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FIXED POINTS OF ELEMENTARY SUBGROUPS OF

CHEVALLEY GROUPS ACTING ON TREES

By

Makoto Fukunaga

0. Introduction

Consider the following condition on a group G:

/cvn
For any tree X and any action without inversions of G on X, the set

XG of fixed points is non-empty.

Jean-Pierre Serre has shown that every group with this property has many

interesting group theoreticalproperties(cf.[5]). He has also shown that the special

linear group SL(2, Z) of degree 2 over the ring Z of rational integers does not

satisfy(FA), but SL(3, Z) does. In this paper we shall generalize this result to

the elementary subgroup Ef(0, R) (See Section 2 below.) of a Chevalley group of

type 0 over a commutative ring R with an identity under the assumption that 0

is irreducible of rank ^2 and the additive group R+ of R is finitelygenerated.

For any group G, we use [G, G] to denote the commutator subgroup of G generated

by all[x, y~＼= xyx~1y~1,x, yeG.

I would like to express my warm thanks to Professor Eiichi Ate for his

valuable advice during the preparation of this paper.

1. The action of a group on a tree

We begin with the definition of graphs. A graph X=(S(X), Ar(X)) consists

of a non-empty set S(X) and a subset Ar(X) of S(X)xS(X) such that (s, s)$Ar(X)

for any sgS(X) and Ar(X)=Ar(Xy, where

Ar(Xy={(s,s>)＼(s',s) Ar(X)}.

Each element of S(X) (resp. Ar(X)) Is called a vertex (resp. an edge). We shall

sometimes identify a graph X with the set S{X) of vertices and an edge (s, s')

with (sf,s). A series of finitely many edges (s0> Si),(sh s2),--->(s≫-i,sw) is called a

/>#£//<?/length n connecting s0 and sn, and we shall denote it by (s0, Si,--,sn). In

particular, the path (s0, Si,---,5m) is called geodesic if the vertices s0,Si,---,s≫ are all

distinct. Any path connecting two distinct vertices can be reduced to a geodesic
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path. On the other hand, the path (s0,su---,sn) is said to be a loop when n'i~3,

So―Sn and the path (si,sz,---,sn) is geodesic. A graph is defined to be connected if

for any two distinct vertices there is a path connecting these two vertices. A

connected graph is called a tree when it has no loops. It is easy to see that

any two distinct vertices in a tree are connected by one and only one geodesic

path.

An automorphism f of a graph X is a set theoretical bijection from S{X) onto

itself such that a pair of vertices (s, s') is in Ar(X) if and only if (/(s),/(s')) is

in Ar(X). The set of all automorphisms of a graph X forms naturally a group

Aut(X) under the composition of maps. We say that a group G acts on a graph

X when there is a group homomorphism a of G into Aut(X). Then every element

g of G induces an automorphism of X defined by

x i > a{(J)x―gx

Now consider an action of a group G on a tree X=(S(X), Ar{X)). It some-

times happens that there exist (s,s')eAr(X) and g G such that (gssgs') = (sf,s). In

this case we say that this action has an inversion. It is known that an action

with inversions can be reduced to the case without inversions by the following

method of barycentric subdivision. Assume that (s, s')eAr(X) and g&G is an

inversion. Take a tree X' = {S(X'), Ar{X')) in place of X, where

S(Xr)=S(X)＼J{s//), s"$S(X) and

Ar(XO = (Ar(X)- {(s,s')})U {(.?,s"), (s", s')}.

The action of G on X can be naturally extended to Xf by defining gs"=$" for

all gzG. In this paper we assume that no action of a group on a tree has any

inversions.

When a group G acts on a graph X, we denote

XG={s£S(X)＼gs = s for all g G} and

X9={s S(X)＼gs~s}, where g is a fixed element of G.

Proposition 1. Let X be a tree.

(i) // XG is non-empty, then XG is a tree.

(ii) Let Xi (l^i^n) be subsets of X. If each Xi is a tree and Xif]Xj is non-

empty for all pairs (i,j), then f＼ Xi is non-empty and connected.
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Proof (i) We shall show that XG is connected. For distinct vertices s,s'eX°,

there is a unique geodesic path (s, Si,---,sn,s')in X. So (gs,gsls---,g$n,gsf)= (s,gsi,

■■■,gsn,s')is the same path for all gsG. Therefore sh sz,---,sn$Xa.

(ii) Using induction on n, it is enough to show (ii) when n = 3. Choose any

SijQXiHXj for i,j ―l, 2, 3. We may assume s12<$X3? s2i$Xi and sn$Xz, otherwise

the proof is completed. So the three vertices slz,s2$ and s13 are all distinct. Since

Sn and s23 (resp. s23 and s13) are connected by a path in X2 (resp. in X3), there is

a path connecting s12 and s13. Reducing the path to be geodesic, we get a geodesic

path connecting si2 and sVi which runs through Xzr＼X3. But by the uniqueness

of geodesic paths,, this path is contained in Xt. So we have X1r＼Xzr＼Xs=£if>. The

connectedness of Xif]X2r＼X3 is obvious. q.e.d.

2. Elementary subgroups of Chevalley groups and some of their properties

In this section we recall the definition of elementary subgroups of Chevalley

groups and give some of their properties. Let 0 be a (reduced) irreducible root

system (cf.[2],Chap. 6), and V be the real Euclidean space spanned by 0. When

we choose a base A of the root system 0, the set of positive(resp. negative) roots

with respect to A is determined and we shall denote it by &h (resp. 0~). Let A'

be a non-empty subset of A ―{cu}. Then

{Iniai£R＼ni-Q if a&A'}

is a (not necessarily irreducible) root system with a base A', and we shall denote

it by

<ai＼ai£A'>.

Each root a # defines a reflectionra of the space V, which sends a to ―a and

leaves pointwise fixed the hyperplane orthogonal to a. All reflectionsdetermined

by the roots of <P generate a group W called the Weyl group of #.

Each irreducible root system 0 determines uniquely (up to isomorphism) a

finite dimensional simple Lie algebra q(0) over the fieldof complex numbers.

Let p be a faithfulrepresentation of the Lie algebra g(#) on a finite dimensional

vector space over the field of complex numbers, then we can construct the

Chevalley-Demazure group scheme Gp(0, ) associated with 0 and p (cf.[1],[3]

and [7]). Since Gp(0, ) is a covariant functor from the category of commutative

rings to the category of groups, we get a group Gp(0, R) of the points of Gp(#, )

in a commutative ring R with an identity. In particular,if R―C is the fieldof

complex numbers, G10, C) has the structure of a Lie group. Gp(0, ) is called
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simply connected when the Lie group Gp(0, C) is simply connected, or equivalently

when the set of fundamental weights is a base of the lattice generated by the

set of all weights of the representation p. We shall give an example. Assume

that 0 is of type Ai and Gp(@, ) is simply connected. Then Gp{0, R) is isomor-

phic to the special linear group SL(l+l,R) of degree l+l over a commutative

ring R with an identity. In general, when 0 is of type Ai, Gp{0, R) is isomorphic

to a quotient group of SL(l+l, R) by a central subgroup.

For each root ≪ #, there is a group isomorphism

t1 > Xaif)

of the additive group i?f of R onto a subgroup Xa of Gp(0, R). Xa is called the

root subgroup corresponding to the root a. The elementary subgroup Ep(0, R) is

defined to be the subgroup of Gp{0, R) generated by all Xa for a @. When

Gp{0, ) is simply connected, Ep(0, R) is equal to Gp(0, R) if R is a local ring (cf.

[1], Proposition 1.6) or R is a Euclidean domain (cf.[7],§8). But, in general

Ep(0, R) is a proper subgroup of GP(Q, R). For a base A of 0, let UP(Q, R, A) be

the subgroup of Ep(0, R) generated by all Xa for a 0+. Then Up(0, R, A) is

unipotent and hence nilpotent (cf.[7],p. 26).

Now we shall make a list of some relations between generators in the ele-

mentary subgroup Ep{0, R) (cf.[3],[6] and [7]).

(RI) For any s,teR and a 0,

x≪(s)xa(t)= za(s+t).

(RII) Let rank 0=1^2. For any s,teR and a,fi 0 such that a+/5^G,

[ar.Cs),x{t)]= nxia+jp (NaJ,usV)

where the product on the right is taken over all roots of the form ia+jfi

for positiveintegers i and j arranged in some fixed order, and Na,p,ij ar<

integers depending only on a, ftand the chosen ordering.

(RIII) For any t R and a, $ 0

WaXpipjWcT1―XraW(± t),

where wa = xJl)x^J ―t)xJt).

Proposition 2. Let R be a commutative ring with an identity and 0 be an

irreducibleroot system of rank ^2. For each xa(t)eEp(0,R), a£0, tsR, there exist

a positiveinteger n and a base A of 0 such that

(i) x.{f)eU

(ii) xa(t)n= xJnt)e[U, U＼ where U= UM>, R, A)
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Proof. Choosing a suitable base J, we may assume that the given root a is

positive and not simple. Furthermore we may assume that 0 is an irreducible

root system of rank 2, that is, @ = AZ, or B2, or G2. Since the proof of the case

A2 or B2 is easy, we shall prove the most complicated case @ = G2- Set A = {au #2}

and @ ―{±oci,±a2, ±(a1+a2), ±(2≪1+a2), ±(3≪i+a2), ±(3ai+2a2)}, then a ―ai+a^.,

or 2≪i+a2, or 3≪i+a2, or 3ai+2a2. As special relations of (RII), we have

|>≪2(S),X3az+a2(t)]= XSai,2a2(±St),

[X2a1+a2(s),Xai(t)]= Xia^a2{ ±3s/),

[xai, tt2(s),̂ffl(/)]- a?2.1+a2(±2s0j78≪1+≪2(± 3s/2)^3aj+2≪2(± 3520 and

[xai(s), xa2(t)]=xai+a2(±st)x2ai+a2(±s2t)x3ai+a2(±sst)x3ai+2a2(±2ssl2).

So we can choose n―＼ (resp. w = 2, w = 3, n=6), when a = 3ai+2a2 (resp. a = 2≪i+a2

a = 3<xi4-ff2,≪= ari+a2). q.e.d.

For an irreducible root system 0 the highest root exists uniquely with respect

to some fixed base of 0 (cf7T21Xhap. 6).

Proposition 3. Let 0 be an irreducible root system of rank ^3 with a base

A = {au<x2,"-,m)' Then we can choose ai such that the following are satisfied.

(i) 0f = (a2,---,a{) is an irreducible root system of rank /―I with a base A'―

{a2,---,ai＼.

(il) Let <x0and /30be the highest roots of 0 and 0' with respect to the base A and

A' respectively. If 0 is not of type Ci or F4 (resp. 0 is of type Ci or F4), put

7"i=≪o―/30{resp. 2jt = aa ―^). Then ?i£0+ and {^0,ji} is of type A2 (resp. of

type B2) with highest root a0-

(iii) Put j2 = yi―ai. Then if 0 is of type At or Q, ?'2= 0. Otherwise, y2e0+.

(iv) If 0 is not of type At or Q or F4, then (au y2} is of type A2 and the highest

root is ji.

(v) // 0 is of type Fit then (au /-2>is of type B2 and the highest root is ai+2j2.

Proof. The proposition can be proved by the classification of irreducible root

systems (cf. [2] Chap. 6). For each system, we give the Dynkin diagram having

≪i as a terminal node, the type of 0' and the expressions of a0, /30,ji and j-2by

flip 1haQp nf (b

AM^Z)
≪1 ≪2o―o

oci-i ai
―o―o
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£i(/^3)

Ci(teZ)

A(/^4)

Ee
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O' Is of type Ai-i.

a0 = ai + a2 + ■･･ h ai,

/30―≪2+ ≪3+ -- h≪/,,

ji= ai and r2 = 0.

≪1
≪2

o―o―-
ai-t ≪i

0' is of type Bi-i .

≪o= a'i+ 2 (az + a$ + ------+ai) ,

/30= ≪2+ 2 (as+--- ＼-ai),

Yi~ai+a2 and j2~az ■

O O O=4=rC)

0' is of type G_i .

ao~2 (ai + -- [-ai-i)+oti,

ri=≪i and r2 = 0

o―o―
ai-2^O ≪J-i

―o

~"^O m

0' is of type Aa (if /=4) or A , (if /^5)

≪0= ≪l+2 (rt2+ +ffj_2)+≪i-l+≪≪,

i8o:=::≪a
+ 2 (≪3H ･･+ai-2) + ati-i+ai,

Ti=cxi+az and ji~(x%.

(Xi . ≪3 ≪4 ≪5 (X{

a~＼___ rS _O_ r^ O
W kJ kJ vj ＼J

O≪2

$' is of type D4 .
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Ea

Ft
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Yi―ai+a-z+as+ oti and

≪i (U a 3 a 4

o―o―o―o

o
≪6

≪5 <Xio―o

0' is of type E6.

≪o= ≪i+2a2 + 3a$+4a4 +3a5 + 2≪6+ 2a7,

/So= a2 + 2≪3+ 3a4 + 2aB + 2a6 + ≪?,

7*1―ffi+a2 + a3 + a'4+≪5+a7 and

T2= a2 + as + ai + ai + a7 .

a I ≪3 ≪4 ≪5 ≪6 ≪7 <*8
rA r-＼ ^ r~-＼_ r^―C)

―C^kj ~~vJ w "~w ^J w w

O≪2

&' is of type A .

a0 = 2<xi + 3≪2+4≪3 + 6≪4 + 5a5 + 4≪6 + 3≪7+ 2ff8,

|8o= C*2+ as+2 (d4+≪5+≪6 + ≪7)+ ff8,

/'i= 2≪i +2a2 + 3≪3 + 4o4 + 3a5 +2a6 + a7 + ≪8 and

r2-"=≪i+2a2 + 3≪s+4a'4+3ff6 + 2a6 + ≪7+≪8.

0' is of type C3.

/So= ≪2+ 2≪3 + 2≫4 ,

ri = ≪i+≪a+a3 and

r2 = ≪2+≪S ･ q.e.d

13

Proposition 4. Let (!)be an irreducibleroot system of rank ^2 and A be any

fixed base of 0. Then the elementary subgroup Ep(0, R) is generated by {Xa＼a£＼},

where

?r= (0+-W)U{-≪o}



14 Makoto Fukunaga

and a0 is the highest root of 0 with respect to A.

Proof. First we shall prove this in case the rank of 0 is 2, that is, <P is oi

type A2, or Bz, or Ga. Then we shall treat the case when the rank of 0 is

greater than 2. Let G[＼] be the subgroup of Ep(<$>,R) generated by {Xa＼a£＼}

We have to show that G[＼] is equal to Ep(@, R).

vSupposing first that we are in case Az, or Bz, or G2, put A = {a, /3}such that

a is a short root and /3is a long root if 0 is of type Z?2 or G2. Then ao = a + /:

(resp. ≪0= 2a+iS, rxo= 3a+2/3) when 0 Is /12 (resp. B2,G2). We claim that there

exists a base J' = {≪',/3'}such that root subgroups corresponding to the roots ±a'

and ±/3; are contained in G[0]. Since we have a relation (cf. [7],§3 and §4)

[xa(s), #/>(0J= *≪+/>(±s*)

(resp. [xa(s), x^(t)]= xa+li(±st)x2a+^±sH), [xp(s), x3a+fi(t)]= xSa+2p(±st))

when d> is A2 (resp. 2?2,Ga), XaogG|T] and hence wBo = xao(±)x-ao(-l)xao(l)eG[W].

By (RHI), every root subgroup corresponding to the root conjugate to a positive

root by wao is in G[＼] (cf. [4],§4). So we can choose A' = A = {a, /3}(resp. A' =

{a, -(/3+2≪) zl/= {-(/3 + a),/3})if 0 is A2 (resp. B2,GZ), and the subgroup generated

by ＼w7＼j£d'}is contained in G[＼]. Since the Weyl group W of d> is generated by

the reflections corresponding to the roots of A' (cf. [2], Chap. 6, §1, Th. 2), every

root subgroup corresponding to the root conjugate to a root of A' under W is in

G[＼]. On the other hand, for any two roots of the same length, there is an

element of W which maps one to the other (cf. [2], Chap. 6, §1, Prop. 11). There-

fore every root subgroup is in G[＼], and this completes the proof of this case.

Supposing next that we are in case the rank of 0si3, we proceed by induction

on the rank and use the notation of Proposition 3. </30,?-i>is an irreducible root

system of rank 2 with highest root a0. By hypothesis, Xr£G[0], where j is any

positive root in </30,j-i> or y=―a0. Then by the cases of rank 2, X-^o, X-7lQG[0].

Since ^ is the highest root of <≪2,---,≪i>,X-aiQG[0] (2^i^l) by induction. It

remains only to show that X-aiQG[0]. If 0 = At or d, ji= au hence we have

X-aiQG＼_0~＼.If 0 is not At or Ct or F4, then <≪i,j-2>is an irreducible root system

of rank 2 with highest root j＼. By an argument similar to the above, we have

X-aiQG[0]. Finally if 0 is of type Fif {-ji, ≪i+2j-2> is of type B2 with highest

root ―≪i. Hence we have X-a,QG[＼]. q.e.d.

3. Main result

In this section we shall prove the following theorem:
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Theorem. Let 0 be an irreduciblerootsystem of rank i^2, R be a commutative

ring with an identity such that the additivegroup i?+ of R is finitelygenerated and

p be any faithful representation of the Lie algebra $(@). Then the elementary

subgroup Ep(@, R) has the property (FA).

To prove this theorem we need the following result due to Jean-Pierre Serre

(cf.[5],Proposition 2 and its corollaries).

Proposition 5. Let G be a finitely generated nilpotent group. Assume that

G acts without inversions on a tree X.

(i) Let {g≪}be a finite set of generators of G. If Xgi is non-empty for all i, then

Xa is non-empty.

(ii) Let g be an element of G. If gn is in [G, G] for some positive integer n, then

X9 is non-empty.

Proposition 6. Assume that the elementary subgroup Ep(&, R) acts without

inversions on a tree X, where p, 0 and R are as in the theorem. Let U= Up{0, R, A)

be as in Section 2. Then Xu is non-empty.

Proof. Let A be any fixed base of 0. Since U― Up{@, R, A) is finitely

generated and nilpotent, we can apply (i) of Proposition 5 to the group U. It

is enough to prove that for each generator g= xa(t),a£0+, tzR, of U,X° is non-

empty. On the other hand, by Proposition 2, for any root a @ and any element

teR there exist a base A' of 0 and a positive integer n such that xa(t)eU' and

xa{t)n= xa(nt)£[U',U'],where Uf=Up(0,R,A'). Applying (ii) of Proposition 5 to

the group U' and an element g = xB(t)eUf, we have X9^6. q.e.d.

Proof of the Theorem. Given an action of EP{O,R) on a tree X, let {neR＼i

= !.･■･,n＼be a finiteset of generators of R+. For each ae@ and neR, put

gt.a=xa(rt), Xi,a=Xgt-.

First we claim that Xi,ar＼Xj,pis non-empty for any a, /3e?/and integers i,j (X = h

j^ri), where ＼ is as in Proposition 4. We may assume cr=£/5.Since a+/S is

non-zero, there is a base A' of 0 such that a and /3are positive roots with respect

to A'. Take U'=Up(0, R,A'), then XP' is non-empty by Proposition 6. On the

other hand, since Qi,a,Qj,pU', we have Xi,ar＼Xj,^Xu>. Thus Xi,anXj,p is non-

empty. Hence we have, by Proposition 4,

and thisis non-empty by (Proposition 1) q. e.d
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