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ON THE GAUSS MAP OF COMPLETE SPACE-LIKE
HYPERSURFACES OF CONSTANT MEAN
CURVATURE IN MINKOWSKI SPACE
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Reiko Aiyama

§1. Introduction.

Let R1*' be the (n-+1)-dimensional Minkowski space, that is, R**' with the
Lorentz metric (,>=(dx,)*+ -+ +(dx,)*—(dx,4,)? It has been known that in
R%?*' hyperplanes are the only complete space-like hypersurfaces whose mean
curvatures are zero. This Bernstein type theorem was proposed by Calabi, and
solved by him [3] (for n<4) and by Cheng and Yau [5] (for all n) (see also Ishi-
hara [10] or Nishikawa [14]). On the other hand, for complete space-like
hypersurfaces of nonzero constant mean curvature in R7*!, there are many
nonlinear examples constructed by Treibergs [18], Hano and Nomizu [7], Ishi-
hara and Hara [11] and others.

In his recent paper, Palmer [17] discussed the Gauss map of a complete
space-like hypersurface of constant mean curvature in R?*' and showed a con-
dition for the hypersurface to be a hyperplane. This is a result analogous to
the one obtained by Hoffman, Osserman and Schoen [9], who proved that the
normals to a complete surface of constant mean curvature in the 3-dimensional
Euclidean space E°® cannot lie in a closed hemisphere of 82, unless the surface
is a plane or a right circular cylinder. Note that a right circular cylinder is
the simplest example of a complete non-umbilical surface of constant mean
curvature in E°.

In R?*' the simplest example of a complete non-umbilical space-like hyper-
surface of constant mean curvature is given by the following:

H*(¢c)XR™*
) , 1
:{(xla iy Xy X71+1)ERT+1 H (xn—k+l)2+ +(xn)d_(xn+l)“:?: xn+1>0}7

where ¢ is a negative number and k=1, 2, ---, n—1. In particular, H(c)x R""!
is called a hyperbolic cylinder.
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Recently, Ki, Kim and Nakagawa [12] characterized hyperbolic cylinders
as the only complete space-like hypersurfaces of non-zero constant mean cur-
vature in R?*' for which the norm of the second fundamental form is maximal.
Moreover, when n=2, K. Milnor [13] and Yamada [19] showed that the
hyperbolic cylinder H'(c)XR!' is the only “uniformly” non-umbilical surface
among complete space-like surfaces of non-zero constant mean curvature, and
the author gave another proof of this theorem [2].

In this paper, we shall improve the Palmer’s theorem and characterize the
hyperbolic cylinder in R?*' by a method similar to the one employed by
Hoffman et al [9]. In fact, we shall make use of the distance function of the
hyperbolic space constructed by Cecil and Ryan [4].

The author would like to thank Professor Hisao Nakagawa for his helpful

suggestions.

§2. The theorems.

- Throughout this paper, we assume manifolds to be connected and geo-
metric objects to be smooth.

Let M be a complete space-like hypersurface of constant mean curvature H
in R7*!' and 7 be the time-like unit normal field of M. For each point p in M
we regard 7(p) as a point in the n-dimensional hyperbolic space H»=H"—1)
in R?*. Then Palmer’s theorem (in [17]) can be improved in the following

fashion :

THEOREM 1. Let M be a complete space-like hypersurface of constant mean
curvature B, If p(M) is contained in a geodesic ball in H", then M is a
hyperplane in R7'.

A geodesic ball of radius » centered at 5 in H" is denoted by B.(7). The
distance in H" from # to x is given by

Ly(x)=cosh~{(—<{7, x)).

This distance function L; on H" has, as level sets, compact totally unbilic
hypersurfaces (geodesic spheres), and B,.(%) is given by

B.(7)={xcH"; Ly(x)<r}.

It is clear that hyperplanes are the only space-like hypersurfaces for which
n(M) coincide with one point.
On the other hand, n(H*(c)xR"™*) is a complete totally geodesic k-dimen-
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tional submanifold in H?*, which is called a k-plane in H". In particular, an
(n—1)-plane in H" is called a hyperplane in H” and a parametrized 1l-plane in
H" is a maximal geodesic in H".

We can define a tubular neighborhood U.(x) of radius » around a Fk-plane
7 in H*. For each x in H", there is a unique shortest geodesic 7 in H® from
x to #. Let L.x) denote the length of 7 and define U.(x) by

U (m)={xcH"; L{x)<r}.

Then a characterization of the hyperbolic cylinder is obtained as follows.

THEOREM 2. Let M be a complete space-like hypersurface of non-zero con-
stant mean curvature in RY™. If p(M) is contained in U.(B) for some r>0
and for some maximal geodesic B on H", then M 1s congruent to a hyperbolic
cylinder HY(c)X R™-'.

This theorem is an immediate consequence of the next proposition.

PROPOSITION. Let M be a complete space-like hypersurface of constant mean
curvature in R+, If p(M) is contained in U .(x) for some r>0 and for some
k-plane = of H", then p(M) is contained in = and at least (n—k)-principal cur-
vatures of M are zero at any point of M.

REMARK. Theorem 2 can be proved by a theorem obtained by Choi and
Treibergs [6], if we note that complete space-like hypersurfaces in R7?*' are
entire. Furthermore, Theorem 1 can also follow from the Liouville theorem
for harmonic mappings of Riemannian manifolds, which is proved by Hilde-
brandt, Jost and Widman in [8]. But our proofs do not depend on these facts,
and we shall consistently make use of the generalized maximum principle on
a complete Riemannian manifold.

§3. Preliminaries.

As in §2, let M be a complete space-like hypersurface of constant mean
curvature H in R?*!, 5 be the time-like unit normal field of M.

We choose a local field of orthonormal frames e, ¢, -, ¢, on M and let
®,, Wy, -+, @, denote the dual coframes on M. We shall use the summation
convention with Roman indices in the range 1<i, j, --- <n. The second funda-
mental form on M is given by the quadratic form

a=—72] hy;w,Q0;Q1n
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with values in the normal bundie of M. Let D (resp. V) denote the Levi-Civita
connection of R7™ (resp. M). Then the Gauss formula and the Weingarten
formula are given respectively by

Deiej=\7€iej—h,-m and Dein:—Z]h,-jej.
J

Let h;;, denote the covariant derivative of h;;. Then we obtain the Coddazi
equation

hijkzhikj .

Since the mean curvature H of M is defined by 3h,;/n, the norm of «a
satisfies

M la|?=nH?.
LEMMA. The Gauss map 7 is a harmonic map of M into H"CR7T, that

is, if n=(n, =+, Yu, Nn+1) then a Laplacian of each component n, (A=1, -,
n+1) satisfies the following equation;

(2) Ana=lal®n, .

PROOF. Let p be any fixed point in M. Let {E,, ---, E,} be an orthonormal
local frames about p such that (Vz E;)(p)=0 (i, j=1, ---, n). Then we have
Ei(hip)p=(hij0)p=(hii5)p (DEiEj)p:—(hU"?)p
and, since H is constant,
(A7]1, Tty A7]n+1)(p):(§ EiEi‘i?u tty ;EiEivn-H)(p)
:(; DEiI)Eiv)p:<; DEi(—; hijEj))p
:(—l}]]_ Ehi)E;—hiDe Ej)y
=(“§ Ej(nH)Ej+i2j(hij>21])p
=(lel®n)p - |
In order to prove the theorems, we need the following generalized maxi-

mum principle theorem due to Omori [15] and Yau [20].

THE GENERALIZED MAXIMUM PRINCIPLE. Let N be a complete Riemannian
manifold whose Ricci curvature is bounded from below and let F be a function
of class C® on N. If F is bounded from above, then for any >0 there exists a
point q such that
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®) IVF()I<e,  AF(Q)<e,  F(g)>sup F—e,
where |NF| denotes the norm of the gradient VF of F.

In the present case, the Ricci curvature is given by
Sijz"thif+k2 hiwhes,
and hence is bounded from below by —n*H?/4. So we can apply the gener-

alized maximum principle for any C?-function on M which is bounded from

above.

§4. Proof of the theorems.
In this section, we give the proofs of the previous theorems.
PrROOF OF THEOREM 1. The condition p(M)CB,(%) is equivalent the fol-
lowing inequality valid everywhere on M ;
1<—<n, 7><coshr.

We may assume 7=(0, 0, ---, 0, 1), by applying, if necessary, a Lorentz trans-
formation to M. Then the condition reads

4) 1<%, <coshr,

and in particular, 7.+ is a smooth function on M which is bounded from above.
From the equation (2) combined with the relation (1), we have

(5) A7)n+1:|a]277n+12nH27]n+1-

Let {e,} be a convergent sequence such that ¢, >0 and ¢,—0 (m—co). Then,
by the generalized maximum principle, there is a sequence of points {g,} such
that 7,., satisfies (3) at each gn=M for e,, i.e.,

3" (V001(@u) | <em,  ADnei(@m)<em,  Pas1(m)>SUP Npp1—Em - -

Then by the inequality (5),
nHzﬂn+1(Qm)<5m .

Furthermore, because the sequence {%,4.(¢n)} converges to sup Na+1, We have
nH? sup 9,4, <0.

Since (4) implies sup %,.,=1, it follows from this inequality that the mean
curvature H must be zero.
Hence, by the result of Cheng and Yau, M must be a hyperplane. B
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PROOF OF PROPOSITION. For the k-plane = in H", we can choose space-
like orthonormal vectors {a,, ---, 6,-,} in BT such that

r={xeH"; {x, ¢,0=0 (a=1, -, n—k)}.

Let o (a=1, ---, n—Fk) be the hyperplane in H" defined by
r.={xcH"; {x, g,>=0}.
The distance in A" from x to a hyperplane =, is then given by
L. (x)=L, (x)=]sinh™(—<x, ga>)|.
Since U ,(x) is contained in U,(n,) for every a, it follows from the assump-
tion p(M)CU .(x) that the inequalities
—sinh r<—<y, o0.><sinhr  (a=1, -, n—k)

are valid everywhere on M. We may assume

ath

Ua:(Oy "')0) 17 0: 90> (a—__ll Tty n_k>:

by applying a Lorentz transformation to M if necessary. Let F, be a smooth
function on M defined by F,=({%, ¢.>)*=(9.)*. Then the above inequalities

imply
(6) 0< Fy<sinh?r (a=1, -, n—"R).

and, in particular, F, is bounded from above.
From the equation (2) combined with the relation (1), we have

Ana:‘a’l?ﬂa »
@ AF,=2{199. 1+ |a (9.} Z || (9. =2n H*F, .

Let {s,} be a convergent sequence such that £,>0 and e,—0 (m—c0).
Then, by the generalized maximum principle, there is a sequence of points {gx}
such that F, satisfies (3) at each ¢, for e¢,, i.e.,

3 |VFu(qm)| <€m»  AFu(gm)<em,  Falgm)<sup Fo—en.

Then by the inequality (7),
2nH*Fo(qm)<éem .

Furthermore, because the sequence {F,(¢n,)} converges to sup F,, we have
2nH?sup F,<0.

Since H is non-zero and (6) implies that sup F, is non-negative, it follows from
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this inequality that F,=0 for each a=1, ---, n—k. Hence we get p,= - =
Na-r=0 and p(M)Cx.

Let p be a point in M and choose a local field of orthonormal frames {e;}
on a neighborhood of p in such a way that h,;;=2,8,,, where {i,} are the
principal curvatures of M. Note that, since =(0, ---, 0, Nn-ktts 5 Pasr), the
Weingarten formula is written as

(8) 'ziei:<0’ R Or —CiNn—k+1, ", _eivn-\‘—l) (Z.:lr ) 71)-

Let [ denote the number of zero principal curvatures at . We may as-
sume A= =4=0, iy, -, 2,#0 by changing the indices if necessary. Let
Tt be the subspace of the tangent space T,(M) at p of M, which is spanned
by the vectors ey, -, ¢,. The dimension of T} is n—I. On the other hand,
it follows from (8) and simple calculation that 7} is contained in the vector
space spanned by the following k-independent vectors

(n-k+Dth nth
(07 "',0, 1 :0) ""0) 77n—k+1/77n+1)y "'1(0’ "'rO) 1777n/7]n+1)-
Then we get that n—I<k.
Hence, at least (n—k)-principal curvatures are zero at p. B

PROOF OF THEOREM 2. Under the assumption, it follows from the proposi-
tion that the principal curvatures of M are 0 and nH with multiplicity n—1
and 1 respectively. Hence, from the congruence theorem due to Abe, Koike
and Yamaguchi [1], M is congruent to a hyperbolic cylinder. B

§5. Remarks.

In order to illustrate our results, we make a few remarks on the Gauss
map images of a complete space-like surface M of constant mean curvature H
in 3-dimensional Minkowski space R{. In this case, the Gauss map 7 is a map
of M into H:.

It 1s well-known that a hyperbolic space H? is isometric to the Poincaré
disk (D, ds?), where D={z=u+iv=C; |z|<1} and ds® is the Poincaré metric
ds’=4dzdz/(1—|z|*?. In the Poincaré disk, by choosing suitable isometries,
we can regard a geodesic ball B,(7) and a tublar neighborhood U ,(8) around
a maximal geodesic 8 in H? as the following regions respectively.
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-

Udp

It is easy to see that the Gauss map image of a plane and a hyperbolic
cylinder is the one point set {7} and the maximal geodesic 3, respectively.

On the other hand, we know other examples of complete space-like surface
with non-zero constant mean curvature, which are constructed by Treibergs
and others. These examples are space-like surfaces of revolution in Ei. The
Gauss map images of these are classified into the following two types.

The domain rounded by
0D and a geodesic in D
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