ON THE GAUSS MAP OF COMPLETE SPACE-LIKE HYPERSURFACES OF CONSTANT MEAN CURVATURE IN MINKOWSKI SPACE

By
Reiko Aiyama

§ 1. Introduction.

Let \boldsymbol{R}_{1}^{n+1} be the ($n+1$)-dimensional Minkowski space, that is, \boldsymbol{R}^{n+1} with the Lorentz metric $\langle\rangle=,\left(d x_{1}\right)^{2}+\cdots+\left(d x_{n}\right)^{2}-\left(d x_{n+1}\right)^{2}$. It has been known that in \boldsymbol{R}_{1}^{n+1} hyperplanes are the only complete space-like hypersurfaces whose mean curvatures are zero. This Bernstein type theorem was proposed by Calabi, and solved by him [3] (for $n \leqq 4$) and by Cheng and Yau [5] (for all n) (see also Ishihara [10] or Nishikawa [14]). On the other hand, for complete space-like hypersurfaces of nonzero constant mean curvature in \boldsymbol{R}_{1}^{n+1}, there are many nonlinear examples constructed by Treibergs [18], Hano and Nomizu [7], Ishihara and Hara [11] and others.

In his recent paper, Palmer [17] discussed the Gauss map of a complete space-like hypersurface of constant mean curvature in \boldsymbol{R}_{1}^{n+1} and showed a condition for the hypersurface to be a hyperplane. This is a result analogous to the one obtained by Hoffman, Osserman and Schoen [9], who proved that the normals to a complete surface of constant mean curvature in the 3-dimensional Euclidean space \boldsymbol{E}^{3} cannot lie in a closed hemisphere of \boldsymbol{S}^{2}, unless the surface is a plane or a right circular cylinder. Note that a right circular cylinder is the simplest example of a complete non-umbilical surface of constant mean curvature in \boldsymbol{E}^{3}.

In \boldsymbol{R}_{1}^{n+1} the simplest example of a complete non-umbilical space-like hypersurface of constant mean curvature is given by the following:

$$
\begin{aligned}
& \boldsymbol{H}^{k}(c) \times \boldsymbol{R}^{n-k} \\
& =\left\{\left(x_{1}, \cdots, x_{n}, x_{n+1}\right) \in \boldsymbol{R}_{1}^{n+1} ;\left(x_{n-k+1}\right)^{2}+\cdots+\left(x_{n}\right)^{2}-\left(x_{n+1}\right)^{2}=\frac{1}{c}, x_{n+1}>0\right\},
\end{aligned}
$$

where c is a negative number and $k=1,2, \cdots, n-1$. In particular, $\boldsymbol{H}^{1}(c) \times \boldsymbol{R}^{n-1}$ is called a hyperbolic cylinder.

Received May 1, 1991, Revised October 23, 1991.

Recently, Ki, Kim and Nakagawa [12] characterized hyperbolic cylinders as the only complete space-like hypersurfaces of non-zero constant mean curvature in R_{1}^{n+1} for which the norm of the second fundamental form is maximal. Moreover, when $n=2$, K. Milnor [13] and Yamada [19] showed that the hyperbolic cylinder $\boldsymbol{H}^{1}(c) \times \boldsymbol{R}^{1}$ is the only "uniformly" non-umbilical surface among complete space-like surfaces of non-zero constant mean curvature, and the author gave another proof of this theorem [2].

In this paper, we shall improve the Palmer's theorem and characterize the hyperbolic cylinder in \boldsymbol{R}_{1}^{n+1} by a method similar to the one employed by Hoffman et al [9]. In fact, we shall make use of the distance function of the hyperbolic space constructed by Cecil and Ryan [4].

The author would like to thank Professor Hisao Nakagawa for his helpful suggestions.

§2. The theorems.

Throughout this paper, we assume manifolds to be connected and geometric objects to be smooth.

Let M be a complete space-like hypersurface of constant mean curvature H in \boldsymbol{R}_{1}^{n+1} and η be the time-like unit normal field of M. For each point p in M we regard $\eta(p)$ as a point in the n-dimensional hyperbolic space $\boldsymbol{H}^{n}=\boldsymbol{H}^{n}(-1)$ in \boldsymbol{R}_{1}^{n+1}. Then Palmer's theorem (in [17]) can be improved in the following fashion:

Theorem 1. Let M be a complete space-like hypersurface of constant mean curvature \boldsymbol{R}_{1}^{n+1}. If $\eta(M)$ is contained in a geodesic ball in \boldsymbol{H}^{n}, then M is a hyperplane in \boldsymbol{R}_{1}^{n+1}.

A geodesic ball of radius r centered at $\bar{\eta}$ in \boldsymbol{H}^{n} is denoted by $B_{r}(\bar{\eta})$. The distance in \boldsymbol{H}^{n} from $\bar{\eta}$ to x is given by

$$
L_{\bar{\eta}}(x)=\cosh ^{-1}(-\langle\bar{\eta}, x\rangle) .
$$

This distance function $L_{\bar{\eta}}$ on \boldsymbol{H}^{n} has, as level sets, compact totally unbilic hypersurfaces (geodesic spheres), and $B_{r}(\bar{\eta})$ is given by

$$
B_{r}(\bar{\eta})=\left\{x \in \boldsymbol{H}^{n} ; L_{\bar{\eta}}(x)<r\right\} .
$$

It is clear that hyperplanes are the only space-like hypersurfaces for which $\eta(M)$ coincide with one point.

On the other hand, $\eta\left(\boldsymbol{H}^{k}(c) \times \boldsymbol{R}^{n-k}\right)$ is a complete totally geodesic k-dimen:
tional submanifold in \boldsymbol{H}^{n}, which is called a k-plane in \boldsymbol{H}^{n}. In particular, an ($n-1$)-plane in \boldsymbol{H}^{n} is called a hyperplane in \boldsymbol{H}^{n} and a parametrized 1-plane in \boldsymbol{H}^{n} is a maximal geodesic in \boldsymbol{H}^{n}.

We can define a tubular neighborhood $U_{r}(\pi)$ of radius r around a k-plane π in \boldsymbol{H}^{n}. For each x in \boldsymbol{H}^{n}, there is a unique shortest geodesic γ in \boldsymbol{H}^{n} from x to π. Let $L_{\pi}(x)$ denote the length of γ and define $U_{r}(\pi)$ by

$$
U_{r}(\boldsymbol{\pi})=\left\{x \in \boldsymbol{H}^{n} ; L_{\pi}(x)<r\right\} .
$$

Then a characterization of the hyperbolic cylinder is obtained as follows.
Theorem 2. Let M be a complete space-like hypersurface of non-zero constant mean curvature in \boldsymbol{R}_{1}^{n+1}. If $\eta(M)$ is contained in $U_{r}(\beta)$ for some $r>0$ and for some maximal geodesic β on \boldsymbol{H}^{n}, then M is congruent to a hyperbolic cylinder $\boldsymbol{H}^{1}(c) \times \boldsymbol{R}^{n-1}$.

This theorem is an immediate consequence of the next proposition.
Proposition. Let M be a complete space-like hypersurface of constant mean curvature in \boldsymbol{R}_{1}^{n+1}. If $\eta(M)$ is contained in $U_{r}(\pi)$ for some $r>0$ and for some k-plane π of \boldsymbol{H}^{n}, then $\eta(M)$ is contained in π and at least $(n-k)$-principal curvatures of M are zero at any point of M.

Remark. Theorem 2 can be proved by a theorem obtained by Choi and Treibergs [6], if we note that complete space-like hypersurfaces in \boldsymbol{R}_{1}^{n+1} are entire. Furthermore, Theorem 1 can also follow from the Liouville theorem for harmonic mappings of Riemannian manifolds, which is proved by Hildebrandt, Jost and Widman in [8]. But our proofs do not depend on these facts, and we shall consistently make use of the generalized maximum principle on a complete Riemannian manifold.

§ 3. Preliminaries.

As in $\S 2$, let M be a complete space-like hypersurface of constant mean curvature H in $\boldsymbol{R}_{1}^{n+1}, \eta$ be the time-like unit normal field of M.

We choose a local field of orthonormal frames $e_{1}, e_{2}, \cdots, e_{n}$ on M and let $\omega_{1}, \omega_{2}, \cdots, \omega_{n}$ denote the dual coframes on M. We shall use the summation convention with Roman indices in the range $1 \leqq i, j, \cdots \leqq n$. The second fundamental form on M is given by the quadratic form

$$
\alpha=-\sum h_{i j} \omega_{i} \otimes \omega_{j} \otimes \eta
$$

with values in the normal bundle of M. Let D (resp. ∇) denote the Levi-Civita connection of \boldsymbol{R}_{1}^{n+1} (resp. M). Then the Gauss formula and the Weingarten formula are given respectively by

$$
D_{e_{i} e_{j}}=\nabla_{e_{i} e_{j}-h_{i j} \eta \quad \text { and } \quad D_{e_{i}} \eta=-\sum_{j} h_{i j} e_{j} ~ . ~}^{\text {. }}
$$

Let $h_{i j k}$ denote the covariant derivative of $h_{i j}$. Then we obtain the Coddazi equation

$$
h_{i j k}=h_{i k j} .
$$

Since the mean curvature H of M is defined by $\Sigma h_{i i} / n$, the norm of α satisfies

$$
\begin{equation*}
|\alpha|^{2} \geqq n H^{2} . \tag{1}
\end{equation*}
$$

Lemma. The Gauss map η is a harmonic map of M into $\boldsymbol{H}^{n} \subset \boldsymbol{R}_{1}^{n+1}$, that is, if $\eta=\left(\eta_{1}, \cdots, \eta_{n}, \eta_{n+1}\right)$ then a Laplacian of each component $\eta_{A}(A=1, \cdots$, $n+1)$ satisfies the following equation;

$$
\begin{equation*}
\Delta \eta_{A}=|\alpha|^{2} \eta_{A} . \tag{2}
\end{equation*}
$$

Proof. Let p be any fixed point in M. Let $\left\{E_{1}, \cdots, E_{n}\right\}$ be an orthonormal local frames about p such that $\left(\nabla_{E_{i}} E_{j}\right)(p)=0(i, j=1, \cdots, n)$. Then we have

$$
E_{i}\left(h_{i j}\right)_{p}=\left(h_{i j i}\right)_{p}=\left(h_{i i j}\right)_{p}, \quad\left(D_{E_{i}} E_{j}\right)_{p}=-\left(h_{i j} \eta\right)_{p}
$$

and, since H is constant,

$$
\begin{aligned}
\left(\Delta \eta_{1},\right. & \left.\cdots, \Delta \eta_{n+1}\right)(p)=\left(\sum_{i} E_{i} E_{i} \eta_{1}, \cdots, \sum_{i} E_{i} E_{i} \eta_{n+1}\right)(p) \\
& =\left(\sum_{i} D_{E_{i}} D_{E_{i}} \eta\right)_{p}=\left(\sum_{i} D_{E_{i}}\left(-\sum_{i} h_{i j} E_{j}\right)\right)_{p} \\
& =\left(-\sum_{i, j} E_{i}\left(h_{i j}\right) E_{j}-h_{i j} D_{E_{i}} E_{j}\right)_{p} \\
& =\left(-\sum_{j} E_{j}(n H) E_{j}+\sum_{i, j}\left(h_{i j}\right)^{2} \eta\right)_{p} \\
& =\left(|\alpha|^{2} \eta\right)_{p} .
\end{aligned}
$$

In order to prove the theorems, we need the following generalized maximum principle theorem due to Omori [15] and Yau [20].

The generalized maximum principle. Let N be a complete Riemannian manifold whose Ricci curvature is bounded from below and let F be a function of class C^{2} on N. If F is bounded from above, then for any $\varepsilon>0$ there exists a point q such that

$$
\begin{equation*}
|\nabla F(q)|<\varepsilon, \quad \Delta F(q)<\varepsilon, \quad F(q)>\sup F-\varepsilon, \tag{3}
\end{equation*}
$$

where $|\nabla F|$ denotes the norm of the gradient ∇F of F.
In the present case, the Ricci curvature is given by

$$
S_{i j}=-n H h_{i j}+\sum_{k} h_{i k} h_{k j}
$$

and hence is bounded from below by $-n^{2} H^{2} / 4$. So we can apply the generalized maximum principle for any C^{2}-function on M which is bounded from above.

§ 4. Proof of the theorems.

In this section, we give the proofs of the previous theorems.
Proof of Theorem 1. The condition $\eta(M) \subset B_{r}(\bar{\eta})$ is equivalent the following inequality valid everywhere on M;

$$
1 \leqq-\langle\eta, \bar{\eta}\rangle\langle\cosh r .
$$

We may assume $\bar{\eta}=(0,0, \cdots, 0,1)$, by applying, if necessary, a Lorentz transformation to M. Then the condition reads

$$
\begin{equation*}
1 \leqq \eta_{n+1}<\cosh \gamma \tag{4}
\end{equation*}
$$

and in particular, η_{n+1} is a smooth function on M which is bounded from above.
From the equation (2) combined with the relation (1), we have

$$
\begin{equation*}
\Delta \eta_{n+1}=|\alpha|^{2} \eta_{n+1} \geqq n H^{2} \eta_{n+1} \tag{5}
\end{equation*}
$$

Let $\left\{\varepsilon_{n}\right\}$ be a convergent sequence such that $\varepsilon_{m}>0$ and $\varepsilon_{m} \rightarrow 0(m \rightarrow \infty)$. Then, by the generalized maximum principle, there is a sequence of points $\left\{q_{n}\right\}$ such that η_{n+1} satisfies (3) at each $q_{m} \in M$ for ε_{m}, i.e.,
(3') $\quad\left|\nabla \eta_{n+1}\left(q_{m}\right)\right|<\varepsilon_{m}, \quad \Delta \eta_{n+1}\left(q_{m}\right)<\varepsilon_{m}, \quad \eta_{n+1}\left(q_{m}\right)>\sup \eta_{n+1}-\varepsilon_{m}$.
Then by the inequality (5),

$$
n H^{2} \eta_{n+1}\left(q_{m}\right)<\varepsilon_{m}
$$

Furthermore, because the sequence $\left\{\eta_{n+1}\left(q_{m}\right)\right\}$ converges to sup η_{n+1}, we have

$$
n H^{2} \sup \eta_{n+1} \leqq 0
$$

Since (4) implies sup $\eta_{n+1} \geqq 1$, it follows from this inequality that the mean curvature H must be zero.

Hence, by the result of Cheng and Yau, M must be a hyperplane.

Proof of Proposition. For the k-plane π in \boldsymbol{H}^{n}, we can choose spacelike orthonormal vectors $\left\{\sigma_{1}, \cdots, \sigma_{n-k}\right\}$ in \boldsymbol{R}_{1}^{n+1} such that

$$
\pi=\left\{x \in \boldsymbol{H}^{n} ;\left\langle x, \sigma_{a}\right\rangle=0(a=1, \cdots, n-k)\right\} .
$$

Let $\pi_{a}(a=1, \cdots, n-k)$ be the hyperplane in \boldsymbol{H}^{n} defined by

$$
\pi_{a}=\left\{x \in \boldsymbol{H}^{n} ;\left\langle x, \sigma_{a}\right\rangle=0\right\} .
$$

The distance in \boldsymbol{H}^{n} from x to a hyperplane π_{a} is then given by

$$
L_{\pi_{a}}(x)=L_{\sigma_{a}}(x)=\left|\sinh ^{-1}\left(-\left\langle x, \sigma_{a}\right\rangle\right)\right| .
$$

Since $U_{r}(\pi)$ is contained in $U_{r}\left(\pi_{a}\right)$ for every a, it follows from the assumption $\eta(M) \subset U_{r}(\pi)$ that the inequalities

$$
-\sinh r<-\left\langle\eta, \sigma_{a}\right\rangle<\sinh r \quad(a=1, \cdots, n-k)
$$

are valid everywhere on M. We may assume

$$
\sigma_{a}=(0, \cdots, 0,1,0, \cdots, 0) \quad(a=1, \cdots, n-k)
$$

by applying a Lorentz transformation to M if necessary. Let F_{a} be a smooth function on M defined by $F_{a}=\left(\left\langle\boldsymbol{\eta}, \sigma_{a}\right\rangle\right)^{2}=\left(\eta_{a}\right)^{2}$. Then the above inequalities imply

$$
\begin{equation*}
0 \leqq F_{a}<\sinh ^{2} r \quad(a=1, \cdots, n-k) \tag{6}
\end{equation*}
$$

and, in particular, F_{a} is bounded from above.
From the equation (2) combined with the relation (1), we have

$$
\begin{gather*}
\Delta \eta_{a}=|\alpha|^{2} \eta_{a} \\
\Delta F_{a}=2\left\{\left|\nabla \eta_{a}\right|^{2}+|\alpha|^{2}\left(\eta_{a}\right)^{2}\right\} \geqq|\alpha|^{2}\left(\eta_{a}\right)^{2} \geqq 2 n H^{2} F_{a} . \tag{7}
\end{gather*}
$$

Let $\left\{\varepsilon_{n}\right\}$ be a convergent sequence such that $\varepsilon_{m}>0$ and $\varepsilon_{m} \rightarrow 0(m \rightarrow \infty)$. Then, by the generalized maximum principle, there is a sequence of points $\left\{q_{m}\right\}$ such that F_{a} satisfies (3) at each q_{m} for ε_{m}, i.e.,

$$
\left|\nabla F_{a}\left(q_{m}\right)\right|<\varepsilon_{m}, \quad \Delta F_{a}\left(q_{m}\right)<\varepsilon_{m}, \quad F_{a}\left(q_{m}\right)<\sup F_{a}-\varepsilon_{m}
$$

Then by the inequality (7),

$$
2 n H^{2} F_{a}\left(q_{m}\right)<\varepsilon_{m} .
$$

Furthermore, because the sequence $\left\{F_{a}\left(q_{m}\right)\right\}$ converges to $\sup F_{a}$, we have

$$
2 n H^{2} \sup F_{a} \leqq 0
$$

Since H is non-zero and (6) implies that $\sup F_{a}$ is non-negative, it follows from
this inequality that $F_{a}=0$ for each $a=1, \cdots, n-k$. Hence we get $\eta_{1}=\cdots=$ $\eta_{n-k}=0$ and $\eta(M) \subset \pi$.

Let p be a point in M and choose a local field of orthonormal frames $\left\{e_{i}\right\}$ on a neighborhood of p in such a way that $h_{i j}=\lambda_{i} \delta_{i j}$, where $\left\{\lambda_{i}\right\}$ are the principal curvatures of M. Note that, since $\eta=\left(0, \cdots, 0, \eta_{n-k+1}, \cdots, \eta_{n+1}\right)$, the Weingarten formula is written as

$$
\begin{equation*}
\lambda_{i} e_{i}=\left(0, \cdots, 0,-e_{i} \eta_{n-k+1}, \cdots,-e_{i} \eta_{n+1}\right) \quad(i=1, \cdots, n) \tag{8}
\end{equation*}
$$

Let l denote the number of zero principal curvatures at p. We may assume $\lambda_{1}=\cdots=\lambda_{l}=0, \lambda_{l+1}, \cdots, \lambda_{n} \neq 0$ by changing the indices if necessary. Let T_{l}^{\perp} be the subspace of the tangent space $T_{p}(M)$ at p of M, which is spanned by the vectors e_{l+1}, \cdots, e_{n}. The dimension of $T_{t}^{\frac{1}{l}}$ is $n-l$. On the other hand, it follows from (8) and simple calculation that $T_{\frac{1}{k}}$ is contained in the vector space spanned by the following k-independent vectors

$$
\left(0, \cdots, 0,{ }_{1}^{(n-k+1) t h}, 0, \cdots, 0, \eta_{n-k+1} / \eta_{n+1}\right), \cdots,\left(0, \cdots, 0, \stackrel{n t h}{1}, \eta_{n} / \eta_{n+1}\right)
$$

Then we get that $n-l \leqq k$.
Hence, at least $(n-k)$-principal curvatures are zero at p.
Proof of Theorem 2. Under the assumption, it follows from the proposition that the principal curvatures of M are 0 and $n H$ with multiplicity $n-1$ and 1 respectively. Hence, from the congruence theorem due to Abe, Koike and Yamaguchi [1], M is congruent to a hyperbolic cylinder.

§ 5. Remarks.

In order to illustrate our results, we make a few remarks on the Gauss map images of a complete space-like surface M of constant mean curvature H in 3 -dimensional Minkowski space \boldsymbol{R}_{1}^{3}. In this case, the Gauss map η is a map of M into \boldsymbol{H}^{2}.

It is well-known that a hyperbolic space H^{2} is isometric to the Poincaré disk ($D, d s^{2}$), where $D=\{z=u+\boldsymbol{i} v \in \boldsymbol{C} ;|z|<1\}$ and $d s^{2}$ is the Poincare metric $d s^{2}=4 d z d \bar{z} /\left(1-|z|^{2}\right)^{2}$. In the Poincaré disk, by choosing suitable isometries, we can regard a geodesic ball $B_{r}(\bar{\eta})$ and a tublar neighborhood $U_{r}(\beta)$ around a maximal geodesic β in H^{2} as the following regions respectively.

$B_{r}(\bar{\eta})$

$U_{r}(\beta)$

It is easy to see that the Gauss map image of a plane and a hyperbolic cylinder is the one point set $\{\bar{\eta}\}$ and the maximal geodesic β, respectively.

On the other hand, we know other examples of complete space-like surface with non-zero constant mean curvature, which are constructed by Treibergs and others. These examples are space-like surfaces of revolution in \boldsymbol{R}_{1}^{3}. The Gauss map images of these are classified into the following two types.

All D

The domain rounded by
∂D and a geodesic in D

References

[1] N. Abe, N. Koike and S. Yamaguchi, Congruence theorems for proper semi-Riemannian hypersurfaces in a real space form, Yokohama Math. J. 34 (1987), 123-136.
[2] R. Aiyama, On complete space-like surfaces with constant mean curvature in a Lorentzian 3 -space form, Tsukuba, J. Math. 15 (1991), 235-247.
[3] E. Calabi, Examples of Berenstein problems for some nonlinear equations, Proc. Symp. Pure Math. 25 (1970), 223-230.
[4] T.E. Cecil and P.J. Ryan, Distance functions and umbilic submanifolds of hyperbolic space, Nagoya Math. J. 74 (1979), 67-75.
[5] S.Y. Cheng and S.T. Yau, Maximal space-like hypersurfaces in the LorentzMinkowski spaces, Ann. of Math. 104 (1976), 407-419.
[6] H.I. Choi and A. Treibergs, Gauss maps of space-like constant mean curvature hypersurfaces of Minkowski space, Preprint.
[7] J. Hano and K. Nomizu, Surfaces of revolution with constant mean curvature in Lorentz-Minkowski space, Tôhoku Math. J. 36 (1984), 427-437.
[8] S. Hildebrandt, J. Jost and K.-O. Widman, Harmonic mappings and Minimal Submanifolds, Inventions math. 63 (1980), 269-298.
[9] D. Hoffman, R. Osserman and R. Schoen, On the Gauss map of complete surfaces of constant mean curvature in R^{3} and R^{4}, Comment. Math. Helv. 57 (1982), 519-531.
[10] T. Ishihara, Maximal space-like submanifolds of a pseudoriemannian space of constant curvature, Michigan Math. J. 35 (1988), 345-352.
[11] T. Ishihara and F. Hara, Surfaces of revolution in the Lorentzian 3-spaces, J. Math. Tokushima Univ. 22 (1988), 1-13.
[12] U.-H. Ki, H.-J. Kim and H. Nakagawa, On space-like hypersurfaces with constant mean curvature of a Lorentz space form, Tokyo J. Math. 44 (1991), 205-216.
[13] T. K. Milnor, Harmonic maps and classical surface theory in Minkowski 3-space, Trans. Amer. Math. Soc. 280 (1983), 161-185.
[14] S. Nishikawa, On maximal space-like hypersurfaces in a Lorentzian manifold, Nagoya Math. J. 95 (1984), 117-124.
[15] H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 95 (1967), 205-214.
[16] B. O'Neill, "Semi-Riemannian Geometry," Academic Press, New York, London, 1983.
[17] B. Palmer, The Gauss map of a spacelike constant mean curvature hypersurface of Minkowski space, Comment. Math. Helv. 65 (1990), 52-57.
[18] A.E. Treibergs, Entire spacelike hypersurfaces of constant mean curvature in Minkowski 3-space, Invent. Math. 66 (1982), 39-56.
[19] K. Yamada, Complete space-like surfaces with constant mean curvature in the Minkowski 3-space, Tokyo J. Math. 11 (1988), 329-338.
[20] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228.

Institute of Mathematics
University of Tsukuba
Ibaraki 305
Japan

