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ON RESOLUTIONS FOR PAIRS OF SPACES

by

Sibe Mardesic

1. Introduction

Let (X, A) be a pair of topologicalspaces, Ac,X, and let (X, A) =((Xi, Ax),pn; /I)

be an inverse system of pairs of spaces and maps of pairs indexed by a directed

set A. By a morphism p: (X, A) ―≫･(X, A) of pro-Top2 we mean a collectionof maps

of pairs pk:(X, A) ->(Xh Ak) such that

Pwpv=pi, *<X.

A resolution of (X, A) is a morphism p = (px):(X, A) ->(X, A) of pro-Top2, which

satisfiesthe following two conditions.

(Rl) Let (P, Q) be an ANR-pair, i.e.,a pair of ANR's for metric spaces such

that Q is a closed subset of P. Let c[p be an open covering of P and let /: (X, A) ->

(P,Q) be a map of pairs. Then there there exists a teA and a map of pairs

g:(Xx, Ax) ->･(P, Q) such that gpk and / are ctAnear maps.

(R2) Let (P, Q) be an ANR-pair and let cy be an open covering of P. Then

these exists an open covering cy' of P such that whenever XzA and g,g':(Xx, Ax) ->

(P, Q) are maps such that the maps gpx and g'px are cy'-near, then there exists a

//>/{ such that the maps gpn, and g'pxx,are cy-near.

If all(Xx, Ax) are ANR-pairs (polyhedral pairs),we speak of an ANR-resolution

(polyhedral resolution) of the pair (X, A).

If we leave out A, Ax and Q, the above definitionreduces to the definitionof

a resolution p: X-*-X=(Xx,pxx>, A) (ANR-resolution or polyhedral resolution,resp.)

of a single space X.

The notion of resolution of a space was introduced in 1981 by the author [4]

(also see [5] and [6]). Resolutions for pairs were firstconsidered in [6].

Resolutions can be viewed as special inverse limits. In fact, these notions

coincide for compact spaces [6]. In the non-compact case resolutions appear to be

the appropriate substitutes for inverse limits,the latter notion being only of little

value for non-compact spaces.
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The notion of resolution is basic to the recent development ([1],[3])of strong

shape theory and Steenrod-Sitnikov homology [2] for arbitrary spaces. In order to

extend these theories also to the case of pairs of spaces, we need various results

on resolutions of pairs of spaces, not previously considered in [6]. This primarily

motivates the choice of the topics of this paper.

The main results in the paper are Theorems 2 and 6. The firsttheorem gives

a useful internal characterization of resolutions of pairs and the second theorem

establishes the existence of ANR-resolutions for pairs. The analogous result for

polyhedral resolutions was proved in [6]. However, the method of proof used in

[6] could not be used here, because generally, closed subsets of an ANR fail to

have a basis of neighborhoods all of whose members are closed ANR's.

2. Characterizing resolutions of spaces

Let piX-^-X be a morphism of pro-Top. We will consider the following pro-

perties of p.

(Bl) For every Is A and every open neighborhood U of pi{X) in Xx there

existsa l'>l such thatpu>(Xv)QU.

(B2) For every normal covering HJ of X there is a teA and a normal cover-

ing cy of Xi such that (pi)~l(cv>)refines HJ.

It was proved in [4] that a morphism p:X^>-X, which has properties (Bl)

and (B2) is a resolution. Conversely, if all Xx are normal spaces and p is a resolu-

tion, then p has properties (Bl) and (B2) (for alternate proofs see [6],I,§6, Theorems

3, 4 and 5).

Recently, T. Watanabe [7] has introduced the following property (Bl)* (he

denotes it by (B4))

(Bl)* For every ksA and every normal covering HJ of Xx there exists a l'>l

such that

(1) PniXx.)^St(px(X),^J).

Modifying the proofs given in [4], Watanabe has obtained the following

characterization theorem.

Theorem 1. (Watanabe). A morphism p'.X->X of pro-Top is a resolution if

and only if p has properties (Bl)* and (B2).

The value of Watanabe's theorem is that it holds without any restrictionsto

the spaces Xx, and condition (Bl)* is more natural than (Bl). However, Watanabe
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has shown that in the case of normal spaces Xx the properties (Bl) and (Bl)* are

equivalent.

For the sake of completness we give here an alternate and somewhat simpler

proof of Watanabe's theorem based on the corresponding proofs in [61.

Proof. Let us assume that p is a resolution. We will first show that p has

nronertv (R1 ")*

Let leA and let CU be a normal covering of Xx. By definition,this means that

there exists a metric space M, an open covering cy of M and a map g: Xx ― M

such that (g^Xqy) refines CU. Clearly,

(2) flf'CSt(gPAX), ci;))c St (A.CX), V),

(3) ^(X)cSt(^(X),cv).

Let A:M->/=rO. 11 be a man such that

(4)

(5)

h＼gpi(X)=Q

A|M＼St(^(Z),q;) = l.

We now put f=hg:Xl-^I,f'=Q＼Xl-^I. By (4), fpx =/%=0. Therefore, by

(R2), there is a ＼'>X such that fpu> and f'Pu>=0 are W-near, where W is

the covering of /, which consists of the open sets [0,1) and (0,1]. Consequently,

f^/X^czrO. 1). and thus, bv (5).

(6) gpu.(Xit)cSt(gptX^cv).

Now (2) yieldsthe desiredrelation(1).

In order to show thatp also has property(B2) we need thissimple Lemma.

Lemma 1. Let 1/bea normal covering of a space X. Then thereexistsan ANR

P, an open covering <W of P and a map h:X->P such that h'HW) refinesP.

Proof of Lemma 1. By definition there exists a metric space M, an open

covering cy of M and a map f:X-+M such that f~＼c[?)refines 17. By the

Wojdislawski-Kuratowski embedding theorem ([6],I, §3.1, Theorem 2), one can

assume that Mis a closed subset of a convex set P of a normed vector space.

For every V^aj there exists an open set Wv of P such that V―Wvf＼M. There-

fore, cW = (Wv, V Ci?)＼j{P＼M}is an open covering of M. If we take for h the

composition of / with the inclusion M-+P, then h~^{c＼;)=f-＼ci?)＼j{Q}refines HJ.

Moreover, P is an AR by the Dugundii extension theorem ([6],I,§3.1.Theorem 3).
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Proof of property (B2). Let 17 be a normal covering of X. We choose P, CW

and h as in Lemma 1. Let 'W be a star-refinement of <W. By (Rl), there is a

/ie/fand a map f:Xx-+P such that the maps //>;and h are W-near. Let us put

cx7=/-W). We chaim that pr](cV) refines C17.Indeed, let F=/~~1(J'F/)>W'£CW'.

Let I^gW be such that

It sufficesto show that

(/>,)-( T0cA-(T7).

If xe(pi)-x(V), then there is a W[ W' such that

fpx{x)h{x)zW[.

Since fpi{x)£Wr, we conclude that W V＼W[i=Q and therefore

h{x)£W[^ St(W, <W')Q W.

Consequently, xeh~l(W).

Let us now assume that p:X-*X has properties (Bl)* and (B2). We will

firstverify property (Rl). Let P be an ANR, cy> an open covering of P and

f:X~->P a map. One can assume that P is a closed subset of a convex set K in

a normed vector space. Let G be an open neighborhood of P in K, which admits

a retraction r:G-^P. Let cy/ = r1(cy) and let c＼p" be an open covering of G,

which refines c[pf and all of its members are convex. Then cU=f~i((:V") is a

normal covering of X. By (B2) there is a /.iA and a normal covering CU' of Xv

such that(p^yW) refines CU. Let CU" be a locally finitenormal covering of X,,,

which is a star-refinement of CU'. One can assume that c[J"=k"＼K), where

k: X-+M is a mapping into a metric space M and JC is a locally finiteopen cover-

ing of M. Then <W = {WgcU": Wnpp(X)j=O} is a normal locally finiteopen cover-

ing of JV=St {pJiX), CU'). Let (<pw,WgW) be a partitionof unity on N subordinated

to the cover CW. For every WzcW we choose a point yw^f((pfiyi(W)) and we

then define a map h:N-+K by the formula

(7) h{z)= 2 (pw(z)vw,z£N.

We will now show that h is actually a map into G and the maps hplt and /

are cx/'-near.

Let zzN and let Wo, ･･･, Wn be all the members of W^'W for which <pw(z)=fr0.

Then

(8) zg Won ･･･wnci st (PFo,^i/'Oe uf
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for some Uf cU'. Let UzHJ be such that

(9) (p,T＼U')^U.

Then

(10) vwief((pl,ri(Wi))£f({pl,rKU'))Zf(U),i=O,--;n.

Since f{U) is contained in some V"£cy" and V" is convex, it follows that also

h(z)£V"^G.

Now let x£X and let z―p^x). Since />,(#)=z JF0, we see,by (8) and (9),that

(11) f(x)zf{{p,Y＼Wo))^f{U)ci F".

Since, by (10), also hpfl(x)―h(z)s.V",we see that indeed, / and hp,, are q/'-near

maps. Therefore, the maps rhpp and f―rf are q/-near maps.

We now apply property (Bl)* and find a l>n such that pllX(Xx)QN. Clearly,

the map g ―rhp^iXi^P has the desired property that the maps gpx and / are

cy-near.

We will now verify property (R2). Let P be an ANR and let cy be an open

covering of P. Let cy' be a star-refinernentof cy. We will show that for anj

Is A and any maps /i,/2: Xx -> P such that fxpx and f2pi are qAnear, there exists

a X'>1 such that /i/>^-and fiPw are cy-near maps.

Let £/i= (/0~W)≫≫ = 1.2. Then £/,f/g are normal coverings of X;. Let °L

be a normal covering of Xx, which refines both coverings 'Ui and HJz. Let iV=

St(pi(X), CU). We claim that the maps ft＼N and ft＼N are c^-near. Indeed, lei

2/iV. Then there is a member U oi RJ and an element xtX such that # £/anc

px{x)zU. Then there are elements V[,V'Z£CV' such that /i(f7)c7[,/8(t/)£7J

Moreover, by assumption, there is an element V'£cyf such that f
ipi(x),f2p*.(%)£V

Since px(x)eU, we see that F(n F'^O and FJnF^O- Consequently, there is

an element Fcq; such that V[U F'U V'2Q St(F',cv')£ F. Clearly,f^J^y^V

i.e.,/i|iV and /2|A^are q^-near. We now apply (Bl)* and conclude that there i;

a X'>X such that pu'(Xi>)QN. Therefore, f＼pn- and /2/>^-are also q7-near maps

This comoletes the oroof of Theorem 1.

3. Characterizing resolutions of pairs

For a morphism p: (X, A) -*(X, A) of pro-Top2 we now introduce a relative

version of property (Bl)*.

(Bl)** For every 1$.A and every normal covering HJ of Xi there exists a Af>k

such that

(1) foAAiteStMAW).
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With every morphisra p :(X, A) ->■(X, A) of pro-Top2 we can associate two

morphisms of pro-Top px'.X-+X and pA : A -> A, which are defined by restricting

pi: (X, A) ->{Xx, A>) to pxiX-^Xi and px: A -> Ax respectively. The main result

of this section is the following theorem.

Theorem 2. A morphism p :(X, A) -≫(X, A) of pro-Top2 is a resolution if and

only if px'X-*X has properties (Bl)*,(B2) and p has property (Bl)**.

Proof. Let us firstassume that px'. X-> X has properties (Bl)*, (B2), i.e.is

a resolution of X, and p has property (Bl)**. We will first verify property (Rl)

for p.

Let (P, Q) be an ANR-pair, let c＼?be an open covering of P and let /: (X, A) -

(P, Q) be a map. We choose for c＼p>a star-refinement of c＼;.Since (P, Q) is an

ANR-pair, itis easy to findan open neighborhood G of Q in P and a map k: P'―>-f3

such that &|G is a retraction G-+Q and the maps l/> and £ are cy'-near (see [6],

I,§6, Lemma 4). Let cy" be an open covering of P, which refines oj' and star-

refines the covering {G, P＼Q}. Since px '.X-* X is a resolution,there exists a/ie/1

and a map g:Xx-> P such that the maps g/>;and / are q;;"-near. Let cU = g~＼cv").

We claim that

(2) g(St(^(A),<U))cG.

Indeed, if yeSt (px(A),HJ), then there exist a point a£A and a member Ue^J

such that ?/e£7andpA(a)QU. Let F" be an element of q/' such that U=g-＼V").

Then g(y),g^(a) V". There is alsoan element V"sc[p" such that g^(≪),/(fl)eF('.

Therefore, some element of {G, P＼Q} must contain |g(i/),/(fl))cF"U7!'. This

cannot be P＼Q, because f(a)$Q. Consequently, g(y)£G,which establishes(2). We

apply (Bl)** and obtain an index X'>X such that (1) holds. We now define a map

of pairs g':(Xx,,A,,)- (P, Q) by putting

(3) g'=kgpu>.

By assumption on k, the maps g'px'=kgpx and g^ are C[/-near. Since also gpx

and / are cj/-near, it follows that the maps g'px, and / are cy-near, which

establishes(Rl). That property (R2) for p holds is an immediate consequence of

the same property for px-

We will now prove the converse. Let p :(X, A) -> (X, A) be a resolution of

pairs. Then px:X-*X is a resolution of X. This is so because one can view

maps f:X-+P, PcANR, as maps of pairs /: (X, A) -*(P, P). Therefore, px has

properties (Bl)* and (B2). We will now establish property (Bl)**.

Let XzA and let V be a normal covering of X. Then there exists a metric
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space M, an open covering <W of M and a map g:Xx-+ M such that g ＼CW) refines

HJ. Clearly,

(4) sp)c St (gp>(A),W).

Let &:M->/=[0,l] be a map such that

(5) k(gpZA)) = 0,

(6) ^(M＼St(^(3),W)) = l.

Consider the ANR-pair (I,{0}) and let cy be the covering {[0,1),(0,1]} of I. Applying

(R2) for px, we associate with cy a covering q/. Since kgpx(A) = 0, property (Rl)

for p: (X, A) -> (X, A) implies the existence of an index X'zA and of a map h :(X^,

A;,) -> (I,{0}) such that the maps kgpi and hpv are cy'-riear. We now choose an

index X">X,lf and consider the maps

fi = kgpU",f2―hpi>x" '.Xx―> I.

Note that the maps fxpv = kgpi and fzpi>.=hpX' are cy'-near. Therefore, there

exists an index X*>X" such that the maps f ＼.px≫x*―kgpxx*and f2pi≫x*=hpx.x*ax&c＼;-

near. We claim that

(7) PnU^St(p>(A),HJ).

Indeed, for any xsAx* we have

(8) /2px"x<x)=hpMx) h(Ai.) = {0}.

Since [0,1) is the only element of {[0,1),(0,1]}, which contains 0, it follows that

(9) fipvntx)=kgpu&)e[0,l).

We conclude, by (6), that

(10) gpu*(x)eSt(gpx(A)),<W).

Consequently, there is an element W *W and a point aeA such that gpxx*(x),gpx(a)£W.

Therefore, pxx*{x＼px(a)£g~1(W)QU for some UeHJ. This yields the desired relation

pn≪(x) St (px(A), <U).

Remark 1. If HJ is a normal covering of Xx, then IJlAx is a normal covering

of Ax. Therefore, property (Bl)* for pA implies property (Bl)** for p :(X, A) -≫

(X A).

Remark 2. We say that a subset icJis normally embedded (or P-embedded)

in a space X provided every normal covering c＼jof A admits a normal covering

I/of 1 such that the restrictionHJ＼A refinescy. If Ax<^Xx is normally embedded
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in Xx for each XeA, then property (Bl)** for p＼(X,A)-*(X,A) implies property

(BY)* for da.

Theorem 3. Let p :(X, A) ->(X, A) be a resolution such that Ax is normally

embedded in Xx for each k£/L The induced morphism pA:A-yA is a resolution

if and only if A is normally embedded in X

Proof. By Theorem 2, p has property (Bl)**. Therefore, by Remark 2, pA

has property (Bl)* and it sufficesto show thatpA also has property (B2). However,

this is an immediate consequence of the fact that px has property (B2) and A is

normally embedded in X.

Now assume that pA is a resolution. Let c＼?be a normal covering of A. By

Lemma 1, there is an ANR Q an open covering CW of Q and a map h:A-*-Q such

that h~＼W) refines cy. Let W be a star-refinement of W. By (Rl) for pA there

is a /?e/land there is a map f:A)-+Q such that fp＼A and A are W'-near maps.

Then f~＼'Wr)is a normal covering of A;. Since Ax is normally embedded in Xu

there is a normal covering C＼J'of X. such that cV'＼Ax refines /~'(W)- We now

put cL/=i>"1(cU/)-Clearly, HJ is a normal convering of X Moreover, CU|A refines

c＼p.Indeed, let UzHJ. Then there is an element U'zHJ' and an element W'^CW'

such that U=prl(U'),U'nAicf~＼W'). Let FR^ and Vscy be chosen in such

a way that St(P7'f <W')^ W,h~＼W)^ V. We claim that Uf]A^V. Indeed, if

≪GC7nA, then pi(a)£U'r)Ai and therefore //>i(a) Pf'. Moreover, since fpi＼A and

A are W-near, there is an element FT/cW such that fpx{a),h(d)zWx. Therefore,

h(a)£St (PT'. W)c PT. i.e.,ae/z-'f^c F.

4. Resolutionsand directproducts

Let p: (X, A) ->(X, A) be a morphism of pro-Top2. For any space K, we as-

sociatewith p the system Kx(X, A) ―({KxXx, KxAx), lxpw, A) and the morphism

lXp:Kx(X,A)-+Kx(X,A), given by the maps lxpl:(KxX,KxA)->(KxXh

KxAj). Similarly,we associatewith p:X-+X the morphism lxp:KxX-+KxX.

Theorem 4. If p:X->X is a resolutionand K is a compact Hausdorff space

then 1 xp: Kx X --≫Kx X is alsoa resolution.

In the proof we use the followinglemma, proved in [3],II,1, Lemma 2.

Lemma 2. Let X be a topologicalspace and K a compact Hausdorff space.

Then every normal covering H.Jof Kx X admits a normal covering cy of X such

that each Feq7 admits an open covering cWv of /isuch that cW^=(cWvX V, V^oj)
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is a covering of /ixAr (stacked covering), which refines CU

89

Proof of Theorem 4. It sufficesto verify properties (Bl)* and (B2) for lxp.

Verificationof (Bl)*. Let XqA and let CU be a normal covering of KxXj. Let

<W-(cWvXV, Fecy) be a stacked covering of KxXx such that q7 is a normal

covering of Xx and CW refines RJ (Lemma 2). Clearly,

(1) St ((1xp&KxX), W) = KxSt (p>(X), cv).

Therefore, by property (Bl)* for p, there is a Xr>X such that

(2) Pn>(Xit)c:St(px(X),cV).

Consequently,

(3) (lx^^x^c St((1xpMKxX), W)£ St((1 xpMKxX), CU),

Verification of (B2). Let HJ be a normal covering of KxX'&M let cW-{LWvX V,

Vzci?) be a stacked covering of KxX, such that cy is a normal covering of X

and <W refines CIJ. By (B2) for for p, there is a XzA and a normal covering c[?x

of Xx such that (px)~＼cVi)refines cy. We now put

(4 ) cWx^{cWvXVx, Vx£cVx),

where {px)~'(F^)cVzaj. Clearly,Wx is a normal covering of KxX% znd(lxpx)~＼cWx)

refines <W and thus also refines CLJ.

The analogous theorem for pairs assumes the following form.

Theorem 5. Let p :(X, A) -*(X, A) be a resolution such that Ax is normally

embedded in Xx for each As A. If A"is a compact Hausdorff space, then lXp:Kx

(X, A)-> Kx (X, A) is a resolution of pairs.

Proof. By Theorem 2, it sufficesto show that ixpx'.KxX^-KxX has pro-

perties(Bl)* and (B2) and lxp has property (Bl)**. The first assertion follows

from Theorems 2,1 and 4. Since p has property (Bl)** (Theorem 2), Remark 2

implies that pA has property (Bl)*. This implies that also 1 xpA has property (Bl)*,

because the argument given in the firstpart of the proof of Theorem 4 applies

(since it only uses property (Bl)* of pA). We now apply Remark 1 and conclude

that lxp has property (Bl)**.

5. ANR-resolutions of pairs

The main purpose of this section is to prove the following theorem.
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Theorem 6. Every pair of topological spaces (X, A) admits an ANR-resolution

p :(X A) - (X, A) indexed by a cofiniteset A.

The analogous theorem for single spaces was established in [4]. The proof

for pairs, presented here, follows the same general idea.

In the proof we will need the following lemma.

Lemma 3. Let /: (X, A) ->■(Y, B) be a map of a pair of topological spaces to

an ANR-pair. There exists an ANR-pair (Z, C) with density

(1) s(Z)<max(s(X), s(A)),

(2) s(C)<s(A)

and there exist maps g:(X,A)-+(Z,C),h:(Z,Q^-(Y,B) such that /=%

Recall that s(X) is the least cardinal of subsets dense in X. Therefore,

s(^4)<s(^4)and s(f(A))<s(A). Moreover, if s(A) and s(B) are not both finite,then

s(A＼jB)<s(A) + s(B)< max (s(A),s(B)).

Proof. We first consider the case when f{A) is an infinite set. Let f{A)

denote the closure of f(A) in f{X). By the Kuratowski-Wojdislawski embedding

theorem ([6],I,§3.1. Theorem 2) one can assume that f(A) is embeded in a normed

vector space and is closed in its convex hull L. Since f(A) is infinite,one has

(3) s(L)= s(f(A))<s(fA))<s(A).

Now note that B is closed in Y and therefore /(A)c5. Since B is an ANR, the

inclusion i: f(A) -*■B extends to a map j :C -* B, where C is an open neighbourhood

of J(A) in L. Since L is an AR, C is an ANR and s(C)<s(L)<s(A).

We now consider the space W obtained from the topogical sum /(X)0C

identifying the two copies of f(A). Clearly, IF is a metric space with

(4) s(W)< max (s(f(X)),s(L))< max (s(X), s(A)).

Moreover, since f(A) is closed in f(X) and in C, there is a unique map k:W^>-Y

such that &I/CX) is the inclusion into Y and k＼Cis the composition of j with the

inclusion B-+Y.

We can now assume that W is embedded in a normed vector space and is

closed in its convex hull K. Since W^f(A), it is infiniteand therefore

( 5) s(K) = s(W)< max (s(X), s(A)).

Since Y is an ANR, one can extend k: W ^ Y to a map h:Z-+Y, where Z is an

open neighborhood of W in K. Hence, Z is an ANR and
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( 6) s(Z) < s(K) < max (s(X), s(A)).

Since C is closed in W, we see that C is also closed in Z and therefore {Z, C) is

an ANR-pair. Finally, we take for g: X->Z the composition of f:X^>f(X) with

the inclusion f(X)-+Z. Clearly, f = hg.

In the case when f(A) is finiteand f(X) is infinite,the proof is simpler. We

immediately consider f(X) as a closed subset of its convex hull W in some normed

vector space. Then

(7) s(W) = s(/(X))<s(Z) = max (s(X),s(A)).

We then extend the inclusion f(X) ->■Y to a map h:Z-+ Y, where Z is an open

neighborhood of W. Therefore, Z is an ANR and

(8) s(Z)<s(W)<m?ix(s(X),s(A)).

We take for g:X-+ Z the composition of /: X ―>■/(X) with the inclusion /(X) ―>Z.

Moreover, g(A)―/(A) is finite and thus an ANR and a closed subset of Z. We

then put C=gG4). Note that s(C)<s(A).

Finally,if both f(A) and /(Z) are finite,we put (Z,C) = (f(X), f(A)＼ we take

for g:X^Z the map/ and for h:Z-*Y the inclusion f(X)-*Y. Clearly,(1)

and (2) hold and (Z.C) is an ANR-pair. This completes the proof of Lemma 2.

Proof of Theorem 6. We say that two maps p: (X, A) -+ (P,Q),p': (X, A) -≫

(P', Q') are equivalent if there is a homeomorphism h :(P, Q) ->(P', Q') such that

hp=p'. Let r be the set of all equivalence classes of maps of (X,A) into ANR-

pairs (P, Q) with density satisfying

(9) s(P)< max(s(X),s(A))

(10) s(Q)<s(A).

That F is indeed a set follows from the fact that the weight w(P) = s(P) and card

(P)<2lU(P). For every tqT let qr:(X,A)~^{Yr,Br) be a map from the class r.

Let J be the set of allfinitesubsets of F ordered by inclusion. If 8={yu ･･･,^n} J,

we put (Yd,Bd) = (Ynx---xYrn,Bnx---xBrn). If o<8' = {Ti,■■-,Tn,■･･,rm}eJ, we

define g^.: (Fd<,i5g≫)- (ya,i>'5)to be the projection

FriX ･･･ X Yrnx ･･･ X Yrm -> Ynx ■･■X yrn.

We also define ^≪:(X, A) ->(Y3, Bs) to be the map

qs=qriX---XqrnX-> Y7lX---xYTn.

Clearly,(Y&,B6) is an ANR-pair and
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(Jss'Qss"= Q3d", o<d'<d",

Consequently, (Y, B)) = ((YS,Bd),qs/..,d) is an inverse system of ANR-pairs and

the maps qs define a morphism q: (X, A) ―v(Y, B) of pro-Top2.

As an immediate consequence of Lemma 3, we have the following property

(Riy, which is even stronger than (Rl).

(Rl)' For every ANR-pair (P, Q) and every map / :(X, A) ->(P, Q) there exist

an index 8s A and a map g:(Ys, BS)-+(P,Q) such that f ―gqs.

In order to obtain property (R2), we will replace (Y, B) by a larger system.

We let M be the set of all pairs [i―{8,U), where oe/J and U is an open neighbor-

hood of the set q^X) in Ys. We order M by putting p.<n' = {8',U') whenever

8<8' and qsa,(U')^U. For fx= {p,U)£Mt we put (Z/;)Q-(f/, Z7nft) and rp=q,:

X^ U. For /!<//' we put r^^^.-lf/': */' - ?7. Clearly,(Z, C) ==(&,, Cp＼r,,,,,,M)

is an inverse system of ANR-pairs and r―{rl):{X,A)-^-{Z,C) is a morphism of

pro-Top2. It is also clear that r satisfiescondition (R I)'.

We will now show that r also satisfies the following stronger form of (R2):

(R2)' Let (P,Q) be an ANR-pair and cy be an open covering of P. If psM

and g, g': (Zt,,C,,)-> (P, Q) are maps such that the maps gr,, and g'r,, are cy-near,

then there is a //>/* such that also the maps grpp> and g'rpp, are cy-near.

Indeed, let j≪= (o, £7)and let g,g':(U, Un Bs) - (P, 0) be such that gr,, and g%

are cy-near for some open covering cy of P. Then also g＼qs(X) and gf'|^≪(X)are

cy-near. Therefore, any point z£q5(X) admits a Vecy such that g(z), g'(z)e V. By

continuity, there exists an open neighborhood U(z) of z in U such that for any z'z U{z)

one has g{z'),g'(z')£V. Let U' be the union of all U(z), when 2 ranges over qi(X).

Then U' is an open neighborhood of qs(X) in F5 and U'^U. Moreover, the maps

g＼U',g'＼U' are cy-near. Therefore, ft'= (d, U')gM, [.'.<[/,and the maps gr,,r,=-g＼U'

and g'rfttl'―g'＼Ut are qy-near.

It now only remains to achieve cofmiteness of the index set ,1,i.e.,to achieve

that every element of A has only a finite number of predecessors. We define A

as the set of all finite subsets of M ordered by inclusion. We then define an in-

creasing function ^ : J ―>･M such that w({[t})=
lu.

This is obtained by induction on

n, where 2.= {fiu ･･-,[in}. We then put

Clearly, (X, A) = {(Xlf Ax), pxi-,A) is a cofinite inverse system of ANR-pairs and p =
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(pi): (X, A) -> (X, A) is a morphism of pro-Top2, which obviously has property (Rl)'.

Now assume that (P, Q) is an ANR-pair, cy is an open covering of P and

g, g':(Xit Ax) ->･(P, Q) are maps such that gpx, g'Px are cy-near maps, i.e. grvW, g'rvW

are cy-near. Then there is a [i><p(X) such that also gr9Wlt,g'rvW,i areqy-near maps.

Let Xf= /L＼J{fA. Then X<Xf and {/A<Xf and thus fx= (p({fi})<<p(X')and

gPxi'=gY?u)ti'Vip<.i"),g Ph'―q y^^^^y^h^ .

Consequently, the maps gpw, g'pw are also cy-near. This completes the proof of

Ttapnrpm (＼
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