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ON THE GAUSS MAP OF COMPLETE SPACE-LIKE

HYPERSURFACES OF CONSTANT MEAN

CURVATURE IN MINKOWSKI SPACE

By

Reiko Aiyama

§1. Introduction.

Let RV1 be the (n+l)-dimensional Minkowski space, that is, Rn+l with the

Lorentz metric < ,)―(dx1)2+ ･･･+(dxn)2―(dxn+1)z. It has been known that in

R +1 hyperplanes are the only complete space-like hypersurfaces whose mean

curvatures are zero. This Bernstein type theorem was proposed by Calabi, and

solved by him [3] (for n^4) and by Cheng and Yau [5] (for all n) (see alsoIshi-

hara [10] or Nishikawa [14]). On the other hand, for complete space-like

hypersurfaces of nonzero constant mean curvature in Rnx+＼ there are many

nonlinear examples constructed by Treibergs [18], Hano and Nomizu [7], Isbi-

hara and Hara [11] and others.

In his recent paper, Palmer [17] discussed the Gauss map of a complete

space-like hypersurface of constant mean curvature in 1??+1 and showed a con-

dition for the hypersurface to be a hyperplane. This is a result analogous to

the one obtained by Hoffman, Osserman and Schoen [9], who proved that the

normals to a complete surface of constant mean curvature in the 3-dimensional

Euclidean space Es cannot lie in a closed hemisphere of S*, unless the surface

is a plane or a right circular cylinder. Note that a right circular cylinder is

the simplest example of a complete non-umbilical surface of constant mean

curvature in Es.

In R"+1 the simplest example of a complete non-umbilical space-like hyper-

surface of constant mean curvature is given by the following:

HHc)xRn-k

― U^-l* ■" > % m Xn + i)E£lii '>{Xji-k +l) ~T ■" ~r＼Xn) (^re +i) ― , Xn + i^>{)>

where c is a negative number and k = l, 2, ■･■, n ―l. In particular, H^^XR71'1

is called a hyperbolic cylinder.

Received May 1, 1991, Revised October 23, 1991.



354 Reiko Aiyama

Recently, Ki, Kim and Nakagawa [12] characterized hyperbolic cylinders

as the only complete space-like hypersurfaces of non-zero constant mean cur-

vature in J??+1 for which the norm of the second fundamental form is maximal.

Moreover, when n=2, K. Milnor [13] and Yamada [19] showed that the

hyperbolic cylinder HXrfxR1 is the only "uniformly" non-umbilical surface

among complete space-like surfaces of non-zero constant mean curvature, and

the author gave another proof of this theorem [2].

In this paper, we shall improve the Palmer's theorem and characterize the

hyperbolic cylinder in R^+1 by a method similar to the one employed by

Hoffman et al [9]. In fact, we shall make use of the distance function of the

hyperbolic space constructed by Cecil and Ryan [4].

The author would like to thank Professor Hisao Nakagawa for his helpful

suggestions.

§2. The theorems.

Throughout this paper, we assume manifolds to be connected and geo-

metric objects to be smooth.

Let M be a complete space-like hypersurface of constant mean curvature H

in R1+1 and jy be the time-like unit normal fieldof M. For each point p in M

we regard rj(p)as a point in the n-dimensional hyperbolic space Hn = Hn(―l)

in R"+1. Then Palmer's theorem (in [17]) can be improved in the following

fashion:

Theorem 1. Let M be a complete space-likehypersurface of constantmean

curvature/2"+1. // r)(M) is containedin a geodesic ballin Hn, then M is a

hyperplanein i£?+1.

A geodesic ball of radius r centered at rjin Hn is denoted by Br{rj). The

distance in Hn from fj to x is given by

L?(x)=cosh-1(―irj, x>).

This distance function L?, on Hn has, as level sets, compact totally unbilic

hypersurfaces (geodesic spheres), and Br{rj) is given by

Br{rj)={x^Hn; L£x)<r).

It is clear that hyperplanes are the only space-like hypersurfaces for which

f]{M) coincide with one point.

On the other hand, rj{H＼c)xRn~k) is a complete totally geodesic &-dimen-



On the Gauss map of complete space-likehypersurfaces 355

tional submanifold in Hn, which is called a &-p!ane in Hn. In particular,an

(n ―l)-plane in Hn is called a hyperplane in Hn and a parametrized 1-piane in

Hn is a maximal geodesic in Hn.

We can define a tubular neighborhood Ur(j:) of radius r around a k-plane

it in Hn. For each x in Hn, there is a unique shortest geodesic J in Hn from

x to 7T. Let Lr{x) denote the length of J and define Ur{n) by

Ur(7i)={x(EHn; Lr{x)<r}.

Then a characterization of the hyperbolic cylinder is obtained as follows.

Theorem 2. Let M be a complete space-likehypersurface of non-zero con-

stant mean curvaturein R"+1. If rj{M)is containedin Ur{fi)for some r>0

and for some maximal geodesic/3 on Hn, then M is congruent to a hyperbolic

cylinderH1(c)xRn'1.

This theorem is an immediate consequence of the next proposition.

Proposition. Let M be a complete space-likehyper surface of constant mean

curvature in R^+1. If rj{M) is contained in Ur(x) for some r>0 and for some

k-plane n of Hn, then 7]{M) is contained in x and at least (n―k)-principal cur-

vatures of M are zero at any point of M.

Remark. Theorem 2 can be proved by a theorem obtained by Choi and

Treibergs [6], if we note that complete space-like hypersurfaces in l??+1 are

entire. Furthermore, Theorem 1 can also follow from the Liouville theorem

for harmonic mappings of Riemannian manifolds, which is proved by Hilde-

brandt, Jost and Widman in [8]. But our proofs do not depend on these facts,

and we shall consistently make use of the generalized maximum principle on

a complete Riemannian manifold.

§3. Preliminaries.

As in §2, let M be a complete space-like hypersurface of constant mean

curvature H in R＼+＼ rj be the time-like unit normal field of M.

We choose a local field of orthonormal frames eu e2,･･■, en on M and let

(1)1,o)2,■･■,(tin denote the dual coframes on M. We shall use the summation

convention with Roman indices in the range l^z, /, ･･･t^n. The second funda-

mental form on M is given by the quadratic form

Ol= -lPlhij(tiiR(tijR7)
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with values in the normal bundle of M. Let D (resp. 7) denote the Levi-Civita

connection of R +1 (resp. M). Then the Gauss formula and the Weingarten

formula are eriven respectively bv

De.ej=Tleiej-hij7] and BHfi--^ihijej

Let hijk denote the covariant derivative of hi}. Then we obtain the Coddazi

equation

hijk―hikj.

Since the mean curvature H of M is defined by ^hu/n, the norm of a

satisfies

(1) ＼a＼2^nHK

Lemma. The Gauss map rjis a harmonic map of M into HndRni+l, that

is, if 7)=(7]1,■･･,rjn,r)n+i)then a Laplacian of each component -qA (^4=1, ･■･,

n+1) satisfiesthe following equation;

(2) A^=|≪|8^.

Proof. Let p be any fixed point in M.

local frames about p such that (lEiEjXp)-

and, since H is constant,

Let {Ex, ･■■,En) be an orthonormal

0 (i,j=l, ■■■,n). Then we have

(DEiEJ)p = -(hiJyj)p

(AVl> - , A7]n +iXP) = (.^EiEi7]1> ･･･, XEtEirjn +rXp)

=(2DEtDEiy})p=&DEi(-'2hiJEJ))T)
i i i

^-HEtihJEj-htjDstEj),

=(-S^(nH)E>+S(/it>)2J7)P
} i.j

In order to prove the theorems, we need the following generalized maxi

mum principle theorem due to Omori [15] and Yau [20].

The generalized maximum principle. Let N be a complete Riemannian

manifold whose Ricci curvature is bounded from below and let F be a function

of class C2 on N. If F is bounded from above, then for any s>0 there exists a

point q such that



(3)
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＼lF(g)＼<s, AF(g)<e, F(q)>supF-s

where 11F＼ denotes the norm of the gradient IF of F.
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In the present case, the Riccicurvature is given by

Sij= ―nHhij+^i hikhkj,
k

and hence is bounded from below by ―n2H2/4. So we can apply the gener-

alized maximum principlefor any C2-function on M which is bounded from

ahrwp.

§4. Proof of the theorems.

In this section, we give the proofs of the previous theorems

Proof of Theorem 1. The condition rj(M)dBr(^) is equivalent the fol-

lowing inequality valid everywhere on M;

l^k ―(r),)?><cosh r.

We may assume ^=(0, 0, ･■･, 0, 1), by applying, if necessary, a Lorentz trans-

formation to M. Then the condition reads

(4) l^n+1<coshr,

and in particular,r)n+＼is a smooth function on M which is bounded from above.

From the equation (2) combined with the relation(1), we have

(5) A7]n+1=＼a＼2v)n+1^nH2T]n+1.

Let {sn＼ be a convergent sequence such that sm>0 and sOT-*0 (m->oo). Then,

by the generalized maximum principle, there is a sequence of points {qn} such

that r]n+isatisfies(3) at each qm^M for sm, i.e.,

(3') ＼^r)n+1{qm)＼<sm, &r}n+l{qm)<em, yn+i(qm)>sup7}n+1 ―sm.-

Then by the inequality (5),

nH27}n+l(qm)<£m .

Furthermore, because the sequence {r]n+1(qm)}converges to sup 7]n+1,we have

nH2 sup 7]n+i^R ･

Since (4) implies sup^n+i2>l, it follows from thisinequality that the mean

curvature H must be zero.

Hence, by the result of Cheng and Yau, M must be a hyperplane. 1
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Proof of Proposition. For the &-planeit in Hn, we can choose space-

like orthonormal vectors {au ･･･, an-k＼ in RV1 such that

n={xtEHn＼ <x, <ra>=0 (a = l, ･･･, n-k)＼

Let 7ta{a = 1,■･･, n ―k) be the hyperplane in Hn defined by

7ca={x(EHn; <jc,0 = 0}.

The distance in Hn from x to a hyperplane jra is then given by

LTa(x)=L(Ta(x)=|sinh-1(-<x, <7a≫|.

Since Ur(7t) is contained in Ur(7ta) for every a, it follows from the assump-

tion 7)(M)aUr(7r) that the inequalities

―sinh r< ―<iy, <7a><sinh r (a

are valid everywhere on M. We may assume

―I n-k)

ath
era=(O, ･-, 0, 1, 0, ･-, 0) (a = l, ･･･, n-k),

by applying a Lorentz transformation to M if necessary. Let Fa be a smooth

function on M defined by Fa~{{y], <ra≫2=(57a)2- Then the above inequalities

imply

(6) 0^Fa<sinh2r (a = l, - , n-k).

and, in particular, Fa is bounded from above.

From the equation (2) combined with the relation (1), we have

Arja―＼a＼2r}a,

(7) AFa = 2{＼VVa＼*+＼a＼%7]a)2}^＼a＼X7]ay^2nH2Fa.

Let {sm} be a convergent sequence such that sm>0 and sm~>0 (m->oo).

Then, by the generalized maximum principle,there is a sequence of points {qm}

such that Fa satisfies(3) at each qm for sm, i.e.,

(3") ＼lFa{qm)＼<em, AFa(qm)<sm, Fa(qn)<sup Fa-sm.

Then by the inequality (7),

2nH*Fa(qn)<sm.

Furthermore, because the sequence {Fa(qm)＼ converges to supFrt, we have

2nH2supFa^0.

Since H is non-zero and (6) implies that sup Fa is non-negative, it follows from
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this inequality that Fa―0 for each a ― ＼,■■■, n ― k. Hence we get 7]

Vn-k=0 and >?(M)C7r.
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Let p be a point in M and choose a local field of orthonormal frames {ej

on a neighborhood of p in such a way that hij=kidij, where {ij are the

principal curvatures of M. Note that, since 7?=(0, ･･･, 0, 7jn-k+u ･･･, yn+i), the

Wpinaarfpn formula is wriff-pn as

(8) Xiet=(O, ■■■, 0, ―eti)n-k+i,･■･, ―0*^n+i) 0"=l, ･･･≫≪)･

Let / denote the number of zero principal curvatures at p. We may as-

sume Xi= ･･･=^j=0, Xi+i,■■■, Xn^0 by changing the indices if necessary. Let

Tf be the subspace of the tangent space TP(M) at p of M, which is spanned

by the vectors el+1,■■■, en. The dimension of Tf is n ―l. On the other hand,

it follows from (8) and simple calculation that T£ is contained in the vector

soace scanned bv the following /e-mdeoendent vectors

(0, -",0

( n - k +1) t h

1
nth

0, ･･･ , 0, r)n-k+i/r)n+i), ･･･ , (0, ■･･ , 0, 1 , rjn/rjn+1)

Then we get that n―l£k.

Hence, at least (n ―&)-principal curvatures are zero at p □

Proof of Theorem 2. Under the assumption, it follows from the proposi-

tion that the principal curvatures of M are 0 and nH with multiplicityn ―1

and 1 respectively. Hence, from the congruence theorem due to Abe, Koike

and Yamaguchi Til, M is congruent to a hyperbolic cylinder. ■

§5. Remarks.

In order to illustrate our results, we make a few remarks on the Gauss

map images of a complete space-like surface M of constant mean curvature H

in 3-dimensional Minkowski space R＼. In thiscase, the Gauss map -qis a map

of M into H2.

It is well-known that a hyperbolic space H2 is isometric to the Poincare

disk (D, ds2), where D={z=u+iv<=C; ＼z＼<l} and ds2 is the Poincare metric

ds2=4dzdz/(l―＼z＼2)2. In the Poincare disk, by choosing suitable isometries,

we can regard a geodesic ball Br{fj) and a tublar neighborhood £/r(/3)around

a maximal geodesic B in H2 as the following regions respectively.
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Br(v)
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＼

I

/

D

tfr(j8)

I

It is easy to see that the Gauss map image of a plane and a hyperbolic

cylinder is the one point set {rj} and the maximal geodesic /3,respectively.

On the other hand, we know other examples of complete space-like surface

with non-zero constant mean curvature, which are constructed by Treibergs

and others. These examples are space-like surfaces of revolution in R＼. The

Gauss map images of these are classifiedinto the following two types.

All D The domain rounded by

dD and a geodesicin D
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