}
$$

The exact sequence of holomorphic vector bundles over M :

$$
\left.0 \longrightarrow T(M) \longrightarrow T\left(P_{n}(\boldsymbol{C})\right)\right|_{M} \longrightarrow N(M) \longrightarrow 0
$$

and $H^{1}(M, \Omega T(M))=(0)$ (Bott [1]) induce the following exact sequence of cohomology groups:
(2) $0 \longrightarrow H^{0}(M, \Omega T(M)) \longrightarrow H^{0}\left(M, \Omega\left(T\left(\left.P_{n}(C)\right|_{M}\right)\right) \longrightarrow H^{\circ}(M, \Omega N(M)) \longrightarrow 0\right.$.

Recall that the nullity $n(M)$ of M is given by

$$
\begin{equation*}
n(M)=\operatorname{dim}_{R} H^{0}(M, \Omega N(M)) \tag{3}
\end{equation*}
$$

(Kimura [2]). From (1), (2), (3) and $\operatorname{dim}_{\boldsymbol{R}} H^{0}(M, \Omega T(M))=\operatorname{dim}_{\boldsymbol{R}} \alpha(M)$, we get

$$
n(M)=\operatorname{dim}_{\boldsymbol{R}} \mathfrak{a}\left(P_{n}(\mathbb{C})\right)-\operatorname{dim}_{\boldsymbol{R}} \mathfrak{a}(M)
$$

From the above theorem and Lemma 3.4 in Kimura [2] we have the following result.

Corollary. Let M be a Kähler C-space holomorphically and isometrically imbedded in $P_{N}(C)$. Then

$$
n(M)=n_{a}(M)
$$

References

[1] Bott, R., Homogeneous vector bundles, Ann. of Math., 66 (1957), 203-248.
[2] Kimura, Y., The nullity of compact Kähler submanifolds in a complex projective space, J. Math. Soc. Japan, 29 (1977), 561-580.
[3] Kostant, B., Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math., 74 (1961), 329-387.
[4] Nakagawa H. and Takagi, R., On locally symmetric Kaehler submanifolds in a complex projective space, J. Math. Soc. Japan, 28 (1976), 638-667.
[5] Simons, J., Minimal varieties in Riemannian manifolds, Ann. of Math., 88 (1968), 62-105.
[6] Takeuchi, M., Homogeneous Kähler submanifolds in complex projective spaces, Japan. J. Math. 4, (1978), 171-219.

Nagasaki Institute of Applied Science
Abamachi, Nagasaki-shi 851-01 Japan

