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GLOBAL HYPOELLIPTICITY AND CONTINUED FRACTIONS

By

Masafumi Yoshino

§1. Introduction.

In this paper, we are concerned with differential operators which are not

hypoellipitic,that are globally hypoelliptic. Let Td=Rd/27cZd (d^2) be a d-

dimensional torus. We denote by 3)'{Td) and C°°(Td)the sets of distributions

and smooth functions on Td, respectively. For a pseudodifferential operator P

on Td, P is said to be hypoelliptic in Td if, for any domain QdTd and we

3)＼Q), Pu(bC°°(Q)implies u<=C°°(Q). We say that P is globally hypoelliptic in

Td, if every distribution u such that Pu<=C°°{Td)is smooth on Td. Clearly,

hypoelliptic operators are globally hypoelliptic.

We know that there is much difference between these notions (cf. [2]).

One trend in the study is, as to second order equations, characterizing global

hypoellipticity by properties of certain vector fieldsdetermined by equations,

which would be the same way as to the famous work of Hormander (cf. [2]).

But this way cannot explain allglobally hypoelliptic operators because we have

Greenfield's example; Q=(d/d%i―rd/dx2)2 with r>0, irrational. Q is globally

hypoelliptic in T2 if and only if z satisfiesa Siegel condition (cf. [1]).

In [4] we investigated operators for which the global hypoellipticity is

equivalent to a Siegel condition. Indeed, let us consider the operators

P= 2 aaDa+ 2 bdx)DP on Td
I a | sm /9|sm-s

where m^l, s^O are integers, aa^C, b^C (Td), and Da=(-id/dx1)a^ ･･■

{―id/dxd)ad. We define the cone /^ as the convex hull of the closure of the

set {tj; t>0, 6^,^0 for some /3 in P}W{0}, where bp(x)=J}bp,reirx. Then

the class of operators for which the global hypoellipticityis equivalent to a

Siegel condition is, roughly speaking, characterized by the properness of Fp,

i.e., Fv contains no ray. (For the detail we refer [4]).

If we drop the properness of Fv, a Siegel condition is no longer adequete

to describe the global hypoellipticity.(cf. [4]). Indeed, the operater Q ―

―(d/dx^+1 on T2 satisfiesa Siegel condition, and rQ={0}. Q is globally
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hypoelliptic on T2. On the other hand, the Mathieu operator M=~(d/dx1f +

2 sin Xi on T2 does not satisfya Siegel condition, but it is globally hypoelliptic.

(cf. [4]). We note that though the operators Q and M give examples of glo-

bally hypoelliptic operators which do not satisfythe Hormander condition in [2],

they are quite different, because Q is controled by a Siegel condition, and M

by a different principle,(cf. Theorem 2.1 which follows.)

We shall study global hypoellipticity of Mathieu-type pseudodifferential

operators from the viewpoints of eigenvalue problems. We express necessary

and sufficient conditions for global hypoellipticity in terms of Hill'sinfinite

determinants and continued fractions,which make clear why a Mathieu operator

is globally hypoelliptic in T2. Our theorem is applied to the distribution of

eigenvalues for pseudodifferential Mathieu-type operators.

Finally, the author would like to give sincere thanks to the referee for

giving the author useful suggestions in preparing this paper.

§2. Notations and results.

Let p{f]＼),f]^R be a smooth function on R, and let us consider the pseudo-

differentialequation.

(2.1) Pu = (p(Dl)+2oa&x1)u=f(x) on Td,D1 = ~id/dx1.

We say that P is of Mathieu-type if p{f]i)satisfiesthe following conditions.

(2.2) P(t)=p(~t) for all t<=R.

(2.3) There exist s>0 such that ＼p(t)t1+t＼―> oo (f->oo).

For zgC we define an infinite matrix H by

(2.4) H^iHn.^^Z-pWT'gn-n+dn.^*,,

that is, the (n, mVcomponent is given by gn.m/(z―p(n))-rdn.m, where

1 (if n―m=±l)

0 (if otherwise)

8n,m =
＼

1 (if n―m)

0 (if otherwise)

We denote by {Hn>m)l-i the /-th section of H. We define the infinite deter-

minant, det H by

limdet(//n,m)J

if the limit exists. Hill'sdeterminant exists under the condition (2.3) (cf. Pro-

position 3.2 which follows). We set

(2.5) D(z)=detH.



Global hypoellipticityand continued fractions

We definea meromorphic function T(z) by continued fraction

(2.6) T(*)= K{j~^) = =^1 ,

z-p(2) +^―±―

or equivalently, by

(2.7) T(z)=lim AJB
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where {An} and {Bn} are solutions of the difference equation

(2.8) yn=(z-p(n))yn-i-yn-2

for n―1,2, ■■■,with the initial conditions, A^―l, A^―Q; B.r―O, BQ ―1, re-

spectively (cf. [3]). Then we have

Theorem 2.1. Suppose that P satisfies (2.2) and (2.3). Then the followings

are equivalent.

(a) P-X is globally hypoelliptic in Td.

(Jo) P-X: C~(T)->C°°(T) is injective.

(c) X is not a pole of T(z) and 2T(X)^p(0)-X.

(d) DU)*0.

Remarks 2.2. (i) Theorem 2.1 is valid if we replace C°°(r)in (b) with

any one of CW(T), C°°(Td)and C%Td), where Cm(T) denotes the space of analytic

functions on the torus T and so on. Theorem 2.1 is still valid if we replace

(a) with the following:

(a)' P― X is globally analytically hypoelliptic in Td.

Here P―X is said to be globally analyticallyhypoelliptic if u(=S)'(Td) and Pmg

Cm{Td) implies u<=Cw(Td). All these results follows by modifications of the

proof of Theorem 2.1.

(ii) If we replace (2.4) with

(2.3)' |/)(01 -―> °° as |f|->oo.

then T(z) is stillwell-defined, but Hill's determinant does not have a sense in

general. Nevertheless, the equivalence of (a), (b) and (c) in Theorem 2.1 is

vniiH

Corollary 2.3. The Mathieu operator ―(d/dxi)2jr2cos Xi is globally hypo-

oUi.-hiirin Td_
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Remark 2.4. Theorem 2.3 can be extended to more general pseudodiffer-

ential operators. In fact, we have: Suppose (2.2) and (2.3) are satisfied. More-

over, suppose that p(t) is real for allintegers t(EZ. Then, there exists a dis-

crete set EaR such that P―X is globally hypoelliptic if and only if X is not

in E. The proof of this fact is given in §3.

We can easily see, from the proof that in the case of a Mathieu operator,

the set E coincides with the characteristicvalues of a Mathieu operator. Hence

it does not contain 0. Hence, Corollary 2.3 is a special case of the above result.

Corollary 2.5. (Asymptotic distribution of eigenvalues). Suppose that P

satisfies(2.2) and (2.3). Then, for any d, 0<d<s, there exists k^O such that

the eigenvalues of P are contained in the set

F={z^C; ＼z-p{n)＼^2 for some neiV, O^n^k or

＼z―p(n)＼^n~dfor some n^N, n^k＼.

§3. Proof of Theorems.

3.1. Preliminary lemmas.

Let {A$}n=-i and {.B*}£=_ibe defined by an equivalent difference equation

to (2.8),

(3.1) yt=y$-i-{z-p{n)Y＼z-p(n-l)Ylyt-*, n=l, 2, -

with the initialconditions

(3.2) 4*i = l, A*=Q; B*!=0, B*=l.

Then we have

Lemma 3.1. The limits

A*=A*(z)=＼＼mAt, B* = B*{z)=＼＼mB*

exist as meromorphic functions on C. .4* and 5* have poles at z=p(n) {n =

1, 2, ･･･)of degree 1, and A* has a pole of degree 1 at z=p(O). Moreover, we

have the identity

(3.3) B*(z)T(z)={z-p(O))A*(z).

Remark 3.2. We say that (2.8) and (3.1) are equivalent, because two con-

tinued fractions defined by (2.7) and by A*/B* are identical except for the

factor z―p(0). For the detail we refer [31.
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Proof of Lemma 3.1. We set bn―z―p{n). Then, by adding (3.1)from

n ―＼to n ―k we have

(3.4)
k

y*=y*~ S y*-2/bnbn-i

71=1

If {yf} is bounded by some constant independent of k, then (2.3) implies the

existence of lim yf. Let cn be so defined that ＼yt＼^cn (k=l, ･･･, n). Then,

by (3.1) and (2.3) we have

＼y$＼<cnM+K(l+nYz-*s)

for some K>0 independent of n. This implies that cn^c7l^1(l+ K(l + n)~2''2s).

By iterating this we see that {cn} is bounded in n.

By (2.3), A*(z) and B*(z) are meromorphic functions of z. By the recur-

rence relation (3.1) A*(z) and B*(z) have poles at z=p(n) (n=l, 2, ･･･)of degree

1, and A*(z) has a pole of degree 1 at z=p(0). This implies that A*bo/B* does

not have a pole at z=p(n), n―0, 1, ･■■.If bn=z―p(n)^0 for n=0, 1, 2, ･･-,

then we set

(3.5) yn^ytbnbn-i-bob^b.^1, n=0, 1,2, ･･･.

By (2.8), 3;*satisfies(3.1). Since {An} and {Bn} correspond to {A*} and {5J/60},

respectively, we get, from (2.7) and (3.5)

(3.6) T(z)=lim AJB n=lim (A*bo)/B*=(A*bo)/B* .

This proves (3.3). □

7i->oo 7£-*oo

Proposition 3.3. {Continued fraction representation of Hill's determinant).

Let D(z) be given by (2.5), and let A* and B* be given by Lemma 3.1. Then

we have

(3.7) D(z)=B*(2A*+B*).

Proof. We set Sn^z―pin))'1 and

■1

S-k+l

(3.8) Dk,i(z)=fet(Hatm)ln,m=-k=det

0

1 S-4+1

0

1 Si

Si 1

Then the limit D^a(z)=lim Dk?t(z)exists. Indeed, by (2.2),if we expand DkA{z)
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with respect to &-th column or l-th column, we have recurrence formulas similar

to (3.1);

(3.9) £*.i=£*-i.i-s*s*-i0*-2.:, k=l, 2, ･･･,

(3.10) Dk.l=Dk,l^-slsl_1Dh,l^, 1=1, 2, ･･･.

Hence, by (3.9) and the argument of Lemma 3.1 the limit A*,j exists.

Next, we shall show that

(3.11) D(z)=limD00.,(2).

Indeed, by letting k->oo in (3.10) we see that {D^^} satisfies(3.1) with n re-

placed by I. Hence the limit in (3.11) exists by the arguments of Lemma 3.1

In order to prove (3.11),it sufficesto prove that

(3.12) lim(Di.IU)-^co.i(2))=0.

By summing up (3.9) from k=l+l to infinity,we have

(3.13)

On the other hand, it follows from (3.1),(3.2) and (3.9) that

(3.14) D^D^At+D^iB?, i=-l, 0, 1, ･･･,

where D_lki=(D0A―Dlti)/(s1sa). By (3.10) and the arguments of Lemma 3.1 the

sequences {ZLi.J and {DoA} are bounded in /. Because A$―>A*, B*―>B*(i-->oo)

it follows from (3.14) that {Diti} is uniformly bounded in i and /. Hence, by

(2.3) and (3.13) we have (3.12).

We shall prove (3.7). By letting f―>ooin (3.14) we have

(3.15) ^fD-m^+D,,^*.

Ih view of (3.10) we express Doa in terms of A? and Bf. By (3.8) we have

[1 s0]
Do i=det =1 ―SoSj.

Sx 1

A>.2 =

1

Si

0

So

1

s2

1 SgSi S1S2

On the other hand, it follows from (3.1), (3.2) and sn=(z―p(n)Tl that At

A%= ―sQs1,Bf=l, Bt=l ―SiS2. Therefore we have

(3.16) D0.i=Af+B?.
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Similarly, we have

(3.17) D_ul = Bf.

By (3.15), (3.16), (3.17) and (3.11) we have

£(z)=lim (D_l,lA*+Da,lB*)=B*A*+(A*+B*)B*={2A*+B*)B*. U

T?iOT-≪i^>1 TITO COf

(3.18) Tlz) K

n=v

£)
bn=z-p(n)
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Then we have

Lemma 3.4. Suppose (2.3). Then there exist N^O and e>0 such that for

any v^N, Tv(z) in (3.18) converges, and satisfies0< |Tv(z)＼<1 ―e for all v^N.

Moreover if T(z)^oo! then there exists K>0 such that

(3.19) ＼An-T(z)Bn＼^K＼Bn＼-1 for n=l,2, ■■■.

Proof. By (2.3), there exists M^O and 0<^<l such that ＼z―p(n)＼>2-Jr7j

for all n~2tNi. Hence, in order to show the convergence of Tv(z) we may

assume that v=l and ＼bn＼>2+7] for n―1,2, ･･･. Since JB_1=0, B0 = l, it fol-

lows from (2.8) that ＼B1＼>2＼B0＼>l + r]. Similarly, we have ＼Bn＼>{l + r])＼Bn_l＼,

n=l, 2, ･･･.

On the other hand, for m>n>N

(3.20)

4
^_

^

=
f. (A*

Bn Bm k = n + l＼ Bk

Ak_x

By the determinant formula, AkBk_x―Ak_xBk-= ―＼which follows from (2.8), we

see that the limit Tx{z)=T{z) in (2.7) exists. It is also clear that |7＼(z)| is

uniformly bounded in v^Ni. By (2.3), ＼K_i＼tends to infinity as v->co. It fol-

lows that ＼Tv(z)＼<l ―s for v^N if TV is sufficiently large and e is small.

Bv letting1 m^oo in (3.20), we have

A

■Ore

R I2

~ k = n + l ＼Bk I |JBA_1 I

Since ＼Bn+1＼/＼Bn ＼<l-＼-7] for sufficiently large n, this proves (3.19) for large n

Hence, by taking K sufficiently large, we have (3.19). □

3.2. Proof of Theorem 2.1.

Proof of Theorem 2.1. We shall prove that (b) implies (c). Suppose that

(c) is not satisfied. We firstassume that X is a pole of T(z). We substitute
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the Fourier expansion of u, u=^vuveirix into the equation (P―X)u=0. Then

we have the recurrence relation (2.8) for yn = U(.n+i,V'->,f]'^Zd~l and z=X for

n=0, ±1, ±2, ･■･. If we define Bn (n = ―1, 0, 1, ■■･)as in (2.7), it follows from

(2.2) that the sequence yn, yn ―Bn (n^ ―1), B_n_2 (n<―1) solves (2.8) for

n=0, ±1, ±2, ･･･.

In order to show that {Bn} is rapidly decreasing as n―>oo we prove

(3.21) £m/J3m_1=-Tm+1tf), w^l.

By (2.6) and T(/l)=T1U)=oo, we have that b1= -T2(X). Since £0=l and 5t =

X―p(l)=bl by definition, this implies (3.21) for m = l.

Suppose that (3.21) holds for ra^k. By (2.8) we have that Bk+l―bk+lBk ―

5*.!. If Bj^O, then (2.6) yields

B k+i/ B k=b k+i ―B k _J B k=b k+i―T k+1(ky1 = ―T k+ii^-Y1.

Hence we have (3.21) for m = fe+ l. If Bk=0, then Bk+lBk_^R, to yield

Bk+l/Bk = oo and Bk/Bk_x=Q. By the induction hypothesis, the latter equation

is equivalent to 6A+1 + Tft+2(^)=oo. Hence both sides of (3.21) for m = k-＼-l

are equal to infinity. This proves (2.21).

By Lemma 3.4 the right-hand side of (3.21) is smaller than 1 ―£ if m is

sufficiently large. Hence {Bn} is rapidly decreasing. This contradicts to (b).

In the case, 2T(A)=p(0)―A, we can easily see that yn=An ―TBn (n>―1);

=i.B.!-T5.B.! (w<-l) is a solution of (2.8) for n=0, ±1, ±2, ･･･. On the

other hand, by the same arguments as in the proof of (3.21), we can prove

(3.18) with Bm replaced by Am-T(X)Bn. Indeed, for m = l (3.21) follows from

the identity, l/T1 = ―bi―T2. For general m, (3.21) is proved by (2.8). Hence,

we have that {yn) is rapidly decreasing as n^oo, a contradiction to (b).

We prove that (c) implies (d). Suppose that D(X)=0. Then, it follows

from Proposition 3.3 that B*(2A*+B*)=0. If B*^0, then 2A* + B*=0. By (3.3),

this implies 2T(X)+X―p{0)=0, which is impossible.

If 5*=0, then we have A*i=0. Indeed, by (2.3), (3.1) has an exponentially

growing solution. Since {At} and {B*} are linearly independent, it follows

that A*=£0. It follows from Lemma 3.1 that (z-p(Q))A*^Q. By (3.3) this

implies T(A)=°o. This contradicts (c).

We shall prove that (d) implies (b). Suppose that there exists a u=^]r]Ur1ei^x

eC°°(r) such that Pu=Xu. By substitution, we have (2.8) with z―1, yn =

Mcn+i.,'), 7]'GZd~l for n=0, ±1, ±2, ■■･. By (2.4), this implies that the infinite

equation HU=0, Lr=(M(n,^'))^oo has a nontrivial solution.

Let k, Z^l. Because Dk A A) given by (3.8) tends to DU)^0, and because
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T(l+U―p(n)＼ x) converges, by (2.3), all components of the cofactor matrix,

co(/fn,m)i,m=_& = JA,j are uniformly bounded in k and /. Applying Akil to the

finitesection of HU=0,

(H'n.mY-kiUcn,,'))-*= : = g >

ju<.-i-＼,v>･>(*)―P(l)Yl-

we have that

(3.22) Dk.l{Xtuin.1)n)l-k=Ak,ig.

The right-hand side tends to zero as k, /->oo, while the left-hand side con-

verges to D(X)U. Hence it follows that D(X)=0, a contradiction to (d).

Since (a) trivially follows from (b) by the condition d~^2, we shall prove

that (c) implies (a). Let u = ^vu7]eir>x<=W(Td) and (P-X)u = f(x)=y]vfveirix(E

C'x{Td). By substitution, we have the recurrence relation

(3.23) yn-bnyn-i + yn-2= fn, n=0, ±1, ±2, ■･･,

where yn = uln+i.v^, /n = /cn.7-),bn=X―p(n).

We firstsolve (3.23) for n^ ―1 with the initialconditions y_1~a, yo^=fi where

a and B will be determined later. By (2.8) the solution is given by

(3.24)

where

yn = CxAn + ^BnJr(pn ,

1 v=l v=＼

We rewrite thisas

yn=aAn+^+rx)Bn+(pn + fn=(aTW+^+ri)Bn+a(An-Ta)Bn)-＼-<pn^fn

where ri=Sr=i/v(>lv-i-TU)^-i), <po=<pi=O and, for n^3,

(3.25) <pn= -(An-T(X)Bn)nil f.B^-Bn S UAV.1-T(X)BV_1)

Because {/,} is rapidly decreasing as v-^oo, it follows from (3.25) and (3.19)

that (pn in (3.25) is rapidly decreasing. Since yn is of polynomial growth as

n->co, by assumption, we have

(3.26) aTU)+|8+ri=0.

Next we shall solve (3.23) for n^―1. We note that y.2=(^―iKO))y-i~yo + fo

=a(/l―£(0))―/3+/0. We replace n in (3.23) with ―n, and we set vn = y_n_2,

to obtain Vn--=br,.Vn-i―Vn.-?.+f-n,n = l,2,---:v-,=a.vn=(A ― t>(0))a―B+fn. We
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make the same arguments as above. Then we have

(3.27) aT(X)+U-p(O))a+fo-p+r*=O, T2= f f-AA^-TB^)

By (3.26), (3.27) and 2T(/l)^p(0)-A we can determine a and /3 uniquely as

rapidly decreasing functions of f]as |^|-->oo. Hence u is smooth. This proves

3.3. Proof of Corollaries.

Proof of Corollary 2.3. We have pirj^―yjl. By Lemma 3.4 Tv(0) in

(3.18) satisfies that 0<|7＼(0)|<l if v is sufficiently large. Since |/>()?i)|^l we

see that 0<|TB(0)|<l for all n. Recalling that T(0)=7＼(0), we have the

Proof of Corollary 2.5. In view of (c) of Theorem 2.1 we show that

g(z)=2T(z)-{-z―p(Q) has no zeros or poles if z^F. If z satisfies＼z―p(n)＼>2

for n=0, 1, 2, ･･･,then the argument of Corollary 2.3 implies that 0<＼T(z)＼<l.

Since ＼z―p(0)＼>2,g(z) has no zeros.

Next we consider the case n~5< ＼z―p(n)＼<2 for some n. By (2.3), there

exist co>O, k^O such that, if?n^k and ?n=£n,then ＼z―p(m)＼>come. It follows

that |Tn+2(i-)|<l. Hence ＼Tn+1(z)＼<(c0(n+ iy-l)-＼ to yield

(3.28) |Tn(2)|<l/(n-5-(co(n + l)E-ir1).

If we take k sufficientlylarge, then, for any n'^k the right-hand side of (3.28)

is smaller than 2ns. Since ＼z―pin-l)＼>cons and £>8, it follows that ＼Tn_t(z)＼

<＼. This oroves that T(z) has no Doles or zeros, n

Proof of Remark 2.4. We give a rough sketch of Remark 2.4. We de-

fine E as the set of all poles and zeros of a meromorphic function g(z)=

2T{z)Jrz―p{0). E is discrete, by definition. It follows from Theorem 4.61 of

[3] that the poles of T(z) are real.

On the other hand, by (9.48) of [31 we have representations

(3.29) T(z)=
r

{t+zYld(p{t) (Im2>0 or Imz>0)

for some real-valued, bounded, monotone non-decreasing function <p(t) with

infinitely many points of increase on ―oo<^<;oo. Hence the condition g(z)=0

(3.30) 2Im^°° ＼t+z＼-2d(p(t)+lmz--=Q
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(3.30) has a solution

from Theorem 2.1.

[1]
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only ifIm z=0. Hence we have EdR. The result follows

□
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