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ONE CLASS OF REPRESENTATIONS OVER TRIVIAL

EXTENSIONS OF ITERATED TILTED ALGEBRAS

By

Xiao Jie and Zhang Pu

Abstract. Let T(A)=AkD(A) be the trivial extension of iterated

tiltedalgebra A of type A. In this paper, we study the indecom-

posable T(A)-modules belonging to the components of form ZA,

which are called the modules on platform. Our main results are

as follows: (1) The number of the modules on platform which

have the same dimension vector is equal to or less than the number

of simple .4-modules. (2) The module on platform is uniquely

determined by its top and socle. (3) The module on platform is

uniquely determined by its Loewy factor and by its socle factor.

§1. Introduction.

Throughout this paper, we denoted by k an algebraically closed field, by

A a basic, connected and finite-dimensional ^-algebra, and by A-mod {mod-A,

respectively) the category of all finitely generated left (right, respectively)

modules over A. We write D=Homk(, k) for the usual dual functor between

A-mod and mod-A, then D(A) has a cononical A―A-hlmodule structure. The

trivialextension T(A) = AkD(A) of A is defind as the ^-algebra whose additive

structure is that of AQ)D(A) and whose multiplication is given by (a, <p)-(b,(p)

= (ab, a<p+<pb) for a, b^A and <p,<p^D(A). Note that T(A) is a self-injective

algebra, see [1].

Tilted and iterated tilted algebra are important in representation theory of

algebra and are extesively studied. It is well known that the AR quiver of a

tiltedalgebra must have a connecting component as well as preprojective and

preinjective ones, see [2] and [3]. All of these components consist of directing

modules, which enjoy very pleasant properties, for example, being uniquely

determined by their composition factors and by their tops and socles.

On the other hand, as a special class of self-injectivealgebras, the trivial
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extensions of iterated tilted algebra of type A also enjoy some good properties,

such as their stable module categories must have components of form ZA([4]),

but unfortunately, no indecompoable T(.4)-module is directing; the indecomposable

T(^4)-module is directing; the indecomposable T(^4)-modules belonging to the

components of form ZA are no longer determined by their composition factors.

However, our results show that these modules still have some interesting

properties.

For stating our results, we recall some notations. Let A be an iterated

tiltedalgebra of type A, the repetitive algebra A has the additive structure of

(R^t)c(00i) with Ai=A and Qt=D(A) for igZ, whose multiplicationis

defined as follows

(fli,<pi)i'{bi,(J)i)i=(aibi,ai+1(pi+(pibi)i,

where (au ipi)u(bif <pi)t,<^A with au b^A, and <pu <j)i<=D{A) for i<=Z. Note

that A is an infinite-dimensional and locally bounded self-injectivealgebra.

Defining Nakayama automorphism v: A-+A as in [5], we know that

T(A)=A/v and that the functor v induce Galois covering functor tt: A-^T(A)

and an automorphim of A-mod. By Happel's result in [4] we know that A-

mod^DHA) and rs(TM))^r(JD6(^A))/<T2r>, where A-mod is the stable module

category of A-mod; Db(A) is the derived category of A and T2r is just the

automorphism of A induced by Nakayama functor v. In the following we still

denote by % the covering functor from A-mod to T(A)-mod induced by jr: A^

T(A).

Definition. Let A be an iterated tilted algebra of type A, the indecom-

poable T(.4)-module M is said to be a module on platform, if there is X^A-

mod such that tu(X)= M and that X as an object of A-mod belongs to a com-

ponent of form Zl of F(A-mod) ^r{D＼kl)).

Remark. (1) If A is of Dynkin type, then any indecompoable T(--4)-module

is on platform.

(2) The module on platform is non-projective.

For a finite dimensional /e-algebraA, we denote by Q the Gabriel quiver

of A ([6]), by P(x)(I(x), S(x) respectively) the indecomposable projective (injec-

tive, simple, respectively) module corresponding to the vertex xeQ, i.e..

top P(x)^soc I(x). For M<=A-mod, we define its dimension vector as

dim M = (dimkHomA(P(x), M))xeQo

―(dimk Horn AM, I(x)))xeOn
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is just the number of composion factors of form S(a) in any fixed composition

series. The Loewv factor of M is defined as the matrix

LdimM―

dimM/radM

dimradM/radzM

dimradiM/radi+-M

dimsoci+1 M/so^M

dimsoc2 M/socM

dimsocM

and the socle factor of M is the matrix

SdimM =

Now we can state our main results as follows:

Theorem 1. Let T(A) be the trivialextension of an iterated tilted algebra

A of type A, X a T(A)-module on platform, then the number of isoclassof the

T(A)-modules on platform which have the same dimension vector with X is at

most n. where n is the number of vertices of A.

Theorem 2. // T(A) is as above, X, Y are two T(A)-modules on platform

then X^Y if and onlyif tot>X―tot>Yand socX―socY.

Theorem 3. // the assumptions are as in Theorem 2, then the following are

equivalent

(1) X^Y

(2) LdimX= LdimY

§2. Proof of Theorem 1.

Lemma 1 ([7] p. 15) Let A be locally bounded self-injective algebra.

(1) // M is indecomposable non-projective, f : M―>N is epic, then f is nonzero

in A-mod.

(2) // TV is indecomposable non-projective,g: M-*N is mono, then g is non-

zero in A-mod.

Lemma 2 ([7] p. 15). Assume that A is as above, M, N are indecomposable

nnn-hroiactive with Hom(M. N)^0. then there exists a A-module L such that
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Hom{M, L)^0^Hom(L, N).

Lemma 3. Let A be as above, then M is directing as A-module iff M is

directing as objectin A-mod.

Proof. Suppose that X is directing in A-mod. If X is not directing as

A-module, then we get a chain of nonzero nonisomorphisms X-*Xi->X2 >Xr

=X with r^l, If no Xt is projective, then X is not directing in A-mod by

Lemma 2, so we may assume that Xt=P(a) is projective, considering the AR

sequence

0 ―> radP(a) ―> (P(g)cF ―* P(a)/socP(a) ―> 0

then we have

X ―>X,―> > Xt-! ―-> radP(a) ―* Y ―->

P(a)/socP(a) ―> Xi+1 ―> > X,

which doesn't contain the projective module Xt. Repeating this process if

necessary, we finallyget a chain which doesn't contain any projective module,

a contradiction by Lemma 2.

Proof of Theorem 1. Assume that k(M)=X with M lying on the com-

ponent of form ZA of A-mod. Choose a complete slice S of this component

such that MgS, from the structureof Db(kA) we know that S is path-closed

in A-mod. Let B be the support algebra of aS in A, where S^add^S.

(1) First we claim that BM is directing. Since 5-mod is full subcategory

of A-mod, it is enough to prove that M is directing in A-mod. In the following

we always identify A-mod with Db(kA). If there is a chain of nonzero non-

isomorphims in A-mod M=X^Xi~-> ■■■~^Xr―M with r'^1, then by the structcre

of Db(kA) we have a chain in D＼kA)

Thy, ―> T*i Yi ―> > T'rYr^T^Y,

with Yi<^kA-mod for 0<Li<Lr, so io^ii ■･･1=kir~i<i,therefore we have a chain in

kA-mod Y0-^Yi-+ ■■■-*Yr=Y0 which implies that Yo is not directing. But since

M = TioYo^S, Yo must be preprojective or preinjective ^A-module, which is a

contradiction with above.

(2) Denoting by Qz and QB the Gabriel quiver of A and B respectively,

we wish to prove that QB is path-closed in Qz. For this let x-+ >y-^ >z

be a path in QB with x, z^QB, so we have
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PA(X) __> > pA(y) -^ > P£Z)
and

Ia(x) -^ > h(y) ―> > h(z).

Considering the chain

/ 8
PA(y)/socPA(y) ―> S(30 ―≫ rad/i(y),

where topPAiy) ―S(y) ―soclziy)- It follows from Lemma 1 that f^O^g in

D6(£A). Since x, z^QB, we have PA(y)/socPA(y)<S<radlA(y).

By the structure of D6(£A) we know that S(y)-<S or S<S(3>). Assume that

S(y)^S and that S correspond to the allindecomposable projective /?A-modules.

Let radhiy^W with Y'^kA-mod, since S<h(y), we have z^O. If z>0,

then from the isomorphism

HomDbaUS(y), radh{y)) = DHomDHk-h(T-lT-lradlA{y), S{y))

we get

S^T-'radlAiy^T^Y'^T-'z-'radlAiyXSiy^S,

hence T~lradlA.(y),r~1T'1radlA.(y)^S, which is a contradiction with S being a

complete-slice of the component. So *=0 and we have a chain in A-mod S-*

radlxiy) which implies HomztS, /i(;y))^Q,i.e., y^QB.

If S<S(;y), we may use /^O and get dually the chain PA(y)/socPA(y)^S.

(3) We now prove that QB is a complete v-slice of Qa in the sense of [5].

For this it is enough to prove that for any ci^Qa the y-orbit of a contains

only one vertex in OB. If it is not the case, we assume that a, vma^QB, i.e.,

there are Sy, S2eS such that

HomA(PA(a)/socPA(a), S1)^O^HomA(PA(vma)/socPA(v"ia)> S2)

then PA(a)/socPA(a)=TiX with i=Q or ―1. On the other hand,

PA(vma)/socPA(vma)=vm(PA(a)/socPA(a))=TmT2m+iX.

Let T>*T2m+iX=TjY, then ;=0 or -1, this force m=-l, so we have

S2</#-'fl)-Pi(flKS≫

S^radPAiaXPAiaysocPAiaXS,

and then radPAia), /Ji(a)/socPi(a)=r"1rac/Fi(a)eS since S being path-closed,

this is a contradiction with S being a complete slice of the component of form

ZA. This shows that for any g^Qa, the r-orbit of v contains at most one

vertex in QB, so it remains to prove that the number of vertices of QB is not

less than n, where n is the number of vertices of A. For this purpose it is
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enough to prove that BS is partial tiltingmodule. First we claim that p.d.

bS^I, or equivalently that EomB{I, rB/)=0 for any indecomposable injective

5-module /. Otherwise, there are Si, S2eS with S1―>I―>tbS2-K.S2,by Lemma 2

we know this chain can occur in A-mod, so we have tbS2, /gS and then the

three terms of the AR sequence of B-mod 0 ―>tbS2 -> * -* S2 ―>0 are in S, this

contradicts with the fact that B is the support algebra of aS and S is a com-

plete slice. And then we may use Auslander-Reiten formula to show ExtB(S, S)

=DHom(S, rBS)=0, hence BS is partialtiltingand it follows that QB is a com-

plete y-sliceof Qa-

(4) Now suppose that Y is an arbitrary T(A)-module on platform with

dimY = dimX, then Y = x(N) for some iV lying on the component of form ZA.

We may assume that N and M lie in the same y-period. By the above analysis

we know that N is a directing module over some fmite-dimenional ^-algebra D

and QD is a complete y-reflections. By [5] (Lemma 2.10) we know that D can

be obtained from B by a series of ^-reflections. On the other hand, the in-

decomposable D-module which has the same dimension vector with N must be

DN itself,so the number of T(.4)-modules on platform which the same dimen-

sion vector with X is at most m, where m is the number of all ^-reflections

from B within one y-period. Since within one v-period there are just n algebras

which are obtained from B by a series of ^-reflections,we have m―n, which

finishes the proof of Theorem 1.

Remark, We have an example showing that the number of T(yl)-moduleson

platform which have the same dimension vector is n, where n is the vertices

of A.

§2. Proof of Theorems 2 and 3.

Let A be a locallybounded ^-algebraand X, Y two J-modules. Define

RKX,Y)=HomA{X,Y),

R&X, Y)={f EHomA(X> Y)/f=^filgi (for finitei),

where fn^R(X, Pn), Pn is a projectiveJ-module}.

In general,for m>l, we define

RV(X, Y)={f^HomA{X, Y)/f=^ftl ■■■fingt (for finitei),
i

where fnt=R(X (Pn),･･･,fim^R{Pim.u Ptm),Piu ■■･,

Pim are projectivemodules}.
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Lemma 4 ([8]). For arbitrary non-negative integer m, there holds

radmX/radm+1X^ c kx-S(x),

where kx=dimkR?(P(x), M)/R%+i(P(x), M).

Lemma 5. Let A be a locally bounded selfjectivek-algebra.

(1) // M is an indecomposable non-projective A-module and s,:P―+M is the

projective cover of M, then ker s is indecomposable.

(2) // JV is an indecomposable non-projective A-module and i: N―*I is the

injective envelope of N, then coker i is indecomposable.

m
Proof. (2) is the dual of (1), so we consider (1). Assume ker 6= 0 Nu Nt

t=i

indecomposable for alli. We see that every Nt is non-injective since s: P―>M

is the projective cover. In fact, the natural embedding ker e-^P is the injective

envelope, otherwise there is a proper direct summand of P isomorphic to the

injective envelope I{ker e) of ker s, and hence M has a projective direct summand,

a contradiction. However, the injective envelope of ker £is isomorphic to the

m
direct sum of thase of all Nu so M― 0 I(Nj)/Ni. It follows from the in

i*―1

decomposabilityof M that m=l, which implies that ker e is indecomposable

The proof of Theorem 3. Let X and Y be T(^)-module on platform,

then there are Indecomposable non-projective A-modules M, N such that rc(M) =

X, k(N)=Y with M, N belonging to the ZA-components of A-mod (it is possible

that M, N lie on distinct components). Suppose S is a complete slice of the

ZA-componemt of A-mod such that MgeS, without loss of generality, we would

assume that S^N-<^T2tS. Now SuppN is divided into two parts, namely,

Ai= {x(= SuppN/Pz(x)^S}

and
A2={x(EESuppN/PA(x)>S} .

Let B be the full subcategory of A whose object is

＼xe,A/T-2t-1S^P{x)^S) ,

then B is the support algebra of modules located in S. It follows from the

proof of Theorem 1 that B is a tiltedalgebra with B=A and T(A)=T(B),

moreover, we might assert that B is obtained from A by a series of reflections.

Clearly SuppNQB, if A2―0, then SuppNQB. Since the covering functor rt

isinduced by T2r, M and N as /^-modules have the same Loewy factors, hence,

the same composition factors. Because B is a tiltedalgebra and M is directing
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as 5-module, we see M^N by [2], therefore X^Y. If Ai= 0, we would use

T"2t~1N to replace N, this amounts to the situation above.

If Ai^0, A2=£0, we try to get a contradiction. On account of SuppN

being connected subcategory of A, we can find xoeeAu S^i^A2 and an arrow

yi-^>xQin the Gabriel quiver of SuppN. Assume that all arrows in the Gabriel

quiver of A ending at x0 are as follows:

x0

where P(Xi)<^S, i=l, ■･･n, P(yi)>~S, i―i, ■･･m. Therefore we have the follow-

ing natural exact sequence

§ P(xt))R( § Piyd) ―> c^ere ―> 0

Noticing that Ims is indecomposable for P(x0) is the projective cover of Ime;

and that the natural embedding

Ime ―> ( R/W)c( 0 P(yt))

is the injective envelope, we see that cokers,is indecomposable by Lemma 5, it

follows that the sequence above is the minimal projective presentation of cokere.

For M being directing, by [9] the morphism

( c HomAiPix,), M))e( c HomX{P{yi), M)) -^ HomA(P(x0), M)

is epic or mono, however Homz(P(yi), M)=0 for i=l, ■■■, m, then

c Hom(P(Xi), M) ―> HomA(P(y0), M)

is either epic or mono.

For the same reason, the morphism

(*) ( c HoniAiPixi),iV))c( c HomA(P{yi), N)) ―> HomA(P(x0), N)

is either epic or mono.

n
1° If c HomA(P(Xi), M)-*Homz(P(xo), M) is non-isomorphic and mono, we
i=l

know by Lemma 4 that S(x0) is a direct summand of topM with multiplicity
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t = dimk Hom.A(P(xo), A/) ―

>0.

2 dimk Homx{P{x,), M)
i=l

139

Since there are not TVconjugated vertices in SuppiM and in SuppM, we see

that dimk Homz(P{x0), M)―dimk HomA(P(Xi), N), W=l, ■■■, n. If the morphism

(*) is epic, then S(x0) is not a direct summand of topN, which contradicts the

fact that X and Y have the same Loewy factors. If (*) is mono, then S(x0)

is a direct summand of topN with multiplicity

However,

m
r―dimk HomA(P(x0), M)― 2 dim

m
-gdimkHomA(P(yi),N).

r<dimk HuniA.{P(x0), JV)

a contradiction.

= dimk HomA(P(x0) M)

n

t = l

* HomA(P(xt), N)

dimk HomAiPiXi), N)

S dimk HomA(P(Xi), M)

2° If c HoniA{P{Xi), M)->HomA(P(x0), M) is epic, considering the longest
4―I

path in SuppN ending at x0 which is not a zero-relation

y[ > ... > yi > Xfl>

It followsfrom [9] that the natural morphism /:

HomA(P(y'i)PN) ―> > Hom&P(yi), N) ―^ HomA{P(x0), N)

―> Homx(P(x0), N)

is non-zero. Hence there exists f^HomA(P(y[), N) satisfying/(/)=£().Since

thisnon-zero path is the longest one, / can be no longer factorthrough any

projectiveA-module. By Lemma 4, S(y[)is a directsummand of topJSl,hence

we can conclude that S(vy[)is a directsummand of topM. We know by [9]

that the natural morphism HomA(P(x0), M)->HomA(P(vy'i),M) is mono or epic,

thereforeit must be non-isomorphic and mono by Lemma 4. Assume that the

arrows in SuppN ending at y[ are as follows:
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then S(y'i)is a direct summand of topN with multiplicitydimkHornA(P(y[), N) ―

*£qi=1dimkHomA(P(Zi,), N)>Q. Owing to xQ(=A?QSuppN, it bears xo(£{vzi}qi=1.

Similarly we can show that

( (BHomA(P(vzt), M)＼RHomA(P(xo), M) ―> HomA(P{vy[), M)

is non-isomorphic and mono and S(vy[) is a direct summand of topN with mul-

tiplicitys:

Q
s<dimk HomA{P{vy'^), M)― 2 dimk HomA{P(vzx), M)

i=l

= dimk HomA{P{y[), N)- S dim, HomA(P(Zi), N),
i=i

which contradicts the hypothesis that X and Y have the same Loewy factors.

Up to now we finish the proof of (2)=}(1). The proof of (3)=H1) is similar.

Proof of Theordm 2. Let X and Y be two T(^4)-moduleson platform

with topX ―topY and socX^socY. Suppose that M, N, B are same as above,

from the proof of Theorem 3 we know that M and N are both 5-modules, and

as 5-modules they have the same top and socle. Since both M and N are

directing^-modules, we have M^N by [2],it follows that X―Y.

Corollary. Let A be an iterated tiltedalgeba, X and Y T(A)-modules on

platform, then the following are equivalent:

(1) X^Y

(2) dimX=dimY, topX^topY

(3) dimX=dimY, socsX―ocY

Remark. (1) We know that every non-projective indecomposable module

over a representation-finitetrivialextension algebra is a module on platform.

So the conclusions of Theorems 2 and 3 in [10] are contained in the results of

this article.

(2) At last we leave a space to explain the fact that no directing module

exists over a finite-dimensional selfinjectivealgebra A. In fact, let Px be a

direct summand of the projective cover of an indecompossable module M and

P2 be a direct summand of an injective envelope of M. It is not difficultto see

that arbitrary two vertices in the Gabriel quiver Qa of A belong to a cycle

path of Qa, therefore jP2-<-Pi-<M-<P2, i.e., M is not directing.
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